Ch. 4 Physical Principles of CT

Size: px
Start display at page:

Download "Ch. 4 Physical Principles of CT"

Transcription

1 Ch. 4 Physical Principles of CT CLRS 408: Intro to CT Department of Radiation Sciences Review: Why CT? Solution for radiography/tomography limitations Superimposition of structures Distinguishing between structures with similar densities Used in radiation therapy planning instead of traditional fluoroscopy Used to show anatomy with NM functional imaging and for attenuation correction in fusion studies Review: Why CT? Eliminates superimposition Improves image contrast (reduces scatter) Detects small differences in tissue contrast Shows cross-sectional anatomy are subject to digital post-processing to produce 3D images 1

2 CT Process Beam of well-collimated x-rays transmitted thru cross-section of pt Beam geometry = size & shape of beam emanating from x-ray tube and passing thru pt to strike a set of detectors that collects radiation Attenuation data CT Process Transmitted radiation strikes detectors that can measure small differences Data received from detectors processed by digital computer * To produce a CT image 1. Systematically collect transmission values and send to computer 2. Determine linear attenuation coefficients (µ) 3. Convert µ to CT number for each pixel 4. Assign gray level to pixel, according to CT # I = I o e -µx 2

3 Physical Principles (i.e. physics & math) 1. Data Acquisition 2. Image Data Processing 3. Display / store / communicate the results Physical Principles: 1) Data Acquisition Systematic collection of information to produce the CT image 1. Slice-by-slice (Image A) 2. Volume acquisition (Image B) Image A Image B Data Acquisition Slice-by-slice Data collected thru different beam geometries Steps: X-ray tube rotates around pt Collects data from 1 st slice Tube stops Pt moves Next slice is scanned Repeated until entire area of interest is scanned 3

4 Data Acquisition Volume acquisition Data collected thru spiral/helical CT geometry Single-slice spiral/helical CT (SSCT): X-ray tube rotates around pt Traces spiral/helical path to scan entire volume of tissue Patient holds a single breath Multi-slice spiral/helical CT (MSCT) Improve the volume coverage speed performance Generate multiple slices per one revolution of x-ray tube Data Acquisition 1 st step: Scanning X-ray tube and detectors rotate around pt to collect views Detectors measure the radiation transmitted thru patient from various locations Relative transmission values= intensity at source (I O ) log( ) intensity at detector (I) Physical Principles: 2) Determine Attenuation Coefficients Attenuation: reduction in intensity of beam as it passes through an object CT reconstruction is based on attenuation of the structures in the path of the beam computer 4

5 Attenuation in CT In homogeneous beam all photons have the same energy A.K.A. monochromatic or monoenergetic beam Hounsfield used in initial experiments Homogenous beam (monochromatic / monoenergetic) Attenuation in CT In a heterogeneous beam photons have different energies A.K.A. polychromatic beam Modern CT Heterogenous beam (polychromatic) Attenuation in CT Because CT has heterogeneous beam: 1. Effective atomic density (# of atoms/volume) 2. Atomic number (lead, copper, calcium) 3. Radiation photon energy of beam low energy high energy This differential attenuation of body tissues produces the various shades of gray in a diagnostic image 5

6 What is a linear attenuation coefficient (µ)? Quantitative measurement indicating amount of attenuation that has occurred with unit of per centimeter (linear) Degree of attenuation for each voxel determined by the CT computer Result of absorption and scattering X-rays can be attenuated photoelectric effect X-Rays can be attenuated and scattered by the Compton effect * CT & Energy Dependence Attenuation (µ t ) is dependent on energy of x-ray beam The higher the energy of the beam, the less the µ t CT uses high kv technique ( ) Reduces dependence of µ on photon energy Reduces contrast at bone/soft tissue Produces high # of photons reaching detector (flux) DSCT uses high and low kv sources Images from KJR Lambert-Beer Law Describes what happens to photons as they travel through the tissues Based on homogenous beam I = I o e -µx 6

7 I = I o e -µx I - transmitted intensity (what reaches detector) I o - original intensity (what leaves tube) e - Euler s constant/base of natural logarithm (2.718) µ - linear attenuation coefficient x - thickness of object We know I, I o, e and x So we (the computer!) can solve for µ Lambert-Beer Law True for homogeneous = intensity or kv does not change Necessary to make heterogeneous beam in CT approximate a homogeneous beam to satisfy the equation Formula is modified to measure number (N) of photons that exit the tissue instead of intensity (I) N = N o e -µx *** we still use this formula to determine µ THIS is more realistic! Instead of determining one µ for radiation passing through pt, it is subdivided to provide calculated µ s for many segments along the path: N = N o e - µx N 0 µ 1 µ 2 µ 3 µ 4 µ 5 µ 6 µ 7 µ 8 µ 9 µ 10 N N = N 0 e -(µ 1 + µ 2 + µ 3 + µ 4 + µ 5 + µ 6 + µ 10 ) x 7

8 Physical Principles: 3) Convert to CT Numbers A.K.A. Hounsfield Unit Each pixel in reconstructed image is assigned a CT number, based on attenuation coefficient (µ) CT number related to µ of water: µ t -µ w CT# = µ w K µ t = µ of tissue µ w = µ of water K = scaling factor CT Numbers µ CT # = t -µ w µ w K 1000 CT numbers form a scale Hounsfield scale has K = CT number of water is 0 Scanners are calibrated so CT number of water is always valued at 0 water air bone CT Numbers Shades of gray are assigned to CT Numbers Baseline is water assigned value of 0 Cortical bone is most dense values to Air is least dense values to Every shade of gray in between is assigned a unique CT Number 8

