!"#$%&$'()*+,( )*-$'(./&01"$&%(!!(

Similar documents
Inviscid Flows. Introduction. T. J. Craft George Begg Building, C41. The Euler Equations. 3rd Year Fluid Mechanics

SPC 307 Aerodynamics. Lecture 1. February 10, 2018

SPAREPARTSCATALOG: CONNECTORS SPARE CONNECTORS KTM ART.-NR.: 3CM EN

SPARE CONNECTORS KTM 2014

22ND CENTURY_J1.xls Government Site Hourly Rate

Appendix 5-1: Attachment J.1 Pricing Table -1: IMS Ceiling Loaded Rates at Contractor Site

Lecture 1.1 Introduction to Fluid Dynamics

!! " # $%! "! &' $ (!!

Wall-bounded laminar sink flows

A New Advancement in the Complex Variable Boundary Element Method with a Potential Flow Application


Conformal Mapping and Fluid Mechanics

CIS-331 Fall 2013 Exam 1 Name: Total of 120 Points Version 1

FLOWING FLUIDS AND PRESSURE VARIATION

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM)

Modeling the Fluid Flow around Airfoils Using. Conformal Mapping

21. Efficient and fast numerical methods to compute fluid flows in the geophysical β plane

DETAIL SPECIFICATION SHEET

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent

FLUID MECHANICS TESTS

CIS-331 Exam 2 Fall 2015 Total of 105 Points Version 1

CHAPTER 3. Elementary Fluid Dynamics

Unit 4. Applications of integration

Roland AC Adapter Compatibility Guide

Transactions on Modelling and Simulation vol 16, 1997 WIT Press, ISSN X

Last name... You must show full analytical work to receive full credit, even on the multiple choice problems.

4. Specifications and Additional Information

One subset of FEAL, called FEAL-NX, is N round FEAL using a 128-bit key without key parity.

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Why Airplanes Can t Fly

C E R T I F I C A T E O F C O M P L I A N C E

C1098 JPEG Module User Manual

Coordinate Transformations in Advanced Calculus

Chapter 8: Applications of Definite Integrals

CIS-331 Fall 2014 Exam 1 Name: Total of 109 Points Version 1

OPAL-RT FIU User Guide.

UYM-UOM-UOY-UOD- UOS-UOB-UOR

TOM S RIVER. N. J. APRIL 1, 1857.

Physics of an Flow Over a Wing

BASICS OF FLUID MECHANICS AND INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving Objects

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Semi conductor fuses PSC 690 V DIN 43620

2.29 Numerical Marine Hydrodynamics Spring 2007

Abstract. 1 Introduction

Programming. User s Manual. Ver:3.2. Contents - 1 -

Non-Newtonian Transitional Flow in an Eccentric Annulus

Abstract. Introduction

Section 7.2 Volume: The Disk Method

Pulsating flow around a stationary cylinder: An experimental study

Flow structure and air entrainment mechanism in a turbulent stationary bore

Australian Journal of Basic and Applied Sciences, 3(2): , 2009 ISSN

The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by

Stream Function-Vorticity CFD Solver MAE 6263

The Divergence Theorem

Three-dimensional simulation of floating wave power device Xixi Pan 1, a, Shiming Wang 1, b, Yongcheng Liang 1, c

Keywords: flows past a cylinder; detached-eddy-simulations; Spalart-Allmaras model; flow visualizations

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić

a) the sum of their amplitudes b) the difference of their amplitudes c) the product of their amplitudes d) the quotient of their amplitudes ? K?

An examination of the Joukowski airfoil in potential flow, without using complex numbers

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

CIS-331 Spring 2016 Exam 1 Name: Total of 109 Points Version 1

Analysis of Flow Dynamics of an Incompressible Viscous Fluid in a Channel

2-Type Series Pressurized Closures

Viscous/Potential Flow Coupling Study for Podded Propulsors

Handout: Turbulent Structures

CIS-331 Final Exam Spring 2015 Total of 115 Points. Version 1

Game Engineering: 2D

ZN-DN312XE-M Quick User Guide

MECHANICS OF MATERIALS

GEOMETRY HONORS SEMESTER EXAMS PRACTICE MATERIALS KEY SEMESTER 2. Selected Response Key. CE obj DOK Level Key. Common Core State Standard(s)

