Pmod modules are powered by the host via the interface s power and ground pins.

Similar documents
How to create your own peripheral modules for use with the ARC EMSK and embarc

Prototyping Module Datasheet

3.3V regulator. JA H-bridge. Doc: page 1 of 7

PmodJSTK2 Reference Manual. Overview. 1 Functional Descriptions. Revised July 19, 2016 This manual applies to the PmodJSTK2 rev. C

Cerebot Nano Reference Manual. Overview. Revised April 15, 2016 This manual applies to the Cerebot Nano rev. A

Various power connectors. 3.3V regulator. 64K Flash (Internal) 2K EEPROM (Internal) 4K SRAM (Internal) JA Mem Adr/ Data. Doc: page 1 of 9

Doc: page 1 of 6

Doc: page 1 of 8

Pmod ESP32 Reference Manual

Revision: 05/05/ E Main Suite D Pullman, WA (509) Voice and Fax. Various power connectors. 3.3V regulator

Digilent I 2 C Pin Configurations

USB-to-I2C. Ultra Hardware User s Manual.

USB-to-I2C. Professional Hardware User s Manual.

Doc: page 1 of 6

Win-I2CUSB Hardware User s Manual

Features: Analog to Digital: 12 bit resolution TTL outputs, RS-232 tolerant inputs 4.096V reference (1mV/count) 115K max speed

4X4 Driver Shield Manual

Modtronix Engineering Modular Electronic Solutions SBC28DC. Single board computer for 28 pin DIP PICs

chipkit Cmod Reference Manual Overview Revised November 6, 2013 This manual applies to REV E of the board.

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso

BB-303 Manual Baseboard for TMCM-303

MultiConnect OCG. Break-Out Board. Developer s Guide

Ultratronics v1.0 DATASHEET

chipkit Pmod Shield-Uno Reference Manual

MINITRONICS v1.0 DATASHEET

MEGATRONICS v3.0 DATASHEET

Approved by: Date CET Initials Name Justification :20:12 NTJ Niels Thybo Johansen

< W3150A+ / W5100 Application Note for SPI >

CB-1 Peripheral Board Technical Manual

Skywire RL78/Kurumi Adapter User Manual

BroadR-Reach click PID: MIKROE Weight: 26 g

Level Shifter. for. Hardware User s Manual.

EMX Module Specifications

WICE-SPI Hardware Operation Manual

MAX14850PMB1 Peripheral Module

chipkit Cmod Reference Manual Overview Revised November 6, 2013 This manual applies to the chipkit Cmod rev. E

Breeze Board. Type A. User Manual.

Stepper 6 click. PID: MIKROE 3214 Weight: 26 g

Motor driver board. EB022

GSM 4 click MIKROE Weight: 33 g

MAX44000PMB1 Peripheral Module

MEGATRONICS v3.0 DATASHEET

EPT-200TMP-TS-U2 TMP102 Temperature Sensor Docking Board Data Sheet

PIXI click PID: MIKROE Weight: 28 g

8051 Intermidiate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

Sanguino TSB. Introduction: Features:

Pmod I2S2 Reference Manual

ARDUINO MEGA 2560 REV3 Code: A000067

DE-10 Super Expansion Board

PIC-32MX development board Users Manual

chipkit Network Shield Reference Manual Overview Revised February 26, 2016 This manual applies to the chipkit Network Shield rev.

Please refer to "4. Evaluation Board" on page 2 for more information about these steps. Figure 1. System Connections

Dual Serial Shield User Manual

Revision: 5/7/ E Main Suite D Pullman, WA (509) Voice and Fax. Power jack 5-9VDC. Serial Port. Parallel Port

