CREATION AND VISUALIZATION OF ANATOMICAL MODELS WITH AMIRA CREATION ET VISUALISATION DES MODELES ANATOMIQUES AVEC AMIRA

Similar documents
From Image Data to Three-Dimensional Geometric Models Case Studies on the Impact of 3D Patient Models

Reconstruction of mandibular dysplasia using a statistical 3D shape model

Finite-Element Simulation of Soft Tissue Deformation

3D Volume Mesh Generation of Human Organs Using Surface Geometries Created from the Visible Human Data Set

GENERAL PROJECT S SETUP FOR FINITE ELEMENT SIMULATION OF BONY ORGANS DEMOSTRATED FOR THE CASE OF A HUMAN MANDIBLE

Interactive Deformable Registration Visualization and Analysis of 4D Computed Tomography

amira 5 Visualize Analyze Present

Visualisation : Lecture 1. So what is visualisation? Visualisation

Segmentation of Bony Structures with Ligament Attachment Sites

RADIOMICS: potential role in the clinics and challenges

Automated segmentation methods for liver analysis in oncology applications

Visual Medicine: Part Two Advanced Topics in Visual Medicine. Advanced Topics in Visual Medicine

Volumetric Deformable Models for Simulation of Laparoscopic Surgery

Landmark-based 3D Elastic Registration of Pre- and Postoperative Liver CT Data

2 Michael E. Leventon and Sarah F. F. Gibson a b c d Fig. 1. (a, b) Two MR scans of a person's knee. Both images have high resolution in-plane, but ha

Konrad Polthier, John Sullivan, Günter M. Ziegler and Hans-Christian Hege

Tomographic Reconstruction

Integrating patient-oriented data processing into the PREPaRe virtual hospital using XML technology

Reduction of Metal Artifacts in Computed Tomographies for the Planning and Simulation of Radiation Therapy

Data Representation in Visualisation

Modeling and Visualization of Uncertainty-aware Geometry using Multi-variate Normal Distributions

Pathology Hinting as the Combination of Automatic Segmentation with a Statistical Shape Model

A Workflow Optimized Software Platform for Multimodal Neurosurgical Planning and Monitoring

Pathology Hinting as the Combination of Automatic Segmentation with a Statistical Shape Model

Anatomic Hepatectomy Planning through Mobile Display Visualization and Interaction

Measuring longitudinal brain changes in humans and small animal models. Christos Davatzikos

Advanced Targeting Using Image Deformation. Justin Keister, MS DABR Aurora Health Care Kenosha, WI

A Study of Medical Image Analysis System

Advanced Visual Medicine: Techniques for Visual Exploration & Analysis

From medical imaging to numerical simulations

Visual Support for Positioning Hearing Implants (Preprint)

Volume rendering for interactive 3-d segmentation

A Workflow for Improving Medical Visualization of Semantically Annotated CT-Images

Prostate Detection Using Principal Component Analysis

Whole Body MRI Intensity Standardization

Human Heart Coronary Arteries Segmentation

Image Analysis, Geometrical Modelling and Image Synthesis for 3D Medical Imaging

GE Healthcare. Vivid 7 Dimension 08 Cardiovascular ultrasound system

An Automated Image-based Method for Multi-Leaf Collimator Positioning Verification in Intensity Modulated Radiation Therapy

Contours & Implicit Modelling 1

Introduction to Medical Image Processing

The goal of surgical simulation is to

Evaluating two Methods for Geometry Reconstruction from Sparse Surgical Navigation Data

arxiv: v1 [cs.cv] 6 Jun 2017

Comparison of Linear and Non-linear Soft Tissue Models with Post-operative CT Scan in Maxillofacial Surgery

Copyright 2017 Medical IP - Tutorial Medip v /2018, Revision

Generation of Hulls Encompassing Neuronal Pathways Based on Tetrahedralization and 3D Alpha Shapes

3D Surface Reconstruction of the Brain based on Level Set Method

Models for Planning and Simulation in Computer Assisted Orthognatic Surgery

Towards Projector-based Visualization for Computer-assisted CABG at the Open Heart

Acknowledgements. Atlas-based automatic measurements of the morphology of the tibiofemoral joint

Data Fusion Virtual Surgery Medical Virtual Reality Team. Endo-Robot. Database Functional. Database

Matching 3D Lung Surfaces with the Shape Context Approach. 1)

REGISTRATION AND NORMALIZATION OF MRI/PET IMAGES 1. INTRODUCTION

Computational Medical Imaging Analysis Chapter 4: Image Visualization

Interactive Simulation of Teeth Cleaning

VieW 3D. 3D Post-Processing WorKstation THE THIRD DIMENSION. Version 3.1

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy

Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge

Software for Automatic Treatment of Large Biomedical Images Databases

Using Pinnacle 16 Deformable Image registration in a re-treat scenario

Surgery Simulation and Planning

Extraction and recognition of the thoracic organs based on 3D CT images and its application

ADVANCING CANCER TREATMENT

Medical Image Registration

COMPREHENSIVE QUALITY CONTROL OF NMR TOMOGRAPHY USING 3D PRINTED PHANTOM

6th International DAAAM Baltic Conference INDUSTRIAL ENGINEERING April 2008, Tallinn, Estonia. Radu, C. & Roşca, I.C.

Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks

Segmentation of 3-D medical image data sets with a combination of region based initial segmentation and active surfaces

Gamepad Controls. Figure 1: A diagram of an Xbox controller. Figure 2: A screenshot of the BodyViz Controller Panel. BodyViz 3 User Manual 1

The Advanced Neuro MR Processing & Visualization Solution

Analysis of Cerebral Blood Flow from Small Rodents

Chapter 7 UNSUPERVISED LEARNING TECHNIQUES FOR MAMMOGRAM CLASSIFICATION

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

Open Topology: A Toolkit for Brain Isosurface Correction

ADVANCING CANCER TREATMENT

Modeling and preoperative planning for kidney surgery

Fast Interactive Region of Interest Selection for Volume Visualization

Motion artifact detection in four-dimensional computed tomography images

Contours & Implicit Modelling 4

Using Probability Maps for Multi organ Automatic Segmentation

Integration of thermographic data with the 3D object model by M. Kaczmarek*

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT

Computational Medical Imaging Analysis

imorph : A 3D morphological tool to fully analyze all kind of cellular materials

ANATOMICAL MODELS FOR VIRTUAL REALITY AND WEB-BASED APPLICATIONS

Volume Illumination & Vector Field Visualisation

Modeling and Visualization of Uncertainty-aware Geometry using Multi-variate Normal Distributions

Process Monitoring using three dimensional Computed Tomography and Automatic Image Processing

Increasing Interoperability, what is the Impact on Reliability? Illustrated with Health care examples

Visual Support for Positioning Hearing Implants (Preprint)

A method for quantitative measurement of gas volume changes in upper airway

Three-dimensional graphics system of medical images on the Web for patients

Volume visualization. Volume visualization. Volume visualization methods. Sources of volume visualization. Sources of volume visualization

Intraoperative Prostate Tracking with Slice-to-Volume Registration in MR

Ch. 4 Physical Principles of CT

TEMPLATE-BASED AUTOMATIC SEGMENTATION OF MASSETER USING PRIOR KNOWLEDGE

An Adaptive Virtual-Reality User-Interface for Patient Access to the Personal Electronic Medical Record

TOLERANCE ANALYSIS OF THIN-WALL CFRP STRUCTURAL ELEMENTS USING TOMOGRAPHIC IMAGING

Is deformable image registration a solved problem?

Transcription:

CREATION AND VISUALIZATION OF ANATOMICAL MODELS WITH AMIRA CREATION ET VISUALISATION DES MODELES ANATOMIQUES AVEC AMIRA Summary 3D imaging methods are widely used in medicine and biology, mainly for image-guided diagnosis, therapy, and visual morphological analyses. Going one step further, methods are needed that allow physicians to further improve their diagnosis and to plan therapy or surgery by quantitative analysis and simulation. This requires new tools for image segmentation and reconstruction of 3D geometrical models which faithfully represent the individual anatomies. Such 3D anatomical models provide the basis for a wealth of new quantitative methods. In the long term they will help to turn many fields in medicine into a more quantitative science. We demonstrate the already present impact of geometric patient models in medicine by examples from various fields in medical treatment and surgery planning. All work displayed is based on the 3D geometry reconstruction and visualization software amira. Keywords: Image Segmentation, Geometry Reconstruction, Data Visualization, Therapy and Surgery Planning Hans-Christian HEGE Zuse Institute Berlin (ZIB) Scientific Visualization Department Takustr. 7, 14195 Berlin, GERMANY, Tel.: +49-30-84185-141, Fax: +49-30-84185-107 hege@zib.de Indeed Visual Concepts Ihnestr. 23, 14195 Berlin, GERMANY Tel.: +49-30-84185-221, Fax: +49-30-82701747

