Internal Memory. Computer Architecture. Outline. Memory Hierarchy. Semiconductor Memory Types. Copyright 2000 N. AYDIN. All rights reserved.

Similar documents
Computer Organization. 8th Edition. Chapter 5 Internal Memory

Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition

Chapter 5. Internal Memory. Yonsei University

William Stallings Computer Organization and Architecture 8th Edition. Chapter 5 Internal Memory

Chapter 4 Main Memory

Basic Organization Memory Cell Operation. CSCI 4717 Computer Architecture. ROM Uses. Random Access Memory. Semiconductor Memory Types

Semiconductor Memory Types Microprocessor Design & Organisation HCA2102

Semiconductor Memory Types. Computer & Microprocessor Architecture HCA103. Memory Cell Operation. Semiconductor Memory.

Computer Organization and Assembly Language (CS-506)

Concept of Memory. The memory of computer is broadly categories into two categories:

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (5 th Week)

CS 320 February 2, 2018 Ch 5 Memory

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University

EEM 486: Computer Architecture. Lecture 9. Memory

Memory and Disk Systems

Module 5a: Introduction To Memory System (MAIN MEMORY)

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory

Memory classification:- Topics covered:- types,organization and working

ECE 485/585 Microprocessor System Design

Lecture-14 (Memory Hierarchy) CS422-Spring

Memory Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Chapter 8 Memory Basics

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing

Computer Systems Laboratory Sungkyunkwan University

COSC 6385 Computer Architecture - Memory Hierarchies (III)

Advanced Parallel Architecture Lesson 4 bis. Annalisa Massini /2015

Design and Implementation of an AHB SRAM Memory Controller

Introduction read-only memory random access memory

The Memory Hierarchy 1

Internal Memory Cache Stallings: Ch 4, Ch 5 Key Characteristics Locality Cache Main Memory

Overview. Memory Classification Read-Only Memory (ROM) Random Access Memory (RAM) Functional Behavior of RAM. Implementing Static RAM

COMP3221: Microprocessors and. and Embedded Systems. Overview. Lecture 23: Memory Systems (I)

ECSE-2610 Computer Components & Operations (COCO)

Memory Basics. Course Outline. Introduction to Digital Logic. Copyright 2000 N. AYDIN. All rights reserved. 1. Introduction to Digital Logic.

Large and Fast: Exploiting Memory Hierarchy

Chapter 2: Fundamentals of a microprocessor based system

ELCT 912: Advanced Embedded Systems

Embedded Systems Design: A Unified Hardware/Software Introduction. Outline. Chapter 5 Memory. Introduction. Memory: basic concepts

Embedded Systems Design: A Unified Hardware/Software Introduction. Chapter 5 Memory. Outline. Introduction

chapter 8 The Memory System Chapter Objectives

Topic 21: Memory Technology

Topic 21: Memory Technology

Summer 2003 Lecture 18 07/09/03

COMPUTER ARCHITECTURES

UNIT V (PROGRAMMABLE LOGIC DEVICES)

,e-pg PATHSHALA- Computer Science Computer Architecture Module 25 Memory Hierarchy Design - Basics

Memories. Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu.

a) Memory management unit b) CPU c) PCI d) None of the mentioned

Memory Challenges. Issues & challenges in memory design: Cost Performance Power Scalability

+1 (479)

Design with Microprocessors

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422)

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

Design with Microprocessors

Lecture Objectives. Introduction to Computing Chapter 0. Topics. Numbering Systems 04/09/2017

Sir Sadiq s computer notes for class IX. Chapter no 4. Storage Devices

Lecture 13: Memory and Programmable Logic

Memory technology and optimizations ( 2.3) Main Memory

MEMORY BHARAT SCHOOL OF BANKING- VELLORE

EECS150 - Digital Design Lecture 16 - Memory

! Memory Overview. ! ROM Memories. ! RAM Memory " SRAM " DRAM. ! This is done because we can build. " large, slow memories OR

Memory Hierarchy and Cache Ch 4-5

EE414 Embedded Systems Ch 5. Memory Part 2/2

Logic and Computer Design Fundamentals. Chapter 8 Memory Basics

EECS150 - Digital Design Lecture 16 Memory 1

Introduction to memory system :from device to system

CREATED BY M BILAL & Arslan Ahmad Shaad Visit:

ECE 341. Lecture # 16

COMPUTER ARCHITECTURE

Memory Hierarchy and Cache Ch 4-5. Memory Hierarchy Main Memory Cache Implementation

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2017 Lecture 13

UMBC. Select. Read. Write. Output/Input-output connection. 1 (Feb. 25, 2002) Four commonly used memories: Address connection ... Dynamic RAM (DRAM)

Chapter 2: Memory Hierarchy Design (Part 3) Introduction Caches Main Memory (Section 2.2) Virtual Memory (Section 2.4, Appendix B.4, B.