9 Examples of CT Numbers Examples of CT Numbers Calculating CT # s If µ bone = 0.38, µ water = 0.19, µ air = 0 µ CT# = t -µ µ w w K CT # of bone = x 1000 = CT # of water = x 1000 = CT # of air = 9

10 Calculating CT # s If µ bone = 0.38, µ water = 0.19, µ air = 0 µ CT# = t -µ µ w w K CT # of bone = x 1000 = CT # of water = x = 0 CT # of air = x 1000 = Physical Principles: 4) Image Display bone 0 water air Image Data Processing Raw data data received from the detectors Undergo preprocessing corrections made and reformatting of the data occurs Scan data represent attenuation readings Converted into digital image characterized by CT # Accomplished by mathematical procedures reconstruction algorithms Reconstructed image Displayed for viewing and sent for storage/pacs 10

11 Image Display and Manipulation Display resolution Windowing Image format FOV Matrix size Pixel size Bit depth Display (Monitor) Resolution Related to size of matrix # of rows and columns the monitor can display 64 x x x 2048 We already know how to calculate the # of pixels in each matrix. Windowing Image includes range of CT # s to 1000 (or some variation) Can adjust window width and window level of image to display different gray scale values for different tissue types Appears white Appears black 11

12 Window Width (WW) Range of CT #s that are displayed as shades of gray CT# as a group Long scale / low contrast Controls displayed image contrast Window Level (WL) Determines CT # that will be the center of WW Controls image brightness Determined by tissue density that occurs most frequently within an anatomic structure WW and WL Top: 1000 Top: 0 Bottom: Bottom: Appears white Top: 500 Bottom: -500 WW = 2000 WW = 1000 WL = 0 WL = WW = 1000 WL = Appears black 12

13 Windowing Pixel Size Related to FOV and matrix size Pixel size (mm) = FOV (mm) matrix size Calculate pixel size: FOV = 20 cm and matrix size is 256 x 256 Pixel size (mm) = 200 mm 256 mm =.78 mm We know this already! Voxel Volume Voxel 3 dimensional height, width, depth Calculated by multiplying pixel dimensions by the slice thickness Pixel =.5 mm by.5 mm; slice thickness = 3 mm: Voxel volume =.5 x.5 x 3 =.75 mm 3 13

14 Technological Considerations Ultimate goal produce high-quality CT images with minimal radiation Does it work quickly/efficiently? Are the images high quality? Is the patient comfortable? Is minimal radiation dose used? Data Flow in CT Advantages of CT 1. Excellent low-contrast resolution Highly collimated beam used to take images of a cross-sectional slice of the patient More sensitive radiation detectors are used to measure the radiation transmitted through the slice CT offers best low contrast resolution compared with radiography, nuclear medicine, and ultrasonography, but not MRI 2. Image manipulation (WW/WL) Contrast scale can be varied to suit the needs of the observer 3. Single breath hold, faster processing Volume data acquisition in single breath rather than slice-by-slice Improvements in 3D imaging, multiplanar image reformation, and other applications 14

15 Advantages of CT 4. Newer techniques/procedures Quantitative CT, High spatial resolution CT, SPECT/CT, PET/CT, Perfusion CT, Dynamic CT, CT simulation for radiation therapy treatment planning, etc 5. Digital manipulation/reconstruction With image processing algorithms, image can be modified to enhance its information content or analyzed to obtain information about shape / texture of lesions 6. 3D Imaging Imaging intended to enhance image information content Improve diagnostic interpretation skills of the radiologist Limitations of CT 1. Less detailed spatial resolution in lp/mm compared with radiography 2. Increased radiation dose for similar anatomy 3. Some anatomy still difficult to image Soft tissues are surrounded by large amounts of bone (posterior fossa, spinal cord, pituitary, interpetrous space) causing artifacts 4. Artifacts Metallic objects on/in pt produces streak artifacts on CT images Also creates other artifacts not common to radiography 5. Limited in slice orientation The End 15

CLASS HOURS: 4 CREDIT HOURS: 4 LABORATORY HOURS: 0

CLASS HOURS: 4 CREDIT HOURS: 4 LABORATORY HOURS: 0 Revised 10/10 COURSE SYLLABUS TM 220 COMPUTED TOMOGRAPHY PHYSICS CLASS HOURS: 4 CREDIT HOURS: 4 LABORATORY HOURS: 0 CATALOG COURSE DESCRIPTION: This course is one of a three course set in whole body Computed

More information

Radiology. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada

Radiology. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Overview Introduction Overview Introduction Tecniques of imaging in Overview Introduction Tecniques of imaging

More information

Fundamentals of CT imaging

Fundamentals of CT imaging SECTION 1 Fundamentals of CT imaging I History In the early 1970s Sir Godfrey Hounsfield s research produced the first clinically useful CT scans. Original scanners took approximately 6 minutes to perform

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu X-ray Projection Imaging Computed Tomography Digital X-ray

More information

Image Acquisition Systems

Image Acquisition Systems Image Acquisition Systems Goals and Terminology Conventional Radiography Axial Tomography Computer Axial Tomography (CAT) Magnetic Resonance Imaging (MRI) PET, SPECT Ultrasound Microscopy Imaging ITCS

More information

Shadow casting. What is the problem? Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING IDEAL DIAGNOSTIC IMAGING STUDY LIMITATIONS

Shadow casting. What is the problem? Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING IDEAL DIAGNOSTIC IMAGING STUDY LIMITATIONS Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING Reveal pathology Reveal the anatomic truth Steven R. Singer, DDS srs2@columbia.edu IDEAL DIAGNOSTIC IMAGING STUDY Provides desired diagnostic