1. Introduction Medicine is continuously pushing the limits of medical treatment through new insights as well as improved technology and methodology. Treatment is becoming more and more complex and in many cases requires a precision that can only be satisfied through detailed planning or even numerical simulation and optimization. Diagnosis, planning, and simulation rely on medical imaging of the individual patient. CT and MR scanners produce data in the form of high-resolution image stacks. However, it can be very difficult to interpret complex three-dimensional structures as well as spatial inter-relationships in a series of two-dimensional image slices. The scan data is inherently three-dimensional, and so the most natural way of looking at it is to computationally reconstruct the 3D structure and exploit all three dimensions for display and interaction with the data. The construction of explicit geometries representing the structures of interest becomes even more important if numerical simulations or quantification is involved. 3D visualization and data analysis technology has greatly improved over the last years, and software systems as well as 3D display devices are readily available. Looking at the appealing results of some researchers in the field, e.g. [6], the interest in true 3D visualization is continuously growing [1]. Visualization is not limited to viewing the 3D model on a 2D display such as an ordinary monitor, but it is possible to support the full spatial perception of the human visual system by supplying it with stereoscopic image pairs. In this study, we demonstrate the importance and impact of three-dimensional visualization and geometry reconstruction techniques by showing results from three different applications: hyperthermia planning, facial surgery planning, and study of vascular networks. We briefly sketch each of the applications and discuss the different benefits of true three-dimensional visualization in each case. Finally, we conclude by summing up the benefits of 3D models and 3D viewing. 2. Methods and Tools All projects described in this study have been carried out in cooperation with the Zuse Institute Berlin (ZIB), and have been implemented using the amira software suite [2] that is developed by Indeed - Visual Concepts GmbH and TGS, Inc. in cooperation with ZIB. amira integrates the whole pipeline from reading in 3D medical images to geometry reconstruction and visualization into an intuitive and easy--to--use software system that supports many file formats, including DICOM import. For immediate visual inspection of the volumetric data different visualization methods like slice-views, iso-surfaces, or direct volume rendering can be applied. Several digital filters can be used for further processing the data. Segmentation is the next step towards obtaining geometric

models. A wide range of manual, interactive and automatic segmentation tools are incorporated into the amira segmentation editor, e.g. thresholding, region--growing, intelligent scissors, and interpolation. Segmentation can be performed from different orientations and intermediate results can be visualized in a 3D viewer. From the results of the segmentation triangulated surface models are generated, both manifold and non-manifold, representing different materials (tissues). These can be further processed (e.g. simplified or smoothed), visualized or exposed to quantitative measurements. Surface representations can then be transformed into tetrahedral grids for finite element simulations. Furthermore, amira offers excellent presentation support. Apart from generating snapshot images or direct MPEG movie export of animates 3D models, amira can be used directly for viewing the medical content in full three dimensions on advanced stereoscopic display devices. Fig. 1 Hyperthermia planning. Left: illustration of patient and applicator. Right: cut through the volumetric grid used for performing the electromagnetics and heat transfer simulation. 3. Hyperthermia Treatment Planning Hyperthermia cancer therapy weakens tumor cells by heating them by application of radio waves (microwaves) [3,5]. The applicator uses a number of radio antennas controlled in terms of the amplitude and phase of the emitted waves. The challenging task is to optimize these parameters to heat just the tumor region and as few of the surrounding healthy tissue as possible. This can be achieved by superposition of the electromagnetic waves from the individual antennas. Therefore, a model of the patient's bone and soft tissue needs to be generated in order to

simulate the wave propagation, guided by the Maxwell equations, followed by a heat transfer computation, based on blood perfusion within the patient's body. The different steps of generating and using this model involve segmentation and labeling of the image data, reconstruction and post-processing of surfaces, volumetric grid generation, finite element simulation, and multiple visualization techniques (cf. Figures 1,3). The three-dimensional model of the hyperthermia patient also helps to comprehend the impact of the resulting temperature distribution on the patient. The doctor can visually check how good the target tissue is enclosed by the main hot spot. Furthermore, critical regions can be identified, such as important organs affected by secondary hot spots. Last, but not least, the 3D hot spot visualization is used for correct placement of cooling packs during the operation. Fig. 2 Cranio-maxillofacial surgery planning. Left: interactive repositioning of the colored parts of the jaw bone model. Right: post-operative photograph of a patient, overlayed with the shape predicted by the soft tissue deformation simulation. 4. Cranio-Maxillofacial Surgery Planning The second case that we study here is the repositioning of upper and/or lower jaw in cranio-maxillofacial surgery [7]. This operation requires the planning of the osteotomy lines and of the final position of both jaws. The surgeon must take into account the functional as well as the aesthetic impact of the operation. Therefore a 3D model of the jaw bones as well as of the facial soft tissue is generated from CT scan data. The surgeon defines the bone cutting lines (osteotomy lines), repositions the jaw bones interactively in the computer model, and checks the correspondence of upper and lower jaw in full three dimensions (cf. Figure 2). By running a com-