15-740/ Computer Architecture Lecture 19: Main Memory. Prof. Onur Mutlu Carnegie Mellon University

CS 33. Memory Hierarchy I. CS33 Intro to Computer Systems XVI 1 Copyright 2016 Thomas W. Doeppner. All rights reserved.

k -bit address bus n-bit data bus Control lines ( R W, MFC, etc.)

Views of Memory. Real machines have limited amounts of memory. Programmer doesn t want to be bothered. 640KB? A few GB? (This laptop = 2GB)

Memory memories memory

Memory & Simple I/O Interfacing

Computer Memory.

ISSN: [Bilani* et al.,7(2): February, 2018] Impact Factor: 5.164

CS650 Computer Architecture. Lecture 9 Memory Hierarchy - Main Memory

CSE502: Computer Architecture CSE 502: Computer Architecture

Real Time Embedded Systems

Basics DRAM ORGANIZATION. Storage element (capacitor) Data In/Out Buffers. Word Line. Bit Line. Switching element HIGH-SPEED MEMORY SYSTEMS

Random Access Memory (RAM)

Address connections Data connections Selection connections

Semiconductor Memories: RAMs and ROMs

Random Access Memory (RAM)

Introduction to Semiconductor Memory Dr. Lynn Fuller Webpage:

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Computer Architecture

10/24/2016. Let s Name Some Groups of Bits. ECE 120: Introduction to Computing. We Just Need a Few More. You Want to Use What as Names?!

COMP2121: Microprocessors and Interfacing. Introduction to Microprocessors

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing

Memories: Memory Technology

CS311 Lecture 21: SRAM/DRAM/FLASH

CS429: Computer Organization and Architecture

Transcription:

Computer Architecture Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr nizamettinaydin@gmail.com Internal Memory http://www.yildiz.edu.tr/~naydin 1 2 Outline Semiconductor main memory Random Access Memory Dynamic RAM Static RAM Read Only Memory Memory Organisation Error Correction Advanced DRAM Organization Memory Hierarchy Registers L1 Cache L2 Cache Main memory Disk cache Disk Optical Tape 3 4 Semiconductor main memory Basic element is the memory cell Semiconductor Memory Types The major types of semiconductor memory Semiconductor memory cell properties: They exhibit two stable states (1 or 0) They are capable of being written into, to set the state They are capable of being read to sense the state 5 6 reserved. 1

Read/Write Volatile Random Access Memory Temporary storage Two types of RAM: Dynamic RAM (DRAM) Main (Primary) memory uses DRAM for capacity Static RAM (SRAM) Caches use SRAM for speed Dynamic RAM Bits stored as charge in capacitors Charges leak Need refreshing even when powered Simpler construction Smaller per bit Less expensive Need refresh circuits Slower Main memory Essentially analogue Level of charge determines value 7 8 DRAM Structure and Operation The address line is activated when the bit value from the cell is to be read or written. The transistor acts as a switch that is closed (allowing current to flow) if a voltage is applied to the address line and open (no current flows) if no voltage is present on the address line. For the write operation, a voltage signal is applied to the bit line; a high voltage represents 1, and a low voltage represents 0. A signal is then applied to the address line, allowing a charge to be transferred to the capacitor. For the read operation, when the address line is selected, the transistor turns on and the charge stored on the capacitor is fed out onto a bit line and to a sense amplifier. The sense amplifier compares the capacitor voltage to a reference value and determines if the cell contains a logic 1 or a logic 0. The readout from the cell discharges the capacitor, which must be restored to complete the operation. Although the DRAM cell is used to store a single bit (0 or 1), it is essentially an analog device. The capacitor can store any charge value within a range; a threshold value determines whether the charge is interpreted as 1 or 0. Static RAM Bits stored as on/off switches No charges to leak No refreshing needed when powered More complex construction Larger per bit More expensive Does not need refresh circuits Faster Cache Digital Uses flip-flops 9 10 SRAM v DRAM Transistor arrangement gives stable logic state State 1 C 1 high, C 2 low T 1 T 4 off, T 2 T 3 on State 0 C 2 high, C 1 low T 2 T 3 off, T 1 T 4 on Address line transistors T 5 T 6 is switch Write apply value to B & compliment to B Read value is on line B 11 Both volatile Power needed to preserve data Dynamic cell Simpler to build, smaller More dense Less expensive Needs refresh Larger memory units Static Faster Cache 12 reserved. 2