More information

Corso di laurea in Fisica A.A Fisica Medica 4 TC

Corso di laurea in Fisica A.A Fisica Medica 4 TC Corso di laurea in Fisica A.A. 2007-2008 Fisica Medica 4 TC Computed Tomography Principles 1. Projection measurement 2. Scanner systems 3. Scanning modes Basic Tomographic Principle The internal structure

More information

Digital Image Processing

Digital Image Processing Digital Image Processing SPECIAL TOPICS CT IMAGES Hamid R. Rabiee Fall 2015 What is an image? 2 Are images only about visual concepts? We ve already seen that there are other kinds of image. In this lecture

More information

Moscow-Bavarian Joint Advanced Student School 2006 / Medical Imaging Principles of Computerized Tomographic Imaging and Cone-Beam Reconstruction

Moscow-Bavarian Joint Advanced Student School 2006 / Medical Imaging Principles of Computerized Tomographic Imaging and Cone-Beam Reconstruction Line Integrals Line integrals represent the integral of some parameter of the object along the line (e.g. attenuation of x-rays) Object: f(x,y) Line: x cosθ + y sinθ = t Line integral / Radon transform:

More information

RADIOLOGY AND DIAGNOSTIC IMAGING

RADIOLOGY AND DIAGNOSTIC IMAGING Day 2 part 2 RADIOLOGY AND DIAGNOSTIC IMAGING Dr hab. Zbigniew Serafin, MD, PhD serafin@cm.umk.pl 2 3 4 5 CT technique CT technique 6 CT system Kanal K: RSNA/AAPM web module: CT Systems & CT Image Quality

More information

Medical Image Processing: Image Reconstruction and 3D Renderings

Medical Image Processing: Image Reconstruction and 3D Renderings Medical Image Processing: Image Reconstruction and 3D Renderings 김보형 서울대학교컴퓨터공학부 Computer Graphics and Image Processing Lab. 2011. 3. 23 1 Computer Graphics & Image Processing Computer Graphics : Create,

More information

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH 3/27/212 Advantages of SPECT SPECT / CT Basic Principles Dr John C. Dickson, Principal Physicist UCLH Institute of Nuclear Medicine, University College London Hospitals and University College London john.dickson@uclh.nhs.uk

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 4 Computed Tomography Lucas C. Parra, parra@ccny.cuny.edu some slides inspired by lecture notes of Andreas H. Hilscher at Columbia University.

More information

MEDICAL EQUIPMENT: COMPUTED TOMOGRAPHY. Prof. Yasser Mostafa Kadah

MEDICAL EQUIPMENT: COMPUTED TOMOGRAPHY. Prof. Yasser Mostafa Kadah MEDICAL EQUIPMENT: COMPUTED TOMOGRAPHY Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook X-Ray Computed Tomography in Biomedical Engineering, by Robert Cierniak, Springer, 211 Computed Tomography

More information

Tomographic Reconstruction

Tomographic Reconstruction Tomographic Reconstruction 3D Image Processing Torsten Möller Reading Gonzales + Woods, Chapter 5.11 2 Overview Physics History Reconstruction basic idea Radon transform Fourier-Slice theorem (Parallel-beam)

More information

CT Basics Principles of Spiral CT Dose. Always Thinking Ahead.

CT Basics Principles of Spiral CT Dose. Always Thinking Ahead. 1 CT Basics Principles of Spiral CT Dose 2 Who invented CT? 1963 - Alan Cormack developed a mathematical method of reconstructing images from x-ray projections Sir Godfrey Hounsfield worked for the Central

More information

Cardiac Dual Energy CT: Technique

Cardiac Dual Energy CT: Technique RSNA 2013, VSCA51-01, Chicago, Dec. 5, 2013 Cardiac Radiology Series Cardiac Dual Energy CT: Technique Willi A. Kalender, Ph.D. Institute of Medical Physics University of Erlangen www.imp.uni-erlangen.de

More information

Spiral CT. Protocol Optimization & Quality Assurance. Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA

Spiral CT. Protocol Optimization & Quality Assurance. Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA Spiral CT Protocol Optimization & Quality Assurance Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA Spiral CT Protocol Optimization & Quality Assurance Protocol optimization

More information

ML reconstruction for CT

ML reconstruction for CT ML reconstruction for CT derivation of MLTR rigid motion correction resolution modeling polychromatic ML model dual energy ML model Bruno De Man, Katrien Van Slambrouck, Maarten Depypere, Frederik Maes,

More information

Automated Image Analysis Software for Quality Assurance of a Radiotherapy CT Simulator

Automated Image Analysis Software for Quality Assurance of a Radiotherapy CT Simulator Automated Image Analysis Software for Quality Assurance of a Radiotherapy CT Simulator Andrew J Reilly Imaging Physicist Oncology Physics Edinburgh Cancer Centre Western General Hospital EDINBURGH EH4

More information

Computer-Tomography I: Principles, History, Technology

Computer-Tomography I: Principles, History, Technology Computer-Tomography I: Principles, History, Technology Prof. Dr. U. Oelfke DKFZ Heidelberg Department of Medical Physics (E040) Im Neuenheimer Feld 280 69120 Heidelberg, Germany u.oelfke@dkfz.de History

More information

Basics of treatment planning II

Basics of treatment planning II Basics of treatment planning II Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2015 Dose calculation algorithms! Correction based! Model based 1 Dose calculation algorithms!