plex finite element simulation, the deformation of the soft tissue can be predicted, yielding a qualitative 3D impression of the patient's face after the operation. The rightmost picture in Figure 2 shows a comparison of the predicted face with a post-operative photograph of the patient. In addition to visually check the functional aspects of the jaw repositioning, the 3D model is used to predict the aesthetic aspect of the results, and to communicate these aspects to the patient. This is a very natural and convincing way of giving the patient an impression of how the surgery is going to affect his visual appearance. This task would be very hard to accomplish without the explicit 3D model of the face. 5. Study of Vascular Networks Fig. 3 Hyperthermia planning: Direct visualization of simulation results (temperature, hot spots) on the patient model. Fig. 4 Part of the capillary network in a 1mm 3 cube of the human cortex, displayed as lines. Colors are used to encode the local vessel radii. Another example for the use of 3D models is the work on capillary networks in the human cortex, for example in the context of stroke prevention research [4]. Here, researchers are interested in a statistical model of the blood flow and diffusion process in the cortex. In order to do so, the cortex tissue is scanned (e.g. by ultra-high resolution synchrotron based CT) and the capillary network is reconstructed. Then the volumetric representation is converted into a mathematical graph attributed with key parameters such as average segment length and diameter (see Figure 4). Based on such a representation, researchers can simulate blood flow and diffusion in this very complex network. Furthermore, the graph representation allows the user to interactively

display and explore large parts of the network, to visually compare the vessel structure of individual patients, and to check the plausibility of the reconstruction and of the mathematical model. The graph representation can be re-converted into a surface representation for selected vessels for exploring details in the branching of the vessel tree. 6. Conclusions We have sketched three medical applications of 3D visualization, data analysis, and geometry reconstruction. In each case, we have discussed the importance of true three-dimensional models and stereoscopic viewing, and we can summarize the observed benefits as follows: visual exploration of complex 3D structures truthful and natural display of spatial relationships visual communication of simulation results to experts or even non-experts (e.g. the patient) visual comparison of corresponding datasets visual plausibility control of reconstruction or simulation. In this study we have only shown a small selection of the many different applications of modern 3D visualization. We believe that in the near future the 3D patient model will play the central role in medical research, and will as well become a crucial part of clinical routine. Acknowledgement I would like to thank Detlev Stalling and Malte Westerhoff for their dedicated commitment resulting in the creation of the powerful Amira software system. Thanks also to Hans Lamecker, Steffen Prohaska, Martin Seebass, and Stefan Zachow for providing examples and for developing medical Amira modules for various medical applications. Thanks to Hartmut Schirmacher for help with this text. The computer assisted surgery project is performed in cooperation with Center for Advanced Cranio-Maxillofacial Surgery at Klinikum rechts der Isar (Technical University Munich) and Clinic for Reconstructive Surgery, Kantonsspital Basel (University Basel, Switzerland). The hyperthermia treatment planning project is worked on with Charité Berlin (Humboldt University Berlin). The vascular network analysis is performed with Institut National de la Santé et de la Recherche Médicale (Toulouse, France) and INRIA (Sophia Antipolis).

References 1) R. Beck, P. Deuflhard, H.-C. Hege, M. Seebass, and D. Stalling, Mathematical algorithms and visualization in medical treatment, in: Visualization and Mathematics. Springer, 1997, 303-328. 2) Indeed Visual Concepts GmbH and TGS, Inc. Amira advanced 3d visualization and volume modeling, http://www.amiravis.com and http://www.tgs.com, 2003. 3) J. Lang, B. Erdmann, and M. Seebass, Impact of nonlinear heat transfer on temperature control in regional hyperthermia, IEEE Trans. on Biomedical Engineering}, 46:1129--1138, 1999. 4) Microvisu3d project. http://www.tgs.com/pro_div/solution/mv3d/mv3d.htm 5) M. Seebass, R. Beck, J. Gellermann, J. Nadobny, and P. Wust, Electromagnetic phased arrays for regional hyperthermia optimal frequency and antenna arrangement. J. Hyperthermia, 17:321-336, 2001. 6) U. Tiede T. Schiemann and K.H. Höhne, Segmentation of the visible human for high-quality volume-based visualization, Medical Image Analysis, 1(4):263-270, 1996. 7) S. Zachow, E. Gladilin, A. Trepczynski, R. Sader, and H.-F. Zeilhofer, 3D osteotomy planning in cranio-maxillofacial surgery: experiences and results of surgery planning and volumetric finite-element soft tissue prediction in three clinical cases. In H.U. et~al. Lemke, editor, Computer Assisted Radiology and Surgery (CARS)}, 983-987. Springer, 2002.