MAX31723PMB1 Peripheral Module

MicroBolt. Microcomputer/Controller Featuring the Philips LPC2106 FEATURES

Digilab 2E Reference Manual

SyncLink GT2E/GT4E Serial Adapter

5I20 ANYTHING I/O MANUAL

Growing Together Globally Serial Communication Design In Embedded System

RS485 3 click. How does it work? PID: MIKROE-2821

ASNTu2s PCB with Tiger Board USB to 7-Channel 3-Wire Interface Bridge Application Notes

xpico 200 Series Evaluation Kit User Guide

Altera EP4CE6 Mini Board. Hardware User's Guide

JED MICROPROCESSORS PTY LTD

USER GUIDE. Atmel OLED1 Xplained Pro. Preface

Part 1 Using Serial EEPROMs

keyestudio Keyestudio MEGA 2560 R3 Board

G80 SoC Datasheet. Where Hardware Meets Software

This manual provides information for the final user application developer on how to use SPC57S-Discovery microcontroller evaluation board.

How to Use an Arduino

Arduino Uno. Arduino Uno R3 Front. Arduino Uno R2 Front

Real-Time Embedded Systems. CpE-450 Spring 06

Overview. Functional Description. Calidad en nuestros productos. Tecnología a su servicio.

DS1086LPMB1 Peripheral Module

SyncLink GT Serial Adapter

Serial Peripheral Interface. What is it? Basic SPI. Capabilities. Protocol. Pros and Cons. Uses

um-fpu64 Floating Point Coprocessor 28-pin Breakout Board Introduction Bare um-fpu64 28-pin Breakout Board

JTAG-HS1 Programming Cable for Xilinx FPGAs. Overview. Revised January 22, 2015

VN310 Hardware Integration

USB-to-I2C Basic. Hardware User s Manual.

More than Compatibility

MTi 1-series Development Kit

Arduino Diecimila Pinouts 697B B8D-A50A-61944C26074F

EASY21x/23x-EVA. Evaluation Board for EASY21x / EASY23x PLC core. General Description. Ordering Information

XPort Direct+ Integration Guide/Data Sheet

UM PCAL6524 demonstration board OM Document information

USB UART 4 click PID: MIKROE Weight: 23 g

KSZ9692PB User Guide Brief

DSP240-LPI Inverter Controller Card. Technical Brief

MTi 1-series Development Kit

Page 1 of 11 Version 1.2 Release Date: PenMount PM2204 PCI Controller Board Data Sheet. Table of contents

6LoWPAN Development Platform Saker Manual

GRAVITECH GROUP

1.6inch SPI Module user manual

AVR200 Single Board Computer

ARDUINO MEGA ADK REV3 Code: A000069

A4988 Stepper Motor Driver Carrier with Voltage Regulators

ISA Host Controller 15a Hardware Reference Release 1.2 (October 16, 2017)

IMU Axis Gyro Evaluation Board Application Note

Transcription:

1300 Henley Court Pullman, WA 99163 509.334.6306 www.store. digilent.com Digilent Pmod Interface Specification 1.2.0 Revised October 5, 2017 1 Introduction The Digilent Pmod interface is used to connect low frequency, low I/O pin count peripheral modules to host controller boards. There are six-pin and twelve-pin versions of the interface defined, encompassing SPI, I²C, UART, I 2 S, H-bridge and GPIO protocols. The six-pin version provides four digital I/O signal pins, one power pin and one ground pin. The twelve-pin version provides eight I/O signal pins, two power pins and two ground pins. The signals of the twelve-pin version are arranged so that it provides two of the six-pin interfaces stacked. In general, Pmod modules can plug directly into connectors on the host controller board, called host ports, or be connected to the controller board via six-pin or twelve-pin cables. Two six-pin peripheral modules can be connected to a single twelve-pin host port via a twelve-pin to dual six-pin splitter cable. Similarly, a single twelvepin peripheral module can be connected to two six-pin host ports via the same twelve-pin to dual six-pin splitter cable. Pmod modules are powered by the host via the interface s power and ground pins. The Pmod interface is not intended for high frequency operation, however, using RJ45 connectors and twisted pair Ethernet cable, signals have been sent reliably at 24 MHz and distances of up to 4 meters. Theoretically, signal speeds greater than 100 MHz should be achievable using high-speed ports with direct connection of Pmod modules (without the use of cables). 2 Electrical Specifications The digital signal characteristics are not specified. However, the general expectation is that a 3.3 V logic power supply will be used and the signals will conform to LVCMOS 3.3 V or LVTTL 3.3 V logic conventions. The driver current source/sink capability isn t specified and depends on the capabilities of the specific system board or module. The I/O pins on the system board are generally directly driven by the FPGA or microcontroller. The drive strength for FPGA pins is generally in the range +/-16 ma to +/-24 ma. The drive capability of microcontrollers is generally less and some of them are not symmetrical. The drive strength for microcontroller pins is generally in the range +/-5 ma to +/-10 ma. The I/O pins on standard system board Pmod ports generally have ESD protection diodes and 200-ohm series resistors. The resistors are to limit short circuit currents if pins are inadvertently shorted, or to protect against driver conflicts if outputs are inadvertently connected together. High-speed Pmod ports are present on some Digilent system boards and do not have ESD protection diodes or series resistors. Other product and company names mentioned may be trademarks of their respective owners. Page 1 of 11