Programming User s Manual

Calculation of Flow Past A Sphere in the Vicinity of A Ground Using A Direct Boundary Element Method

Unit 4. Applications of integration

Downloaded from on Saturday, April 05, 2014 ' " % # 1 ^% )#-C _F % V $% : 2,L

Hartmann HONORS Geometry Chapter 3 Formative Assessment * Required

Separation in three-dimensional steady flows. Part 2 : DETACHMENT AND ATTACHMENT SEPARATION LINES DETACHMENT AND ATTACHMENT SEPARATION SURFACES

Excerpt from the full range of SIRIUS ACT Push Buttons and Indicator Lights siemens.com/sirius-act

Compiler Construction

Plastic Fiber Optics. Photoelectric Sensors with Special Properties Plastic fiber optics BFO

Flow Structures Extracted from Visualization Images: Vector Fields and Topology

1.2 Numerical Solutions of Flow Problems

1. Introduction. 2. Velocity Distribution

Free-surface flow under a sluice gate from deep water

Introduction to C omputational F luid Dynamics. D. Murrin

SIMATIC S7-200 PRICE LIST


3 Geometric inequalities in convex quadrilaterals Geometric inequalities of Erdős-Mordell type in the convex quadrilateral

Essay 1: Dimensional Analysis of Models and Data Sets: Similarity Solutions

Simulation Technology for Offshore and Marine Hydrodynamics Status Review and Emerging Capabilities

THE EFFECT OF REPLACING THE JOUKOWSKI MAP WITH THE GENERALIZED KARMAN-TREFFTZ MAP IN THE METHOD OF ZEDAN

Secret Key Systems (block encoding) Encrypting a small block of text (say 64 bits) General considerations for cipher design:

CFD Analysis of a Fully Developed Turbulent Flow in a Pipe with a Constriction and an Obstacle

Data Visualization. Fall 2017

SIMULATION OF PROPELLER-SHIP HULL INTERACTION USING AN INTEGRATED VLM/RANSE SOLVER MODELING.

Zigzag instability of vortex arrays in stratified and rotating fluids

Engineering Surveying - II CE313. Route Survey Lecture 03 Muhammad Noman

C3 Integration 1. June 2010 qu. 4

Trio Application Control System Instruction Sheet

Parametric Surfaces. Substitution

Transcription:

1!"#$%&$'()*+,( )*-$'(./&01"$&%(!!( Inviscid Flow!!"#$%&$'(2+,($34*$/%(5015(50/(#$%&+-%(/6/&5($%("/7*$7$8*/9(:0$%(+&&-;%($"( 50/(2+,('+31$"(1,1<(=;+3(1(%+*$'(8+-"'1;<(+-5%$'/(50/(8+-"'1;<( *1</;(15(>/"?9( 2! :0/(2+,%(1;/(7+#/;"/'(8<(@-*/;(@A-1B+"%(,0/;/(! C(vC(1"'(p(&1"(8/(=-"&B+"%(+=(;(1"'(5(9(

Inviscid Flow! D"(50/(+50/;(01"'C($=(2+,%(1;/(%5/1'<(8-5(&+34;/%%$8*/C(50/( 7+#/;"$"7(/A-1B+"(8/&+3/%( 3,0/;/(!(&1"(8/(1(=-"&B+"(+=(r! )+;(&+34;/%%$8*/(2+,%C(50/(%515/(/A-1B+"(( $%("//'/'E(50/"C(,/(,$**(;/A-$;/(50/(/A-1B+"(=+;(( 5/34/;15-;/(T(1*%+9( Inviscid Flow 4! F+34;/%%$8*/($"#$%&$'(2+,%(-%-1**<(8/*+"7(5+(50/(%&+4/(+=( 1/;+'<"13$&%(+=(0$70(%4//'(2$705(+=(1$;&;1G9(H/;/(,/(&+"%$'/;(+"*<( $"&+34;/%%$8*/($"#$%&$'(2+,%9(! )+;($"&+34;/%%$8*/(2+,C(50/(7+#/;"$"7(/A-1B+"%(;/'-&/(5+((,0/;/(!(I(&+"%51"59(