More information

Evaluation of Spectrum Mismatching using Spectrum Binning Approach for Statistical Polychromatic Reconstruction in CT

Evaluation of Spectrum Mismatching using Spectrum Binning Approach for Statistical Polychromatic Reconstruction in CT Evaluation of Spectrum Mismatching using Spectrum Binning Approach for Statistical Polychromatic Reconstruction in CT Qiao Yang 1,4, Meng Wu 2, Andreas Maier 1,3,4, Joachim Hornegger 1,3,4, Rebecca Fahrig

More information

Micro-CT Methodology Hasan Alsaid, PhD

Micro-CT Methodology Hasan Alsaid, PhD Micro-CT Methodology Hasan Alsaid, PhD Preclinical & Translational Imaging LAS, PTS, GlaxoSmithKline 20 April 2015 Provide basic understanding of technical aspects of the micro-ct Statement: All procedures

More information

8/7/2017. Disclosures. MECT Systems Overview and Quantitative Opportunities. Overview. Computed Tomography (CT) CT Numbers. Polyenergetic Acquisition

8/7/2017. Disclosures. MECT Systems Overview and Quantitative Opportunities. Overview. Computed Tomography (CT) CT Numbers. Polyenergetic Acquisition Quantitative Multi-Energy Computed Tomography: Imaging and Therapy Advancements Disclosures MECT Systems Overview and Quantitative Opportunities The speaker receives research funding from GE Healthcare

More information

TEP Hounsfield units. Related topics Attenuation coefficient, Hounsfield units

TEP Hounsfield units. Related topics Attenuation coefficient, Hounsfield units Hounsfield units TEP Related topics Attenuation coefficient, Hounsfield units Principle Depending on the type of CT scanner and the settings, the result of a CT scan of the same material can be different

More information

Medical Imaging BMEN Spring 2016

Medical Imaging BMEN Spring 2016 Name Medical Imaging BMEN 420-501 Spring 2016 Homework #4 and Nuclear Medicine Notes All questions are from the introductory Powerpoint (based on Chapter 7) and text Medical Imaging Signals and Systems,

More information

INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1. Modifications for P551 Fall 2013 Medical Physics Laboratory

INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1. Modifications for P551 Fall 2013 Medical Physics Laboratory INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1 Modifications for P551 Fall 2013 Medical Physics Laboratory Introduction Following the introductory lab 0, this lab exercise the student through

More information

Diagnostic imaging techniques. Krasznai Zoltán. University of Debrecen Medical and Health Science Centre Department of Biophysics and Cell Biology

Diagnostic imaging techniques. Krasznai Zoltán. University of Debrecen Medical and Health Science Centre Department of Biophysics and Cell Biology Diagnostic imaging techniques Krasznai Zoltán University of Debrecen Medical and Health Science Centre Department of Biophysics and Cell Biology 1. Computer tomography (CT) 2. Gamma camera 3. Single Photon

More information

Computer-Tomography II: Image reconstruction and applications

Computer-Tomography II: Image reconstruction and applications Computer-Tomography II: Image reconstruction and applications Prof. Dr. U. Oelfke DKFZ Heidelberg Department of Medical Physics (E040) Im Neuenheimer Feld 280 69120 Heidelberg, Germany u.oelfke@dkfz.de

More information

Computed Tomography. Principles, Design, Artifacts, and Recent Advances. Jiang Hsieh THIRD EDITION. SPIE PRESS Bellingham, Washington USA

Computed Tomography. Principles, Design, Artifacts, and Recent Advances. Jiang Hsieh THIRD EDITION. SPIE PRESS Bellingham, Washington USA Computed Tomography Principles, Design, Artifacts, and Recent Advances THIRD EDITION Jiang Hsieh SPIE PRESS Bellingham, Washington USA Table of Contents Preface Nomenclature and Abbreviations xi xv 1 Introduction

More information

CT vs. VolumeScope: image quality and dose comparison

CT vs. VolumeScope: image quality and dose comparison CT vs. VolumeScope: image quality and dose comparison V.N. Vasiliev *a, A.F. Gamaliy **b, M.Yu. Zaytsev b, K.V. Zaytseva ***b a Russian Sci. Center of Roentgenology & Radiology, 86, Profsoyuznaya, Moscow,

More information

A closer look at CT scanning

A closer look at CT scanning Vet Times The website for the veterinary profession https://www.vettimes.co.uk A closer look at CT scanning Author : Charissa Lee, Natalie Webster Categories : General, Vets Date : April 3, 2017 A basic

More information

Metal Artifact Reduction CT Techniques. Tobias Dietrich University Hospital Balgrist University of Zurich Switzerland

Metal Artifact Reduction CT Techniques. Tobias Dietrich University Hospital Balgrist University of Zurich Switzerland Metal Artifact Reduction CT Techniques R S S S Tobias Dietrich University Hospital Balgrist University of Zurich Switzerland N. 1 v o 4 1 0 2. Postoperative CT Metal Implants CT is accurate for assessment

More information

Some reference material

Some reference material Some reference material Physics reference book on medical imaging: A good one is The Essential Physics of Medical Imaging, 3 rd Ed. by Bushberg et al. ($170! new). However, there are several similar books

More information

MEDICAL IMAGING 2nd Part Computed Tomography

MEDICAL IMAGING 2nd Part Computed Tomography MEDICAL IMAGING 2nd Part Computed Tomography Introduction 2 In the last 30 years X-ray Computed Tomography development produced a great change in the role of diagnostic imaging in medicine. In convetional