Permanent storage Nonvolatile Used in: Read Only Memory Microprogramming Library subroutines Systems programs (BIOS) Function tables Types of ROM Written during manufacture Very expensive for small runs Programmable (once) PROM Needs special equipment to program Read mostly Erasable Programmable (EPROM) Erased by UV Electrically Erasable (EEPROM) Takes much longer to write than read Flash memory Erase whole memory electrically 13 14 Memory Organisation DRAM Organization A 16Mbit chip can be organised as 1M of 16 bit words A bit per chip system has 16 lots of 1Mbit chip with bit 1 of each word in chip 1 and so on A 16Mbit chip can be organised as a 2048 x 2048 x 4bit array Reduces number of address pins Multiplex row address and column address 11 pins to address (2 11 =2048) Adding one more pin doubles range of values so x4 capacity 15 X8 means each DRAM outputs 8 bits, need 8 chips for DDRx (64 bit) DIMM, rank, DRAM chip, bank, array, row, column form a hierarchy in DRAM storage organization 16 DRAM is denser than SRAM DRAM ARRAY Access in a Bank 17 Read access sequence: Decode row address & drive word-lines Selected bits drive bitlines Entire row read Amplify row data Decode column address & select subset of row & send to output Precharge bit-lines for next access Memory is just a big 2D array. Access row first and then column. A DRAM controller must periodically read each row within the allowed refresh time (10s of ms) such that charge is restored. 18 reserved. 3

Typical 16 Mb DRAM (4M x 4) Packaging 19 20 256kByte Module Organisation 1MByte Module Organisation 21 22 Error Correction Error Correcting Code Function Sources of error in computing system Hard Failure Permanent defect Soft Error Random, non-destructive No permanent damage to memory Detected using Hamming error correcting code 23 24 reserved. 4

Advanced DRAM Organization Basic DRAM same since first RAM chips Enhanced DRAM Contains small SRAM as well SRAM holds last line read Cache DRAM Larger SRAM component Use as cache or serial buffer Synchronous DRAM Access is synchronized with an external clock Address is presented to RAM RAM finds data (CPU waits in conventional DRAM) Since SDRAM moves data in time with system clock, CPU knows when data will be ready CPU does not have to wait, it can do something else Burst mode allows SDRAM to set up stream of data and fire it out in block 25 26 SDRAM SDRAM Read Timing 27 28 RAMBUS RAMBUS Diagram Adopted by Intel for Pentium & Itanium Main competitor to SDRAM Vertical package all pins on one side Data exchange over 28 wires < cm long Bus addresses up to 320 RDRAM chips at 1.6Gbps Asynchronous block protocol 480ns access time Then 1.6 Gbps 29 30 reserved. 5

DDR SDRAM SDRAM can only send data once per clock Double-Data-Rate SDRAM can send data twice per clock cycle Rising edge and falling edge Cache DRAM Mitsubishi Integrates small SRAM cache (16 kb) onto generic DRAM chip Used as true cache 64-bit lines Effective for ordinary random access To support serial access of block of data E.g. refresh bit-mapped screen CDRAM can prefetch data from DRAM into SRAM buffer Subsequent accesses solely to SRAM 31 32 Memory Technology Cost Bigger is slower SRAM, 512 Bytes, sub-nanosec SRAM, KByte~MByte, ~nanosec DRAM, Gigabyte, ~50 nanosec Hard Disk, Terabyte, ~10 millisec Faster is more expensive (dollars and chip area) SRAM, < 10$ per Megabyte DRAM, < 1$ per Megabyte Hard Disk < 1$ per Gigabyte These sample values scale with time Other technologies have their place as well Flash memory, Phase-change memory (not mature yet) 33 34 reserved. 6