Inviscid Flow! )+;(%5/1'<($"&+34;/%%$8*/(2+,C(50/(7+#/;"$"7(/A-1B+"%(;/'-&/(=-;50/;(5+( 5 ( ( ( ( (,0/;/(!(I(&+"%51"59(! :0/(/A-1B+"(+=(3+B+"(&1"(8/(;/,;$J/"($"5+(! :1K/(50/(%&1*1;(4;+'-&5%(,$50(';(1"'($"5/7;15/(=;+3(1(;/=/;/"&/(( 15(?(1*+"7(1"(1;8$5;1;<(%5;/13*$"/((((((((((((((C(*/1'%(5+(( %$"&/(( Inviscid Flow!!=(50/(&+"%51"5(L5+51*(/"/;7<(4/;(-"$5(31%%M($%(50/(%13/(=+;(1**(%5;/13*$"/%C( 50/(4150(+=(50/($"5/7;1*(&1"(8/(1;8$5;1;<C(1"'( ( ($"(50/(2+,( '+31$"(/N&/45($"%$'/(8+-"'1;<(*1</;%9(! )$"1**<C(50/(7+#/;"$"7(/A-1B+"%(=+;($"#$%&$'C($;;+51B+"1*(%5/1'<(2+,(1;/(! O$"&/(((((((((((((((((((((($%(50/(#+;B&$5<(C(2+,%(,$50((((((((((((((((((((1;/(&1**/'($;;+51B+"1*( 2+,%9(( 6

Inviscid Flow 7! P+5/(5015(50/(#/*+&$5<(1"'(4;/%%-;/(Q/*'%(1;/('/&+-4*/'9(H/"&/C(,/(&1"( %+*#/(50/(#/*+&$5<(Q/*'(=;+3(50/(&+"B"-$5<(1"'(#+;B&$5<(/A-1B+"%9(:0/"(50/( 4;/%%-;/(Q/*'($%('/5/;3$"/'(8<(R/;"+-**$(/A-1B+"9(! S(#/*+&$5<(4+5/"B1*(((((/N$%5%(=+;($;;+51B+"1*(2+,C(%-&0(5015C(( 1"'($;;+51B+"1*$5<(((((((((((((((((((((((((((((((((( (((((($%(1-5+31B&1**<(%1B%Q/'9(( T+;B&$5<(U(F$;&-*1B+"( 8 Consider a simple current in a flume (tank) with a shear velocity profile y B B x A A After a time, t, A moves to A and B moves to B. The line AB has rotated and stretched, and all the fluid elements on the line must have rotated and stretched. Viscosity (and turbulent shear) introduce rotation to the flow.

V/Q"$B+"(+=(F$;&-*1B+"( 9 The circulation is where V s is the velocity parallel to the curve, s. dk K ds V s This can also be found by adding all the small circulation elements, dk V/Q"$B+"(+=(T+;B&$5<( 10 To calculate the circulation around the element dxdy dy dx Vorticity is defined as No shear = no vorticity

:0/(O5;/13()-"&B+"( 11 Is there a single function to describe the velocity field in the x,y plane in the absence of vorticity? YES The stream function is defined as Does it satisfy the equation of continuity? YES If the flow is irrotational (no vorticity) then it satisfies Laplace and is therefore additive 0.5m grid u 0 =1ms -1.!=3 3 12!=2 2!=1!=0!!" "!#$% &# ( 1 0 y!=-1-1!=-2-2!=-3-3!=-4-4 0 1 2 3 4 5 6 7 8 9 10 x

W/"/;1*$%/'(*$"/1;(2+,( 13 y V! v 0 u 0 x Inviscid Flow 14! :0/(&+"B"-$5<(/A-1B+"(8/&+3/%(,0$&0($%(1*%+(K"+,"(1%(50/(X14*1&/(/A-1B+"9(! @#/;<(4+5/"B1*(%1B%=<(50$%(/A-1B+"9()*+,%(,$50(50/(/N$%5/"&/(+=( 4+5/"B1*(=-"&B+"%(%1B%=<$"7(50/(X14*1&/(/A-1B+"(1;/(&1**/'( 4+5/"B1*(2+,9(