More information

COMPARATIVE STUDIES OF DIFFERENT SYSTEM MODELS FOR ITERATIVE CT IMAGE RECONSTRUCTION

COMPARATIVE STUDIES OF DIFFERENT SYSTEM MODELS FOR ITERATIVE CT IMAGE RECONSTRUCTION COMPARATIVE STUDIES OF DIFFERENT SYSTEM MODELS FOR ITERATIVE CT IMAGE RECONSTRUCTION BY CHUANG MIAO A Thesis Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES

More information

Computed tomography - outline

Computed tomography - outline Computed tomography - outline Computed Tomography Systems Jørgen Arendt Jensen and Mikael Jensen (DTU Nutech) October 6, 216 Center for Fast Ultrasound Imaging, Build 349 Department of Electrical Engineering

More information

C a t p h a n / T h e P h a n t o m L a b o r a t o r y

C a t p h a n / T h e P h a n t o m L a b o r a t o r y C a t p h a n 5 0 0 / 6 0 0 T h e P h a n t o m L a b o r a t o r y C a t p h a n 5 0 0 / 6 0 0 Internationally recognized for measuring the maximum obtainable performance of axial, spiral and multi-slice

More information

DUE to beam polychromacity in CT and the energy dependence

DUE to beam polychromacity in CT and the energy dependence 1 Empirical Water Precorrection for Cone-Beam Computed Tomography Katia Sourbelle, Marc Kachelrieß, Member, IEEE, and Willi A. Kalender Abstract We propose an algorithm to correct for the cupping artifact

More information

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D.

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Applied Science Laboratory, GE Healthcare Technologies 1 Image Generation Reconstruction of images from projections. textbook reconstruction advanced

More information

LAB DEMONSTRATION COMPUTED TOMOGRAPHY USING DESKCAT Lab Manual: 0

LAB DEMONSTRATION COMPUTED TOMOGRAPHY USING DESKCAT Lab Manual: 0 LAB DEMONSTRATION COMPUTED TOMOGRAPHY USING DESKCAT Lab Manual: 0 Introduction This lab demonstration explores the physics and technology of Computed Tomography (CT) and guides the student and instructor

More information

Loma Linda University Medical Center Dept. of Radiation Medicine

Loma Linda University Medical Center Dept. of Radiation Medicine Loma Linda University Medical Center Dept. of Radiation Medicine and Northern Illinois University Dept. of Physics and Dept. of Computer Science Presented by George Coutrakon, PhD NIU Physics Dept. Collaborators

More information

FINDING THE TRUE EDGE IN CTA

FINDING THE TRUE EDGE IN CTA FINDING THE TRUE EDGE IN CTA by: John A. Rumberger, PhD, MD, FACC Your patient has chest pain. The Cardiac CT Angiography shows plaque in the LAD. You adjust the viewing window trying to evaluate the stenosis

More information

Enhanced material contrast by dual-energy microct imaging

Enhanced material contrast by dual-energy microct imaging Enhanced material contrast by dual-energy microct imaging Method note Page 1 of 12 2 Method note: Dual-energy microct analysis 1. Introduction 1.1. The basis for dual energy imaging Micro-computed tomography

More information

Empirical cupping correction: A first-order raw data precorrection for cone-beam computed tomography

Empirical cupping correction: A first-order raw data precorrection for cone-beam computed tomography Empirical cupping correction: A first-order raw data precorrection for cone-beam computed tomography Marc Kachelrieß, a Katia Sourbelle, and Willi A. Kalender Institute of Medical Physics, University of

More information

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago Optimization of CT Simulation Imaging Ingrid Reiser Dept. of Radiology The University of Chicago Optimization of CT imaging Goal: Achieve image quality that allows to perform the task at hand (diagnostic

More information

Scatter Correction Methods in Dimensional CT

Scatter Correction Methods in Dimensional CT Scatter Correction Methods in Dimensional CT Matthias Baer 1,2, Michael Hammer 3, Michael Knaup 1, Ingomar Schmidt 3, Ralf Christoph 3, Marc Kachelrieß 2 1 Institute of Medical Physics, Friedrich-Alexander-University

More information

Physical bases of X-ray diagnostics

Physical bases of X-ray diagnostics Physical bases of X-ray diagnostics Dr. István Voszka Possibilities of X-ray production (X-ray is produced, when charged particles of high velocity are stopped) X-ray tube: Relatively low accelerating

More information

NON-COLLIMATED SCATTERED RADIATION TOMOGRAPHY

NON-COLLIMATED SCATTERED RADIATION TOMOGRAPHY NON-COLLIMATED SCATTERED RADIATION TOMOGRAPHY Gorshkov V.A., Space Research Institute, Moscow, Russia Yumashev V.M., State corporation "Rosatom", Centre "Atom-innovation", Moscow, Russia Kirilenko K.V.,

More information

Computational Medical Imaging Analysis Chapter 4: Image Visualization

Computational Medical Imaging Analysis Chapter 4: Image Visualization Computational Medical Imaging Analysis Chapter 4: Image Visualization Jun Zhang Laboratory for Computational Medical Imaging & Data Analysis Department of Computer Science University of Kentucky Lexington,

More information

MEDICAL IMAGING 2nd Part Computed Tomography

MEDICAL IMAGING 2nd Part Computed Tomography MEDICAL IMAGING 2nd Part Computed Tomography Introduction 2 In the last 30 years X-ray Computed Tomography development produced a great change in the role of diagnostic imaging in medicine. In convetional

More information

Computed Tomography January 2002 KTH A.K.