Peripheral modules may be connected to the host via cables of up to 18 in length. The drivers on the host or peripheral module should have sufficient drive strength to drive this length of cable at whatever the operating speed of the interface on the Pmod is expected to be. In general, this means that the driver should be able to source or sink at least 5 ma of current. With the exception of I 2 C connected modules, peripheral modules may not assume that pull-up or pull-down resistors are present on the host and must provide for proper termination of inputs, if necessary, and may not use open drain or open collector outputs, unless the pull-up is provided on the peripheral module itself. For all I 2 C connected modules, the digital signal characteristics conform to the I 2 C specification. Either 5 V or 3.3 V levels can be used on most modules, but Digilent system boards operate at 3.3 V, and the modules are primarily intended for operation at 3.3 V. Prior to the Digilent Pmod Interface Specification 1.1.0, I2C modules were not required to have onboard pull-ups. Therefore, it is suggested to include jumpered pull-ups on system boards to be backward compatible with old I2C Pmods. However, all Pmods designed to conform to specification version 1.1.0 and higher will include onboard pull-ups that can be jumpered in and out. 3 Power Supply The power pins of the interface provide power from the host to the peripheral. The interface requires that the host provide 3.3 V at the power supply pins. Digilent system boards use exclusively 3.3 V at the power supply pins; however, the host is allowed to provide the ability to switch the voltage on the power pins between 5.0 V and 3.3 V. On the twelve-pin version of the interface, both power supply pins switch together and always supply the same voltage, if switching is provided as an option. These pins may be shorted together at either the host end or the peripheral end. On I2C connected modules, the power pin of the interface provides power from the system board to the peripheral module. The supplied voltage will generally be 3.3 V, but operation at 5 V is supported by some modules. Care should be taken to ensure 5 V will not damage the host s input pins. Daisy chaining six-pin I2C connected modules is possible via the female connector on the board edge opposite the male connector. The amount of power a peripheral module is allowed to draw from the host is not specified, but should not be assumed to be more than approximately 100 ma. 4 Physical Connection Standard Pmod connections are made using standard 100 mil spaced, 25 mil square, pin-header style connectors. The peripheral module board will have a male connector. This will typically be a right-angle connector, at the board edge, for direct connection to a host board. Some older I²C modules have a straight male connector inboard from the board edge as only cable connections were intended to be used. Beginning with Pmod Specification 1.1.0, all connectors intended for primary connection to a host board should be right angle male connectors. Six-pin I²C modules will have a six-pin female connector, centered on the board edge opposite the male connector. This will typically be a right-angle connector at the board edge and is intended to be used in daisy chaining. Other product and company names mentioned may be trademarks of their respective owners. Page 2 of 11