Inviscid Flow! :0/(*$"/1;$5<(+=(50/(7+#/;"$"7(/A-1B+"(=+;(50/(2+,(Q/*'%($34*$/%(5015( '$6/;/"5(4+5/"B1*(2+,%(&1"(8/(%-4/;4+%/'9( 15!!=(((((1"'((((((1;/(5,+(4+5/"B1*(2+,%C(50/(%-3((((((((((((((((((((((((((1*%+(&+"%B5-5/%(1( 4+5/"B1*(2+,9(Y/(01#/((! H+,/#/;C(50/(4;/%%-;/(&1""+5(8/(%-4/;4+%/'('-/(5+(50/("+"*$"/1;$5<($"(50/( R/;"+-**$(/A-1B+"C($9/9(( 2D Potential Flows!!=(;/%5;$&5/'(5+(%5/1'<(5,+('$3/"%$+"1*(4+5/"B1*(2+,C(50/"(50/(7+#/;"$"7(/A-1B+"%( 8/&+3/( U L y D z x! @979(4+5/"B1*(2+,(41%5(1(&$;&-*1;(&<*$"'/;(,$50(VZX([[\($%(1(]V(4+5/"B1*(2+,("/1;(50/( 3$''*/(+=(50/(&<*$"'/;C(,0/;/(8+50(w(&+34+"/"5(1"'( 16

2D Potential Flows! :0/(]^V(#/*+&$5<(4+5/"B1*(=-"&B+"(7$#/%( 17 1"'(50/"(50/(&+"B"-$5<(/A-1B+"(8/&+3/%(! :0/(4;/%%-;/('$%5;$8-B+"(&1"(8/('/5/;3$"/'(8<(50/(( R/;"+-**$(/A-1B+"C(,0/;/(p($%(50/('<"13$&(4;/%%-;/( 2D Potential Flows 18! )+;(]V(4+5/"B1*(2+,%C(1(%5;/13(=-"&B+"(((((((((((((&1"(1*%+(8/('/Q"/'(5+7/50/;(,$50((((((((((((9(!"(F1;B%$1"(&++;'$"15/%C(((,0/;/(&+"B"-$5<(/A-1B+"($%(1-5+31B&1**<(%1B%Q/'C(1"'($;;+51B+"1*$5<(*/1'%( 5+(50/(X14*1&/(/A-1B+"C(! R+50(X14*1&/(/A-1B+"%(1;/(%1B%Q/'(=+;(1(]V(4+5/"B1*(2+,((

Two-Dimensional Potential Flows! )+;(5,+^'$3/"%$+"1*(2+,%C(((((((((((((((((((8/&+3/_(!!"(1(F1;5/%$1"(&++;'$"15/(%<%5/3(( and!!"(1(f<*$"';$&1*(&++;'$"15/(%<%5/3( and 19 Two-Dimensional Potential Flows! :0/(4+5/"B1*(=-"&B+"(((1"'(50/(%5;/13(=-"&B+"(((1;/(&+"`-715/(41$;( +=(1"(1"1*<B&1*(=-"&B+"($"(&+34*/N(#1;$18*/(1"1*<%$%9(:0/(&+"'$B+"%_( 20! :0/%/( 1;/( 50/( F1-&0<^>$/31""( &+"'$B+"%9( :0/( 1"1*<B&1*( 4;+4/;5<( $34*$/%(5015(50/(&+"%51"5(4+5/"B1*(*$"/(1"'(50/(&+"%51"5(%5;/13*$"/( 1;/(+;50+7+"1*C($9/9C((((((((((((((( ((((((((((((((((( ((1"'(((((((((((((((( ( ((5+($34*<(5015(

Two-Dimensional Potential Flows! :0/;/=+;/C(50/;/(/N$%5%(1(%5;/13(=-"&B+"((((((%-&0(5015( (((((((((((((((((((((((((( ( ($"(50/(F1;5/%$1"(&++;'$"15/(%<%5/3(1"'( ((((((((((((((((((((((((((((( ($"(50/(&<*$"';$&1*(&++;'$"15/(%<%5/39(! :0/(5;1"%=+;31B+"(8/5,//"(50/(5,+(&++;'$"15/(%<%5/3%( 21 Simple 2-D Potential Flows 22! a"$=+;3()*+,(! O517"1B+"()*+,(! O+-;&/(LO$"KM(! );//(T+;5/N(

Uniform Flow # For a uniform flow given by, we have and # Therefore, and # Where the arbitrary integration constants are taken to be zero at the origin. 23 Uniform Flow! :0$%($%(1(%$34*/(-"$=+;3(2+,(1*+"7(1(%$"7*/('$;/&B+"9( 24