Computed Tomography January 2002 KTH A.K. CT A.K. Computed Tomography January KTH 1 Introduction X-ray was discovered (accidentally) by a German physicist, Wilhelm Konrad Röntgen in 1895. A few years later, in 191, Röntgen was awarded the first

More information

GPU implementation for rapid iterative image reconstruction algorithm

GPU implementation for rapid iterative image reconstruction algorithm GPU implementation for rapid iterative image reconstruction algorithm and its applications in nuclear medicine Jakub Pietrzak Krzysztof Kacperski Department of Medical Physics, Maria Skłodowska-Curie Memorial

More information

Fast iterative beam hardening correction based on frequency splitting in computed tomography

Fast iterative beam hardening correction based on frequency splitting in computed tomography Fast iterative beam hardening correction based on frequency splitting in computed tomography Qiao Yang a,b, Matthias Elter b, Ingo Schasiepen b, Nicole Maass b and Joachim Hornegger a,c a Pattern Recognition

More information

CT Systems and their standards

CT Systems and their standards CT Systems and their standards Stephen Brown Engineering Measurement 11 th April 2012 Industrial X-ray computed tomography: The future of co-ordinate metrology? Burleigh Court, Loughborough University

More information

Medical Imaging Projects

Medical Imaging Projects NSF REU MedIX Summer 2006 Medical Imaging Projects Daniela Stan Raicu, PhD http://facweb.cs.depaul.edu/research draicu@cs.depaul.edu Outline Medical Informatics Imaging Modalities Computed Tomography Medical

More information

Medical Images Analysis and Processing

Medical Images Analysis and Processing Medical Images Analysis and Processing - 25642 Emad Course Introduction Course Information: Type: Graduated Credits: 3 Prerequisites: Digital Image Processing Course Introduction Reference(s): Insight

More information

Digital Scatter Removal in Mammography to enable Patient Dose Reduction

Digital Scatter Removal in Mammography to enable Patient Dose Reduction Digital Scatter Removal in Mammography to enable Patient Dose Reduction Mary Cocker Radiation Physics and Protection Oxford University Hospitals NHS Trust Chris Tromans, Mike Brady University of Oxford

More information

Modifications for P551 Fall 2014

Modifications for P551 Fall 2014 LAB DEMONSTRATION COMPUTED TOMOGRAPHY USING DESKCAT 1 Modifications for P551 Fall 2014 Introduction This lab demonstration explores the physics and technology of Computed Tomography (CT) and guides the

More information

Proton dose calculation algorithms and configuration data

Proton dose calculation algorithms and configuration data Proton dose calculation algorithms and configuration data Barbara Schaffner PTCOG 46 Educational workshop in Wanjie, 20. May 2007 VARIAN Medical Systems Agenda Broad beam algorithms Concept of pencil beam

More information

Contrast Enhancement with Dual Energy CT for the Assessment of Atherosclerosis

Contrast Enhancement with Dual Energy CT for the Assessment of Atherosclerosis Contrast Enhancement with Dual Energy CT for the Assessment of Atherosclerosis Stefan C. Saur 1, Hatem Alkadhi 2, Luca Regazzoni 1, Simon Eugster 1, Gábor Székely 1, Philippe Cattin 1,3 1 Computer Vision

More information

DUAL energy X-ray radiography [1] can be used to separate

DUAL energy X-ray radiography [1] can be used to separate IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 1, FEBRUARY 2006 133 A Scatter Correction Using Thickness Iteration in Dual-Energy Radiography S. K. Ahn, G. Cho, and H. Jeon Abstract In dual-energy

More information

Effect of Scattering on the Image. Reducing Compton Scatter with a Grid

Effect of Scattering on the Image. Reducing Compton Scatter with a Grid Effect of Scattering on the Image Increasing Compton scattering degrades image. Webb 21 Reducing Compton Scatter with a Grid Grids Parallel (focused at infinity) Linear Focused (see figure) Moving grids

More information

Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition

Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition Bernd Schweizer, Andreas Goedicke Philips Technology Research Laboratories, Aachen, Germany bernd.schweizer@philips.com Abstract.

More information

DICOM. Supplement 188 Multi-Energy CT Imaging. DICOM Working Group 21 Computed Tomography

DICOM. Supplement 188 Multi-Energy CT Imaging. DICOM Working Group 21 Computed Tomography DICOM Supplement 188 Multi-Energy CT Imaging DICOM Working Group 21 Computed Tomography Rationale Short introduction of Multi Energy (ME) s Overview: Imaging techniques, including scanning, reconstruction,

More information

Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon

Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon WHITE PAPER Introduction Introducing an image guidance system based on Cone Beam CT (CBCT) and a mask immobilization

More information

SYSTEM LINEARITY LAB MANUAL: 2 Modifications for P551 Fall 2013 Medical Physics Laboratory

SYSTEM LINEARITY LAB MANUAL: 2 Modifications for P551 Fall 2013 Medical Physics Laboratory SYSTEM LINEARITY LAB MANUAL: 2 Modifications for P551 Fall 2013 Medical Physics Laboratory Introduction In this lab exercise, you will investigate the linearity of the DeskCAT scanner by making measurements

More information

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations A. Al-Basheer, G. Sjoden, M. Ghita Computational Medical Physics Team Nuclear & Radiological Engineering University

More information

Application of 450 kv Computed Tomography to Engine Blocks with Steel Liners

Application of 450 kv Computed Tomography to Engine Blocks with Steel Liners Application of 450 kv Computed Tomography to Engine Blocks with Steel Liners Charles R. Smith, Kevin Holt BIR, Inc. Uwe Bischoff, Bernd Georgi, Ferdinand Hansen, Frank Jeltsch Volkswagen Commercial Vehicles