The host board will typically have a 12-pin right angle female connector at the board edge for direct connection of peripheral module boards, however a straight female connector inboard from the board edge is also allowed. When multiple Pmod host ports are placed side-by-side along a host board edge, they are spaced 0.9 center-tocenter. This allows for 0.8 wide modules to be plugged side-by-side into a host without mechanical interference. Peripheral modules with multiple male connectors must also have them spaced on 0.9 centers for direct connection to a host. Peripheral modules with a single connector that are intended for direct connection to a host, or that are intended to fit into the Pmod mounting clip, should be 0.8 wide. There should also be >25 mil of clearance from the board edge to any components to allow clearance for the Pmod clip to latch the board edge. The connector should be centered along the 0.8 side of the module. Peripheral modules that are more than 0.8 wide can be directly connected to a host in most cases but may interfere with adjacent host ports. The following diagrams show physical connector placement and pin numbering conventions for the host (system board) and peripheral module sides of the connection. Note that the pin numbering conventions for the 2x6 connectors are non-standard and are mirrored between the host connector and the peripheral board connector. Figure 1. Standard 6-pin male connector placement on Pmod boards. Other product and company names mentioned may be trademarks of their respective owners. Page 3 of 11

Figure 2. Standard 12-pin male connector placement on Pmod boards. Figure 3. Standard 6-pin female connector placement on Pmod boards. Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 11

Figure 4. Standard 12-pin female connector placement on Pmod boards. Figure 5. Standard 12-pin female host port placement on host boards. Other product and company names mentioned may be trademarks of their respective owners. Page 5 of 11

The connection standard for system boards that provide I²C connectors is to use the standard 12-pin right angle female connector at the board edge for direct connection of peripheral module boards. The connector provides two sets of the I 2 C signals, power and ground, so that the I 2 C bus can be formed by daisy chaining system boards or Pmods. The system board can either be the root of one or two daisy chains, or in the middle of a daisy chain. 5 I/O Signal Assignment Conventions The following define signal assignments to the I/O pins on the connector for certain standard interfaces. In the following, the direction is defined from the perspective of the host: i.e., Out means from the host to the peripheral; In means from the peripheral to the host. Generally, the host is a Digilent system board. The peripheral will generally be a Digilent Pmod board. 5.1 GPIO Pmod Interface Type 1 (GPIO) This interface is used for general purpose logic. The host must provide the ability for all signals to be bi-directional logic signals. The peripheral may use any of the pins as inputs, outputs, or bi-directional. Should a PWM signal be used, it should be on pin 2. Pin # Signal Direction Alternate Signal Direction 1 IO1 In/Out - - 2 IO2 In/Out PWM Out 3 IO3 In/Out - - 4 IO4 In/Out - - Pmod Interface Type 1A (Expanded GPIO) This interface is used for general purpose logic. The host must provide the ability for all signals to be bi-directional logic signals. The peripheral may use any of the pins as inputs, outputs, or bi-directional. Should PWM signals be used, they should be on pins 2 and 8. Pin Signal Direction Alternate Signal Direction 1 IO1 In/Out - - 2 IO2 In/Out PWM Out 3 IO3 In/Out - - 4 IO4 In/Out - - 7 IO5 In/Out - - 8 IO6 In/Out PWM Out 9 IO7 In/Out - - 10 IO8 In/Out - - 11 GND 12 VCC Other product and company names mentioned may be trademarks of their respective owners. Page 6 of 11