Stagnation Flow! )+;(1(%517"1B+"(2+,C((((((((((((((( (((((((9(H/"&/C((! :0/;/=+;/C( 25 Stagnation Flow 26! :0/(2+,(1"($"&+3$"7(=1;(Q/*'(2+,(,0$&0($%(4/;4/"'$&-*1;(5+(50/(,1**C( 1"'(50/"(5-;"($5%('$;/&B+"("/1;(50/(,1**(! :0/(+;$7$"($%(50/(%517"1B+"(4+$"5(+=(50/(2+,9(:0/(#/*+&$5<($%(b/;+( 50/;/9( y x

Source (Sink)! F+"%$'/;(1(*$"/(%+-;&/(15(50/(+;$7$"(1*+"7(50/(b^'$;/&B+"9(:0/( 2-$'(2+,%(;1'$1**<(+-5,1;'(=;+3(L+;($",1;'(5+,1;'M(50/(+;$7$"9(!=(3('/"+5/%(50/(2+,;15/(4/;(-"$5(*/"750C(,/(01#/(((((((((((((((( L%+-;&/($=(!($%(4+%$B#/(1"'(%$"K($=("/71B#/M9((! :0/;/=+;/C( 27 Source (Sink)! :0/($"5/7;1B+"(*/1'%(5+(( and! Y0/;/(171$"(50/(1;8$5;1;<($"5/7;1B+"(&+"%51"5%(1;/(51K/"( 5+(8/(b/;+(15(((((((((((((((((((((((((( 28

Source (Sink)! S(4-;/(;1'$1*(2+,(/$50/;(1,1<(=;+3(%+-;&/(+;($"5+(1(%$"K( 29! S(c#/(3($"'$&15/%(1(%+-;&/C(1"'(d#/(3($"'$&15/%(1(%$"K(! :0/(317"$5-'/(+=(50/(2+,('/&;/1%/(1%(\Z;((! b('$;/&b+"(i($"5+(50/(414/;9(l&01"7/(7;140$&%m( Free Vortex! F+"%$'/;(50/(2+,(&$;&-*1B"7(1;+-"'(50/(+;$7$"(,$50(1( &+"%51"5(&$;&-*1B+"((((9(Y/(01#/_(((((((((((((((((( (,0/;/(2-$'( 3+#/%(&+-"5/;(&*+&K,$%/($=(((((($%(4+%$B#/(1"'(&*+&K,$%/($=( "/71B#/9((! :0/;/=+;/C( 30

Free Vortex # The integration leads to and where again the arbitrary integration constants are taken to be zero at 31 Free Vortex! :0/(4+5/"B1*(;/4;/%/"5%(1(2+,(%,$;*$"7(1;+-"'(((((((((((((((((((((((( +;$7$"(,$50(1(&+"%51"5(&$;&-*1B+"(((9(( 32! :0/(317"$5-'/(+=(50/(2+,('/&;/1%/(1%(\Z;9((

Superposition of 2-D Potential Flows! R/&1-%/(50/(4+5/"B1*(1"'(%5;/13(=-"&B+"%(%1B%=<(50/(*$"/1;( X14*1&/(/A-1B+"C(50/(%-4/;4+%$B+"(+=(5,+(4+5/"B1*(2+,($%( 1*%+(1(4+5/"B1*(2+,9( 33! );+3(50$%C($5($%(4+%%$8*/(5+(&+"%5;-&5(4+5/"B1*(2+,%(+=(3+;/( &+34*/N(7/+3/5;<9(! O+-;&/(1"'(O$"K(! V+-8*/5(! O+-;&/($"(a"$=+;3(O5;/13(! ]^V(>1"K$"/(D#1*%(! )*+,%(S;+-"'(1(F$;&-*1;(F<*$"'/;( Source and Sink! F+"%$'/;(1(%+-;&/(+=(3(15(L^1C(eM(1"'(1(%$"K(+=(3(15(L1C(eM((! )+;(1(4+$"5(f(,$50(4+*1;(&++;'$"15/(+=((((((((((((((9(((!=(50/(4+*1;(&++;'$"15/( =;+3(L^1CeM(5+(f($%((((((((((((((1"'(=;+3(L1C(eM(5+(f($%((((((((((! :0/"(50/(%5;/13(=-"&B+"(1"'(4+5/"B1*(=-"&B+"(+851$"/'(8<( %-4/;4+%$B+"(1;/(7$#/"(8<_( 34