More information

Computational Medical Imaging Analysis

Computational Medical Imaging Analysis Computational Medical Imaging Analysis Chapter 1: Introduction to Imaging Science Jun Zhang Laboratory for Computational Medical Imaging & Data Analysis Department of Computer Science University of Kentucky

More information

CALIBRATIONS FOR ANALYZING INDUSTRIAL SAMPLES ON MEDICAL CT SCANNERS

CALIBRATIONS FOR ANALYZING INDUSTRIAL SAMPLES ON MEDICAL CT SCANNERS CALIBRATIONS FOR ANALYZING INDUSTRIAL SAMPLES ON MEDICAL CT SCANNERS INTRODUCTION Patricia K. Hunt, Philip Engler, and William D. Friedman BP American Research and Development 4440 Warrensville Center

More information

CT Basics: Image Processing and Reconstruction Module 4

CT Basics: Image Processing and Reconstruction Module 4 Module 4 For educational and institutional use. This transcript is licensed for noncommercial, educational inhouse or online educational course use only in educational and corporate institutions. Any broadcast,

More information

arxiv: v2 [cond-mat.mtrl-sci] 5 Jan 2010

arxiv: v2 [cond-mat.mtrl-sci] 5 Jan 2010 Gamma scattering scanning of concrete block for detection of voids. Shivaramu 1, Arijit Bose 2 and M. Margret 1 1 Radiological Safety Division, Safety Group, IGCAR, Kalpakaam - 63 12 (India) 2 Chennai

More information

Applying Hounsfield unit density calibration in SkyScan CT-analyser

Applying Hounsfield unit density calibration in SkyScan CT-analyser 1 Bruker-microCT Method note Applying Hounsfield unit density calibration in SkyScan CT-analyser Hounsfield units (HU) are a standard unit of x-ray CT density, in which air and water are ascribed values

More information

X-ray Tomography. A superficial introduction, but sufficient enough to get us started in surgical navigation.

X-ray Tomography. A superficial introduction, but sufficient enough to get us started in surgical navigation. X-ray Tomography A superficial introduction, but sufficient enough to get us started in surgical navigation. X-ray absorption in homogeneous tissue I o I o / I d m = density I I=I o e -kdm k= constant

More information

Introduction to Positron Emission Tomography

Introduction to Positron Emission Tomography Planar and SPECT Cameras Summary Introduction to Positron Emission Tomography, Ph.D. Nuclear Medicine Basic Science Lectures srbowen@uw.edu System components: Collimator Detector Electronics Collimator

More information

Reduction of Metal Artifacts in Computed Tomographies for the Planning and Simulation of Radiation Therapy

Reduction of Metal Artifacts in Computed Tomographies for the Planning and Simulation of Radiation Therapy Reduction of Metal Artifacts in Computed Tomographies for the Planning and Simulation of Radiation Therapy T. Rohlfing a, D. Zerfowski b, J. Beier a, P. Wust a, N. Hosten a, R. Felix a a Department of

More information

Combining Analytical and Monte Carlo Modelling for Industrial Radiology

Combining Analytical and Monte Carlo Modelling for Industrial Radiology 19 th World Conference on Non-Destructive Testing 2016 Combining Analytical and Monte Carlo Modelling for Industrial Radiology Carsten BELLON, Gerd-Rüdiger JAENISCH, Andreas DERESCH BAM Bundesanstalt für

More information

Philips SPECT/CT Systems

Philips SPECT/CT Systems Philips SPECT/CT Systems Ling Shao, PhD Director, Imaging Physics & System Analysis Nuclear Medicine, Philips Healthcare June 14, 2008 *Presented SNM08 Categorical Seminar - Quantitative SPECT and PET

More information

Projection and Reconstruction-Based Noise Filtering Methods in Cone Beam CT

Projection and Reconstruction-Based Noise Filtering Methods in Cone Beam CT Projection and Reconstruction-Based Noise Filtering Methods in Cone Beam CT Benedikt Lorch 1, Martin Berger 1,2, Joachim Hornegger 1,2, Andreas Maier 1,2 1 Pattern Recognition Lab, FAU Erlangen-Nürnberg

More information

Computed tomography (Item No.: P )

Computed tomography (Item No.: P ) Computed tomography (Item No.: P2550100) Curricular Relevance Area of Expertise: Biology Education Level: University Topic: Modern Imaging Methods Subtopic: X-ray Imaging Experiment: Computed tomography

More information

Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system

Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system 3 rd October 2008 11 th Topical Seminar on Innovative Particle and Radiation

More information

Constructing System Matrices for SPECT Simulations and Reconstructions

Constructing System Matrices for SPECT Simulations and Reconstructions Constructing System Matrices for SPECT Simulations and Reconstructions Nirantha Balagopal April 28th, 2017 M.S. Report The University of Arizona College of Optical Sciences 1 Acknowledgement I would like

More information

Computational Medical Imaging Analysis

Computational Medical Imaging Analysis Computational Medical Imaging Analysis Chapter 2: Image Acquisition Systems Jun Zhang Laboratory for Computational Medical Imaging & Data Analysis Department of Computer Science University of Kentucky

More information

PURE. ViSION Edition PET/CT. Patient Comfort Put First.