5.2 SPI Pmod Interface Type 2 (SPI) This provides a Serial Peripheral Interface (SPI) port. The host generally acts as an SPI master device and the peripheral module generally acts as an SPI slave device. When this interface is placed on a 12-pin connector on a host, it should use pins 1-6 (i.e. the upper row of pins). Pins 1-6 will adhere to the signals listed in the table, with the exception of one or more pins potentially being unconnected. Pin Signal Direction 1 CS Out 2 MOSI Out 3 MISO In 4 SCK Out CS - Chip Select. Active low to enable slave device MOSI - Master Out Slave In. Data from master to slave MISO - Master In Slave Out. Data from slave to master SCK - Serial clock. Data clock from master to slave Pmod Interface Type 2A (expanded SPI) This provides an SPI interface plus additional control signals. Many SPI devices provide additional control or status signals that can provide additional functions between the master and slave devices. The host generally acts as an SPI master device and the peripheral module generally acts as an SPI slave device. Pins 1-6 will not change with the exception of one or more pins potentially being unconnected. Pins 7-10 can be any signal but if one or more interrupts are needed they will be on pin 7 and if a reset is needed it will be on pin 8. If additional Chip Select signals are needed they will be on pins 9 and 10. Pin # Signal Direction Alternate Signal Direction 1 CS Out - - 2 MOSI Out - - 3 MISO In - - 4 SCK Out - - 7 GPIO In/Out INT In 8 GPIO In/Out RESET Out 9 GPIO In/Out CS2 Out 10 GPIO In/Out CS3 Out 11 GND 12 VCC CS - Chip Select. Active low to enable slave device MOSI - Master Out Slave In. Data from master to slave MISO - Master In Slave Out. Data from slave to master SCK - Serial clock. Master provides the clock to shift the data INT - Interrupt signal from slave to master Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 11

RESET CS2 CS3 - Reset signal for master to reset slave - Chip Select 2. Active low to enable second slave device - Chip Select 3. Active low to enable third slave device 5.3 UART Pmod Interface Type 3 (UART) This provides a UART interface with optional hardware flow control. When this interface is placed on a twelve-pin connector on a host, pins 1-6 should be used (i.e. the upper row of pins). The hardware flow control signals are optional, and some Pmods do not use them. In this case pins 1 & 4 are either not used or are GPIO. The hardware flow control signal names are defined from the system board perspective. The RTS signal is an output indicating that the device (host or peripheral) is ready to receive data. The device asserts this signal low when it is ready to receive data. The CTS signal is an input to the device (host or peripheral). The device will only transmit data when the CTS input is asserted low. A peripheral module that uses hardware flow control will connect the host s RTS signal to its internal CTS input and the host s CTS signal to its internal RTS output. Pin Signal Direction Alternate Signal Direction 1 CTS In GPIO In/Out 2 TXD Out - - 3 RXD In - - 4 RTS Out GPIO In/Out GND VCC CTS - Host is clear to send (will only transmit when this signal is asserted) RTS - Host request to send RXD - Data from peripheral to host TXD - Data from host to peripheral Pmod Interface Type 3A (expanded UART) This provides a UART interface with optional hardware flow control plus additional control signals. The hardware flow control signals are optional, and some Pmods do not use them. In this case pins 1 & 4 are not used or are GPIO. Pins 7-10 can be any signal, but if one or more interrupts are needed they will be on pin 7 and if a reset is needed it will be on pin 8. The hardware flow control signal names are defined from the system board perspective. The RTS signal is an output indicating that the device (host or peripheral) is ready to receive data. The device asserts this signal low when it is ready to receive data. The CTS signal is an input to the device (host or peripheral). The device will only transmit data when the CTS input is asserted low. A peripheral module that uses hardware flow control will connect the host s RTS signal to its internal CTS input and the host s CTS signal to its internal RTS output. Other product and company names mentioned may be trademarks of their respective owners. Page 8 of 11