Source and Sink 35 Source and Sink! H/"&/C(! O$"&/(! Y/(01#/(( 36

Source and Sink! Y/(01#/(! R<(! :0/;/=+;/C( 37 Source and Sink! :0/(#/*+&$5<(&+34+"/"5(1;/_( 38

Source and Sink 39 Doublet! :0/('+-8*/5(+&&-;%(,0/"(1(%+-;&/(1"'(1(%$"K(+=(50/(%13/( %5;/"750(1;/(&+**+&15/'(50/(%13/(*+&1B+"C(%1<(15(50/( +;$7$"9(! :0$%(&1"(8/(+851$"/'(8<(4*1&$"7(1(%+-;&/(15(L^1CeM(1"'(1( %$"K(+=(/A-1*(%5;/"750(15(L1CeM(1"'(50/"(*/g"7(1("(eC(1"'( 3"((((C(,$50(!"(K//4$"7(&+"%51"5C(%1<(]"!#$% 40

Doublet! )+;(%+-;&/(+=(3(15(L^1CeM(1"'(%$"K(+=(3(15(L1CeM(! a"'/;(50/%/(*$3$b"7(&+"'$b+"%(+=(1"ec(3"((((c(,/(01#/( 41 Doublet! :0/;/=+;/C(1%(1"e(1"'(3"(((((((,$50(]"!#$((! :0/(&+;;/%4+"'$"7(#/*+&$5<(&+34+"/"5%(1;/( 42

Doublet 43 Source in Uniform Stream! S%%-3$"7(50/(-"$=+;3(2+,(a($%($"(N^'$;/&B+"(1"'(50/( %+-;&/(+=(3(15LeCeMC(50/(#/*+&$5<(4+5/"B1*(1"'(%5;/13( =-"&B+"(+=(50/(%-4/;4+%/'(4+5/"B1*(2+,(8/&+3/_(( 44

Source in Uniform Stream 45 Source in Uniform Stream! :0/(#/*+&$5<(&+34+"/"5%(1;/_(! S(%517"1B+"(4+$"5(+&&-;%(15((((((((((((( ( (:0/;/=+;/C(50/(%5;/13*$"/(41%%$"7(50;+-70(50/(%517"1B+"( 4+$"5(,0/"(((((((((((((((((((! :0/(31N$3-3(0/$705(+=(50/((((((((((((((((( ((((((((((&-;#/($%((( 46

Source in Uniform Stream! )+;(-"'/;7;+-"'(2+,%($"(1"(1A-$=/;(+=(&+"%51"5(50$&K"/%%C(50/( 2+,(50;+-70(4+;+-%(3/'$1(1;/(4+5/"B1*(2+,%9( 47! S"($"`/&B+"(,/**(15(50/(+;$7$"(501"(1&5(1%(1(4+$"5(%+-;&/(1"'(50/( -"'/;7;+-"'(2+,(&1"(8/(;/71;'/'(1%(1(-"$=+;3(2+,9( 2-D Rankine Ovals! :0/(]V(>1"K$"/(+#1*%(1;/(50/(;/%-*5%(+=(50/(%-4/;4+%$B+"( +=(/A-1*(%5;/"750(%$"K(1"'(%+-;&/(15(NI1(1"'(d1(,$50(1( -"$=+;3(2+,($"(N^'$;/&B+"9(! H/"&/C(( 48

2-D Rankine Ovals! @A-$#1*/"5*<C( 49 2-D Rankine Ovals! :0/(%517"1B+"(4+$"5%(+&&-;(15( (,0/;/(((((((((((((,$50(&+;;/%4+"'$"7((((((((((((((( 50

2-D Rankine Ovals! :0/(31N$3-3(0/$705(+=(50/(>1"K$"/(+#1*($%( (*+&15/'(15((((((((((((((((,0/"((((((((((((((((((((((((((C$9/9C( 51 2-D Rankine Ovals 52

2-D Rankine Ovals 53 Flows Around a Circular Cylinder 54! O5/1'<(F<*$"'/;(! >+51B"7(F<*$"'/;((! X$G()+;&/((