PURE. ViSION Edition PET/CT. Patient Comfort Put First. PURE ViSION Edition PET/CT Patient Comfort Put First. 2 System features that put patient comfort and safety first. Oncology patients deserve the highest levels of safety and comfort during scans. Our Celesteion

More information

Energy resolved X-ray diffraction Cl. J.Kosanetzky, G.Harding, U.Neitzel

Energy resolved X-ray diffraction Cl. J.Kosanetzky, G.Harding, U.Neitzel Proc. Of SPIE Vol 0626, Application of Optical Instrumentation in Medicine XIV and Picture Archiving and Communication Systems(PACS IV) for Medical Applications IV, ed. S J Dwyer/R H Schneider (Jan 1986)

More information

CT Protocol Review: Practical Tips for the Imaging Physicist Physicist

CT Protocol Review: Practical Tips for the Imaging Physicist Physicist CT Protocol Review: Practical Tips for the Imaging Physicist Physicist Dianna Cody, Ph.D., DABR, FAAPM U.T.M.D. Anderson Cancer Center August 8, 2013 AAPM Annual Meeting Goals Understand purpose and importance

More information

Biomedical Imaging. Computed Tomography. Patrícia Figueiredo IST

Biomedical Imaging. Computed Tomography. Patrícia Figueiredo IST Biomedical Imaging Computed Tomography Patrícia Figueiredo IST 2013-2014 Overview Basic principles X ray attenuation projection Slice selection and line projections Projection reconstruction Instrumentation

More information

Principles of Computerized Tomographic Imaging

Principles of Computerized Tomographic Imaging Principles of Computerized Tomographic Imaging Parallel CT, Fanbeam CT, Helical CT and Multislice CT Marjolein van der Glas August 29, 2000 Abstract The total attenuation suffered by one beam of x-rays

More information

An Iterative Approach to the Beam Hardening Correction in Cone Beam CT (Proceedings)

An Iterative Approach to the Beam Hardening Correction in Cone Beam CT (Proceedings) Marquette University e-publications@marquette Biomedical Engineering Faculty Research and Publications Engineering, College of 1-1-1999 An Iterative Approach to the Beam Hardening Correction in Cone Beam

More information

Computed Tomography. Principles of Medical Imaging. Contents. Prof. Dr. Philippe Cattin. MIAC, University of Basel. Sep 26th/Oct 3rd, 2016

Computed Tomography. Principles of Medical Imaging. Contents. Prof. Dr. Philippe Cattin. MIAC, University of Basel. Sep 26th/Oct 3rd, 2016 Computed Tomography Principles of Medical Imaging Prof. Dr. Philippe Cattin MIAC, University of Basel Contents Abstract 1 Computed Tomography Basics Introduction Computed Tomography Hounsfield's CT Prototype

More information

Optimization of Beam Spectrum and Dose for Lower-Cost CT. Mary Esther Braswell. Graduate Program in Medical Physics Duke University.

Optimization of Beam Spectrum and Dose for Lower-Cost CT. Mary Esther Braswell. Graduate Program in Medical Physics Duke University. Optimization of Beam Spectrum and Dose for Lower-Cost CT by Mary Esther Braswell Graduate Program in Medical Physics Duke University Date: Approved: James Dobbins, Supervisor Anuj Kapadia Robert Reiman

More information

Low-Dose Dual-Energy CT for PET Attenuation Correction with Statistical Sinogram Restoration

Low-Dose Dual-Energy CT for PET Attenuation Correction with Statistical Sinogram Restoration Low-Dose Dual-Energy CT for PET Attenuation Correction with Statistical Sinogram Restoration Joonki Noh, Jeffrey A. Fessler EECS Department, The University of Michigan Paul E. Kinahan Radiology Department,

More information

Artifact Mitigation in High Energy CT via Monte Carlo Simulation

Artifact Mitigation in High Energy CT via Monte Carlo Simulation PIERS ONLINE, VOL. 7, NO. 8, 11 791 Artifact Mitigation in High Energy CT via Monte Carlo Simulation Xuemin Jin and Robert Y. Levine Spectral Sciences, Inc., USA Abstract The high energy (< 15 MeV) incident

More information

icatvision Quick Reference

icatvision Quick Reference icatvision Quick Reference Navigating the i-cat Interface This guide shows how to: View reconstructed images Use main features and tools to optimize an image. REMINDER Images are displayed as if you are

More information

Scatter Correction for Dual source Cone beam CT Using the Pre patient Grid. Yingxuan Chen. Graduate Program in Medical Physics Duke University

Scatter Correction for Dual source Cone beam CT Using the Pre patient Grid. Yingxuan Chen. Graduate Program in Medical Physics Duke University Scatter Correction for Dual source Cone beam CT Using the Pre patient Grid by Yingxuan Chen Graduate Program in Medical Physics Duke University Date: Approved: Lei Ren, Supervisor Fang Fang Yin, Chair

More information

[PDR03] RECOMMENDED CT-SCAN PROTOCOLS

[PDR03] RECOMMENDED CT-SCAN PROTOCOLS SURGICAL & PROSTHETIC DESIGN [PDR03] RECOMMENDED CT-SCAN PROTOCOLS WORK-INSTRUCTIONS DOCUMENT (CUSTOMER) RECOMMENDED CT-SCAN PROTOCOLS [PDR03_V1]: LIVE 1 PRESCRIBING SURGEONS Patient-specific implants,

More information

AIDR 3D Iterative Reconstruction:

AIDR 3D Iterative Reconstruction: Iterative Reconstruction: Integrated, Automated and Adaptive Dose Reduction Erin Angel, PhD Manager, Clinical Sciences, CT Canon Medical Systems USA Iterative Reconstruction 1 Since the introduction of

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2007W1 SEMESTER 2 EXAMINATION 2014-2015 MEDICAL PHYSICS Duration: 120 MINS (2 hours) This paper contains 10 questions. Answer all questions in Section A and only two questions

More information