ATLAS silicon microstrip detector System (SCT)

Similar documents
Endcap Modules for the ATLAS SemiConductor Tracker

Modules and Front-End Electronics Developments for the ATLAS ITk Strips Upgrade

Production and Quality Assurance of Detector Modules for the LHCb Silicon Tracker

First Operational Experience from the LHCb Silicon Tracker

Prototyping of large structures for the Phase-II upgrade of the pixel detector of the ATLAS experiment

The Phase-2 ATLAS ITk Pixel Upgrade

ATLAS Dr. C. Lacasta, Dr. C. Marinas

Quad Module Hybrid Development for the ATLAS Pixel Layer Upgrade

THE ATLAS INNER DETECTOR OPERATION, DATA QUALITY AND TRACKING PERFORMANCE.

GLAST. Prototype Tracker Tower Construction Status

Design of the new ATLAS Inner Tracker (ITk) for the High Luminosity LHC

ATLAS ITk Layout Design and Optimisation

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction

The CLICdp Optimization Process

GLAST Silicon Microstrip Tracker Status

The ATLAS Conditions Database Model for the Muon Spectrometer

Status Report of the ATLAS SCT Optical Links.

Alignment of the ATLAS Inner Detector tracking system

Alignment of the ATLAS Inner Detector

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Introduction. Bill Cooper LDC Meeting May 25,

Project Specification Project Name: Atlas SCT HV Power Supply (ASH) Version: V2.04. Project History

Novel Magnetic Field Mapping Technology for Small and Closed Aperture Undulators

Electron and Photon Reconstruction and Identification with the ATLAS Detector

Construction of the Phase I upgrade of the CMS pixel detector

PoS(ACAT)049. Alignment of the ATLAS Inner Detector. Roland Haertel Max-Planck-Institut für Physik, Munich, Germany

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction

Fast pattern recognition with the ATLAS L1Track trigger for the HL-LHC

Updated impact parameter resolutions of the ATLAS Inner Detector

Performance of the ATLAS Inner Detector at the LHC

Performance of FPCCD vertex detector. T. Nagamine Tohoku University Feb 6, 2007 ACFA 9, IHEP,Beijin

Update: Lambda project

ATLAS IBL Pixel Module Assembly. ATLAS IBL Pixel Module Assembly. ATU-SYS-AN Modified: 02/04/2013 Rev. No.:5

Detector R&D at the LCFI Collaboration

Level-1 Data Driver Card of the ATLAS New Small Wheel Upgrade Compatible with the Phase II 1 MHz Readout

First results from the LHCb Vertex Locator

Prototype Opto Chip Results

The evolution of Vertex Detectors

100% Warm-Water Cooling with CoolMUC-3

Tracker Optical Link Upgrade Options and Plans

Summary of Optical Link R&D

Muon Reconstruction and Identification in CMS

PoS(IHEP-LHC-2011)002

Overview of the American Detector Models

SiPMs for Čerenkov imaging

Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

Analog Resistive Touch Screen Controller TSC-54/RU-F User s Guide. Provided by

LHC-B. 60 silicon vertex detector elements. (strips not to scale) [cm] [cm] = 1265 strips

Detector Control LHC

Versatile Link and GBT Chipset Production

Analog Resistive Touch Screen Controller TSC-45/RSA-E User s Guide

Status report. Eryk Kielar, Krzystof Oliwa, Wojciech Wierba, INP PAN, Cracow, Poland Wojciech Slominski, Jagiellonian University, Cracow, Poland

The CMS Tracker Laser Alignment System

CMS Strip Tracker R&D

Optimization of thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC arxiv: v1 [physics.ins-det] 12 Jan 2017

The CMS alignment challenge

SoLID GEM Detectors in US

The LHCb Upgrade. LHCC open session 17 February Large Hadron Collider Physics (LHCP) Conference New York, 2-7 June 2014

CMS HCAL Front-End Electronics

AST3 Cameras, a Status Update

Low Voltage Control for the Liquid Argon Hadronic End-Cap Calorimeter of ATLAS

The LHCb upgrade. Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions

ATLAS DCS Overview SCADA Front-End I/O Applications

Removal and Installation8

A STUDY OF GEODETIC GRIDS FOR THE CONTINUOUS, QUASI REAL TIME ALIGNMENT OF THE ATLAS SEMICONDUCTOR TRACKER

MICRO BURN IN PRODUCTS LISTED IN MODEL NUMBER ORDER FOLLOWED BY A BRIEF DESCRIPTION

arxiv:physics/ v1 [physics.ins-det] 18 Dec 1998

The LHCb VERTEX LOCATOR performance and VERTEX LOCATOR upgrade

A New Segment Building Algorithm for the Cathode Strip Chambers in the CMS Experiment

