Lagrangian Multipliers

Similar documents
Lagrangian Multipliers

Constrained Optimization and Lagrange Multipliers

5 Day 5: Maxima and minima for n variables.

Constrained Optimization

Introduction to optimization

Bounded, Closed, and Compact Sets

Lagrange multipliers October 2013

21-256: Lagrange multipliers

Lagrange multipliers 14.8

we wish to minimize this function; to make life easier, we may minimize

Math 233. Lagrange Multipliers Basics

Lecture 2 Optimization with equality constraints

Math 233. Lagrange Multipliers Basics

Constrained extrema of two variables functions

EC5555 Economics Masters Refresher Course in Mathematics September Lecture 6 Optimization with equality constraints Francesco Feri

Math 21a Homework 22 Solutions Spring, 2014

MATH2111 Higher Several Variable Calculus Lagrange Multipliers

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

Lagrange Multipliers

1. Show that the rectangle of maximum area that has a given perimeter p is a square.

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia

Lagrange Multipliers. Joseph Louis Lagrange was born in Turin, Italy in Beginning

MATH 19520/51 Class 10

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

Applied Lagrange Duality for Constrained Optimization

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

QEM Optimization, WS 2017/18 Part 4. Constrained optimization

Math 210, Exam 2, Spring 2010 Problem 1 Solution

Winter 2012 Math 255 Section 006. Problem Set 7

Physics 235 Chapter 6. Chapter 6 Some Methods in the Calculus of Variations

Absolute extrema of two variables functions

Chapter 3 Numerical Methods

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

MATH 2400, Analytic Geometry and Calculus 3

Section 4: Extreme Values & Lagrange Multipliers.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Example 1: Give the coordinates of the points on the graph.

CS231A. Review for Problem Set 1. Saumitro Dasgupta

Convexity and Optimization

PARAMETERIZATIONS OF PLANE CURVES

Math 241, Final Exam. 12/11/12.

Introduction to Constrained Optimization

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Analytical Solid Geometry

Convexization in Markov Chain Monte Carlo

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

MTAEA Convexity and Quasiconvexity

13.7 LAGRANGE MULTIPLIER METHOD

Optimization problems with constraints - the method of Lagrange multipliers

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

OPERATIONS RESEARCH. Linear Programming Problem

3. The domain of a function of 2 or 3 variables is a set of pts in the plane or space respectively.

Constrained and Unconstrained Optimization

Math 126 Number Theory

Second Midterm Exam Math 212 Fall 2010

2. Write the point-slope form of the equation of the line passing through the point ( 2, 4) with a slope of 3. (1 point)

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2

Numerical Optimization

Question 2: How do you solve a linear programming problem with a graph?

Functions of Two variables.

Functions. Copyright Cengage Learning. All rights reserved.

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES

Convexity and Optimization

7.1 INVERSE FUNCTIONS

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Demo 1: KKT conditions with inequality constraints

Euler's formula and Platonic solids

14.30 Introduction to Statistical Methods in Economics Spring 2009

Lagrange Multipliers and Problem Formulation

Solutions to assignment 3

The Divergence Theorem

Math 443/543 Graph Theory Notes 5: Planar graphs and coloring

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

12.8 Maximum/Minimum Problems

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function.

2.2 Graphs Of Functions. Copyright Cengage Learning. All rights reserved.

Optimizations and Lagrange Multiplier Method

A new analysis technique for the Sprouts Game

Topological properties of convex sets

Graphing Linear Inequalities in Two Variables.

LINEAR ALGEBRA AND VECTOR ANALYSIS MATH 22A

NOTATION AND TERMINOLOGY

An introduction to interpolation and splines

Inverse and Implicit functions

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota Questions to:

Lecture 2 - Introduction to Polytopes

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

Section 2.1 Graphs. The Coordinate Plane

2 Solution of Homework

14.5 Directional Derivatives and the Gradient Vector

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

MAC2313 Test 3 A E g(x, y, z) dy dx dz

Convexity: an introduction

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

Constrained Optimization with Calculus. Background Three Big Problems Setup and Vocabulary

Transcription:

Università Ca Foscari di Venezia - Dipartimento di Management - A.A.2017-2018 Mathematics Lagrangian Multipliers Luciano Battaia November 15, 2017 1 Two variables functions and constraints Consider a two variables function f (x, y), with domain D 2. Usually D is a two dimensional region of the cartesian plane, and in many situations it is the entire plane. The problem of finding local extrema at the interior of D can be solved, in the cases of our interest, using the first derivatives and the Hessian. Now let s consider an equation in two variables, g(x, y) = 0 (1) : usually the set of solutions of this equation is a curve in the cartesian plane. In many applications (also in economic ones) it is of great importance to maximize or minimize the function f not in the entire domain D, but only considering the part of the graph corresponding to points of the curve given by g(x, y) = 0. Let s illustrate this fact with a simple example and then a more complicated one. Example 1. The function has the following graph: f (x, y) = xy 1 The equation can also be written in the form h(x, y) = c. In this case put g(x, y) = h(x, y) c and you obtain the form g(x, y) = 0. Luciano Battaia 1