Steady Cylinder! )*+,(1;+-"'(1(%5/1'<(&$;&-*1;(&<*$"'/;($%(50/(*$3$B"7(&1%/( +=(1(>1"K$"/(+#1*(,0/"(1"e9((! :0$%(8/&+3/%(50/(%-4/;4+%$B+"(+=(1(-"$=+;3(41;1**/*(2+,(,$50(1('+-8*/5($"(N^'$;/&B+"9(! a"'/;(50$%(*$3$5(1"'(,$50($#]"9(!i&+"%51"5c((((((( ((((((((((((((((((((((( ( ($%(50/(;1'$-%(+=(50/(&<*$"'/;9( 55 Steady Cylinder! :0/(%5;/13(=-"&B+"(1"'(#/*+&$5<(4+5/"B1*(8/&+3/_(! :0/(;1'$1*(1"'(&$;&-3=/;/"B1*(#/*+&$B/%(1;/_( 56

Steady Cylinder 57 Rotating Cylinder! :0/(4+5/"B1*(2+,(+=(1(-"$=+;3(41;1**/*(2+,(41%5(1(;+51B"7(&<*$"'/;( 15(0$70(>/<"+*'%("-38/;($%(50/(%-4/;4+%$B+"(+=(1(-"$=+;3(41;1**/*( 2+,C(1('+-8*/5(1"'(=;//(#+;5/N9(! H/"&/C(50/(%5;/13(=-"&B+"(1"'(50/(#/*+&$5<(4+5/"B1*(1;/(7$#/"(8<((( 58

Rotating Cylinder! :0/(;1'$1*(1"'(&$;&-3=/;/"B1*(#/*+&$B/%(1;/(7$#/"(8<(( 59 Rotating Cylinder! :0/(%517"1B+"(4+$"5%(+&&-;(15(! );+3( 60

Rotating Cylinder 61 Rotating Cylinder 62

Rotating Cylinder! :0/(%517"1B+"(4+$"5%(+&&-;(15(! F1%/(\_(! F1%/(]_(! F1%/(h_( 63 Rotating Cylinder! F1%/(\_(( 64

Rotating Cylinder 65! F1%/(h_( Lift Force! :0/(=+;&/(4/;(-"$5(*/"750(+=(&<*$"'/;('-/(5+(4;/%%-;/(+"(50/( &<*$"'/;(%-;=1&/(&1"(8/(+851$"/'(8<($"5/7;1B"7(50/(%-;=1&/( 4;/%%-;/(1;+-"'(50/(&<*$"'/;9( 66! :0/(51"7/"B1*(#/*+&$5<(1*+"7(50/(&<*$"'/;(%-;=1&/($%(+851$"/'(8<( */g"7(;i; + C(

Lift Force! :0/(%-;=1&/(4;/%%-;/((((((((1%(+851$"/'(=;+3(R/;"+-**$(/A-1B+"($%( (,0/;/(((((($%(50/(4;/%%-;/(15(=1;(1,1<(=;+3(50/(&<*$"'/;9( 67! H/"&/C( Lift Force! :0/(=+;&/('-/(5+(4;/%%-;/($"(&(1"'('('$;/&B+"%(1;/(50/"( +851$"/'(8<(( 68

Steady Cylinder 69 Rotating Cylinder 70

Lift Force 71! :0/('/#/*+43/"5(+=(50/(*$G(+"(;+51B"7(8+'$/%($%(&1**/'(50/(.17"-%(/6/&59(!5( $%(&*/1;(5015(50/(*$G(=+;&/($%('-/(5+(50/('/#/*+43/"5(+=(&$;&-*1B+"(1;+-"'(50/( 8+'<9(! S"(1$;=+$*(,$50+-5(;+51B+"(&1"('/#/*+4(1(&$;&-*1B+"(1;+-"'(50/(1$;=+$*(,0/"( i-j1(&+"'$b+"($%(%1b%q/'(15(50/(;/1;(b4(+=(50/(1$;(=+$*9(! :0/;/=+;/C(:0/(51"7/"B1*(#/*+&$5<(1*+"7(50/(&<*$"'/;(%-;=1&/($%( +851$"/'(8<(*/g"7((#( ) _(! :0$%(=+;3%(50/(81%/(+=(1/;+'<"13$&(50/+;<(+=(1$;4*1"/9( 72

73 74

75