Construction of ALMA SIS Mixer Measurement System

PoS(Vertex 2007)030. Alignment strategy for the ATLAS tracker. Tobias Golling. Lawrence Berkeley National Laboratory (LBNL)

UC DAVIS THERMAL ENERGY STORAGE (TES) TANK OPTIMIZATION INVESTIGATION MATTHEW KALLERUD, DANNY NIP, MIANFENG ZHANG TTP289A JUNE 2012

The Progress of TOF on BESIII

IEEE Nuclear Science Symposium San Diego, CA USA Nov. 3, 2015

SiD VXD Conceptual Design Su Dong SLAC

Beam Position Monitor For High Energy Particle Beams

Datasheet ADVAPIX TPX3. Version Datasheet. Model No.: APXMD3-Xxx170704

CMS Alignement and Calibration workflows: lesson learned and future plans

The Silicon Vertex Detector of the Belle II Experiment

LHe/LN2 Cryogenic Probe Station

DATA SHEET SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS General data

1. INTRODUCTION 2. MUON RECONSTRUCTION IN ATLAS. A. Formica DAPNIA/SEDI, CEA/Saclay, Gif-sur-Yvette CEDEX, France

Optimisation Studies for the CLIC Vertex-Detector Geometry

CRAH Retrofit and Energy Savings Project

Preamplifiers for Amptek X-Ray Detectors. OEM Preamplifiers for Amptek X-Ray Detectors

MPI TS150-HP 150 mm High Power Manual Probe System For accurate High Power measurements up to 10 kv, 600 A

RDHA701FP10A8QK. Neutron and Total Ionizing Dose Test Report. April 2009

Beam test measurements of the Belle II vertex detector modules

ATLAS, CMS and LHCb Trigger systems for flavour physics

High Precision Optical Instrumentation for Large Structure Position Monitoring: The BCAM System Applied to the CMS Magnet

TileCal Power Supply System Maintenance LVPS & HVS1

HPS128-LT-S Hybrid pyroelectric linear array with 128 responsive elements and integrated CMOS multiplexer

EAGLE IMAGER 320 T H E R M A L I M A G I N G C A M E R A S T H E N E X T G E N E R A T I O N

Customer Power Needs..and how to design for them

Brian Macklin (1) Robert Shaw (1) Bruno Levesy (2) Malak Senhadji (3) Arnauld Dumont (4)

FEATURES. APPLICATIONS Machine Vision Embedded Instrumentation Motion Control Traffic Monitoring Security

LArTPC Reconstruction Challenges

SoLID GEM Detectors in US

Update of the BESIII Event Display System

Current Status of Neutron Imaging at PNL. 1 September 2017 Michael Taylor

Transcription:

ATLAS silicon microstrip detector System (SCT) Barrel modules Y. Unno, KEK For SCT collaboration Endcap modules SCT

ATLAS detector Diameter Barrel toroid length Endcap end-wall chamber span Overall weight 25 m 26 m 46 m 7000 Tons