Pin # Signal Direction Alternate Signal Direction 1 CTS In GPIO In/Out 2 TXD Out - - 3 RXD In - - 4 RTS Out GPIO In 7 GPIO In/Out INT In 8 GPIO In/Out RESET Out 9 GPIO In/Out - - 10 GPIO In/Out - - 11 GND 12 VCC CTS RTS RXD TXD INT RESET - Device will only transmit when this signal is asserted - Device is ready to receive data - Data from peripheral to host - Data from host to peripheral - Interrupt signal from peripheral to host - Reset signal for host to reset peripheral 5.4 H-Bridge Pmod Interface Type 4 (H-Bridge) This interface provides for controlling a single H-Bridge with motor speed sensing feedback. The DIR pin sets the rotational direction of the motor. The EN signal is pulse width modulated to control the effective voltage applied to the motor. EN is an active high signal, i.e. a high logic level enables current flow through the bridge. The SA and SB signals are quadrature encoder feedback signals used to sense the motor speed. These are square wave signals, whose frequency is proportional to motor rotational speed and that are in quadrature. (i.e. 90 out of phase). Note pins 3 and 4 can be left unconnected if feedback is not required. Pin # Signal Direction 1 DIR Out 2 EN Out 3 SA In 4 SB In DIR - Motor direction EN - Motor enable, active high SA - feedback sense A SB - feedback sense B Pmod Interface Type 5 (Dual H-Bridge) This interface provides for controlling two independent H-Bridges. This can be used to control two brushed DC motors, or the two phases of a bi-polar stepper motor. The EN signal is pulse width modulated to control the effective voltage applied to the motor. EN is an active high signal, i.e. a high logic level enables current flow through the bridge. Other product and company names mentioned may be trademarks of their respective owners. Page 9 of 11

Pin # Signal Direction 1 DIR1 Out 2 EN1 Out 3 DIR2 Out 4 EN2 Out DIR1 - Motor/Phase 1 direction EN1 - Motor/Phase 1 enable, active high DIR2 - Motor/Phase 2 direction EN2 - Motor/Phase 2 enable, active high Pmod Interface Type 5A (Expanded Dual H-Bridge) This interface provides for controlling two independent H-Bridges with motor speed sensing feedback. The DIR pin sets the rotational direction of the motor. The EN signal is pulse width modulated to control the effective voltage applied to the motor. EN is an active high signal, i.e. a high logic level enables current flow through the bridge. The SA and SB signals are quadrature encoder feedback signals used to sense the motor speed. These are square wave signals, whose frequency is proportional to motor rotational speed and that are in quadrature. (i.e. 90 out of phase). Pin # Signal Direction 1 DIR1 Out 2 EN1 Out 3 S1A In 4 S1B In 7 DIR2 Out 8 EN2 Out 9 S2A In 10 S2B In 11 GND 12 VCC DIR1 EN1 SA1 SB1 DIR2 EN2 SA2 SB2 - Motor 1 direction - Motor 1 enable, active high - Motor 1 feedback sense A - Motor 1 feedback sense B - Motor 2 direction - Motor 2 enable, active high - Motor 2 feedback sense A - Motor 2 feedback sense B Other product and company names mentioned may be trademarks of their respective owners. Page 10 of 11

5.5 I²C Pmod Interface Type 6 (I²C) This interface conforms to the I 2 C specification, plus an optional interrupt and reset pin. If these optional pins are not used, they will be no connects. The pull-up resistors used to provide the logic high level for SCL and SDA are provided on the modules and can be attached to or detached from the bus via onboard jumpers. Pull-ups on INT and RESET, if used, are also provided on the module and can be attached or detached from the bus via onboard jumpers to enable daisy chaining. Pin # Signal Direction Alternate Signal 1 NC INT 2 NC RESET 3 SCL In/Out - 4 SDA In/Out - SCL Serial Clock SDA Serial Data NC Not Connected INT Open drain, active low, interrupt signal from slave to master. RESET active low reset signal from master to slave. The system board is the master. 5.6 I 2 S Pmod Interface Type 7 (I²S CODEC) This provides the standard connections for an I²S codec interface, plus an optional clock signal used by some I²S devices. Pin # Signal Direction Alternate Signal Direction 1 LRCLK Out - - 2 DAC Data Out - - 3 ADC Data In - - 4 BCLK Out - - 7 GPIO - 8 GPIO - 9 GPIO - MCLK Out 10 GPIO - 11 GND 12 VCC LRCLK - Left channel/right channel select DAC Data - Output data to DAC ADC Data - Input Data from ADC BCLK - Serial bit clock. MCLK - Optional master clock used by some I2S devices Other product and company names mentioned may be trademarks of their respective owners. Page 11 of 11