The part of the graph corresponding to the points of the curve x 2 + y 2 1 = 0 is represented by the red line drawn on the surface graph of f : The problem that we want to treat is to find the global maximum and minimum of this part of the graph. In the following picture you can see the four points where the maximum or minimum are reached. Example 2. Consider the following graph of a function of two variables, where you can find a global maximum, a local maximum and a global minimum: Luciano Battaia 2

The part of the graph corresponding to the points of the curve (x 1/2) 2 + y 2 1 = 0 is represented by the red line drawn on the surface graph of f : Luciano Battaia 3

For a better comprehension the red curve is plotted alone in the following graph: The problem that we want to treat is again to find the global maximum and minimum of this part of the graph. The curve g(x, y) = 0 is called a constraint and the problem we are dealing with is called a problem of constrained optimization. 2 Lagrangian multipliers If one can use the equation of the constraint to obtain a one variable function from the two variables function f, it is possible to solve the problem as with functions of one variable. But, unfortunately, this is not always the case. If this happens the method of Lagrangian multiplier can be used. Proceed as indicated in the following steps. 1. Write down a new function of three variables, calle the Lagrangian function, as follows: L(x, y,λ) = f (x, y,) λg(x, y), where λ is a supplementary variable, called a lagrangian multiplier. 2. Solve the system of three equations in three unknowns: L x L y (x, y,λ) = f x (x, y) λg x (x, y) = 0 (x, y,λ) = f y (x, y) λg y (x, y) = 0 g(x, y) = 0 3. Let (x 1, y 1,λ 1 ), (x 2, y 2,λ 2 ),..., be the solutions of this system. If the maximum-minimum problem has a solution this solution can only be one of the points (x 1, y 1 ), (x 2, y 2 ),...The values of λ are not important from a mathematical point of view, but they have a significant economic interpretation. This method may fail to give the correct answer if there are points belonging to the constraint where g x (x, y) and g y (x, y) both vanish, but in the cases of our interest this never happens. Luciano Battaia 4

4. If the constraint is represented by a bounded set, the problem has solutions, on the base of the theorem of Weierstrass, so we need only to compute the values of the function f at all the points previously obtained: the greatest value is the global maximum, the lowest the global minimum. If the constraint is represented by an unbounded set, the problem is usually two difficult and we ll not be interested in it. An example will clarify the method. Example 3. Maximize/minimize the function f (x, y) = xy, with the constraint g(x, y) =, which is represented by an ellipse of the cartesian plane. Solution. Observe that in this case it is not easy to use the equation of the constraint in order to obtain a one variable function from the function f. The constraint is represented by a bounded curve (an ellipse, as said by the text of the problem). So we must use the Lagrangian multiplier method. We have L(x, y,λ) = xy λ(x 2 + y 2 + xy 1). The system of equations to be solved is y 2λx λy = 0 x 2λy λx = 0 x(1 λ) = 2λy From the first two equations dividing member to member (it is easy to see that λ = 1, λ = 0, (x, y) = (0,0) can not be solutions of the system) we obtain y x = x y x 2 = y 2 x = ±y. So the system can be splitted into the systems x = y and x = y. We are only interested in the values of x and y. We obtain the following points: 3 3 3 3 3,, 3 3,, (1, 1), ( 1,1). 3 As regards the values of f we obtain: 3 3 3 3 f 3, = f 3 3, 3 So the global maximum is 1/3 and the global minimum is 1. If needed, using the equation we can also find the values of λ that satisfy the problem. = 1, f (1, 1) = f ( 1,1) = 1. 3 Only for the sake of completeness we plot the corresponding graphs, that are very similar to those of example 1. Luciano Battaia 5

Luciano Battaia 6

For the sake of completeness let s consider again the system of equations to be solved in example 3: y 2λx λy = 0 x 2λy λx = 0 A more usual strategy to solve the system is by substitution : find one of the variables using one of the equations and put the obtained expression in the other equations; then proceed in a similar way. From the first equation we obtain: 2λx = y λy. If λ is 0 we obtain y = 0 and, from the second equation, x = 0. But x = 0, y = 0 is not a solution of he third equation, so we can suppose λ 0 and we obtain: x = y λy 2λ. Let s put this value in the second equation; after simplifying we obtain 3λ 2 y 2λy + y = 0 y(3λ 2 + 2λ 1) = 0 y = 0 3λ 2 + 2λ 1 = 0. The first possibility is unacceptable (as already proved before) and from the second one we obtain λ = 1 λ = 1/3.. From we obtain x = y λy 2λ x = y x = y. Using the third equation we find again the same solutions as before. There are also other strategies to solve the same system. For example you can substitute the first two equations with their sum or their subtraction. You obtain this new system, after simplifying: (x + y)(1 3λ) = 0 (y x)(1 + λ) = 0 Proceeding with calculations you obtain again the same solutions (as obvious!). In general the solution of this system is the more complicated part of the Lagrangian multipliers method.. Luciano Battaia 7