Installation schedule v. 6.0 The construction and installation planning, as presented to the recent LHCC Installation Review, foresees to have the initial staged detector ready at the end of 2006 Name Duration Start Finish UX 15 Hand-over 0 days 14 Apr '03 14 Apr '03 PHASE 1: Infrastructure 377 days 14 Apr '03 24 Sep '04 UX available for ATLAS 0 days 21 Nov '03 21 Nov '03 PHASE 2: Barrel Toroid & Barrel Calorimeter 466 days 21 Nov '03 16 Sep '05 Phase 2a: Bedplates & Feet 20 days 21 Nov '03 19 Dec '03 Phase 2b: Barrel Toroid 309 days 12 Dec '03 1 Mar '05 Phase 2c: Barrel Calorimeter 354 days 3 May '04 16 Sep '05 Phase 2d: Racks, Pipes & Cables 273 days 24 Nov '03 13 Dec '04 PHASE 3: End-cap Calorimeters & Muon Barrel 408 days 7 Sep '04 10 Apr '06 Phase 3a: Pipes & Cables 205 days 7 Sep '04 28 Jun '05 Phase 3b: Endcap Calorimeter C 245 days 22 Oct '04 7 Oct '05 Phase 3c: Muon Barrel 155 days 14 Dec '04 26 Jul '05 Phase 3d: Endcap Calorimeter A 237 days 12 May '05 10 Apr '06 PHASE 4: Big Wheels & Inner Detector 234 days 11 Jul '05 2 Jun '06 Phase 4a: Big Wheels 161 days 11 Jul '05 21 Feb '06 Phase 4b: Inner Detector 191 days 8 Sep '05 2 Jun '06 PHASE 5: End-Cap Toroid & Small Wheels 166 days 22 Nov '05 12 Jul '06 Phase 5a: Endcap Toroid 166 days 22 Nov '05 12 Jul '06 Phase 5b: Small Wheels 56 days 12 Apr '06 28 Jun '06 PHASE 6: Beam Vacuum, End wall Chambers, Shie 54 days 26 May '06 9 Aug '06 Phase 6a: Completion of the Beam Vacuum 25 days 26 May '06 29 Jun '06 Phase 6b: End wall Chambers (EO) 21 days 14 Jun '06 12 Jul '06 Phase 6c: Shielding & full Magnet test 26 days 5 Jul '06 9 Aug '06 Global Commissioning 60 days 10 Aug '06 1 Nov '06 Cosmic tests 40 days 2 Nov '06 29 Dec '06 ATLAS Ready For Beam 0 days 29 Dec '06 29 Dec '06 2002 2003 2004 2005 2006 2007 2008 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 14 Apr '03 UX 15 Hand-over 377 days PHASE 1 21 Nov '03 UX available for ATLAS 466 days PHASE 2 20 days Phase 2a: Bedplates & Feet 309 days Phase 2b: Barrel Toroid 354 days Phase 2c: Barrel Calorimeter 273 days Phase 2d: Racks, Pipes & Cables 408 days PHASE 3 205 days Phase 3a: Pipes & Cables 245 days Phase 3b: Endcap Calorimeter C 155 days Phase 3c: Muon Barrel 237 days Phase 3d: Endcap Calorimeter A 234 days PHASE 4 161 days Phase 4a: Big Wheels 191 days Phase 4b: Inner Detector 166 days PHASE 5 166 days Phase 5a: Endcap Toroid 56 days Phase 5b: Small Wheels 54 days PHASE 6 25 days Phase 6a: Completion of the B 21 days Phase 6b: End wall Chamber 26 days Phase 6c: Shielding & full M 60 days Global Commissioning 40 days Cosmic tests 29 Dec '06 ATLAS Ready For Beam

Central solenoid 2 Tesla magnetic field for the inner tracking volume Sharing vacuum cryostat of Liquid Argon EM calorimeter Contribution of the ATLAS-Japan by the superconducting -magnet experts of KEK Fabricated by Toshiba Completed and tested in Japan in Jan. 2001 Transported to CERN in Oct. 2001

Transportation of ATLAS Central Solenoid Yokohama Bay (2001.7.25) Completed and Tested at Toshiba (2001.1.20) the Rhine Port Rotterdam (2001.8.24) Basel (2001.8.31) CERN B180 (2001.9.3) Acceptance test (2001.9.28 10.3)

Inner detector Solenoid coil Cryostat Liquid Argon EM calorimeter 5550 2300 Inner detector volume Volume = φ2.3 m x 6.8 m Solenoid coil inside Liq. Argon cryostat 2 Tesla 3405 3405 6810

ATLAS Silicon Microstrip Semiconductor Tracker (SCT) Radiation fluence R(cm) TRT SCT PIXEL 0.7x10 13 TRT 1.0x10 13 1.5x10 13 SCT 2.2x10 13 Z(cm) 1 MeV neutron equivalent, yearly fluence SCT: ~1.8x10 13 n/cm 2 / yr / L=10 34 50% uncertainty in the fluence (cross section, etc.) 10 yrs operation: 3 yrs at 10 33 + 7 yrs at 10 34 Neutron damage ~ 1.5x Proton damage Fluence over 10 yrs: - Neutrons ~2x10 14 n/cm 2 (=1.8x10 13 x1.5x7.3) - Protons ~3x10 14 p/cm 2 (=2x10 14 x1.5)

Barrel: r [mm] #modules B3 300 384 B4 373 480 B5 447 576 B6 520 672 Total 2112 8448 sensors 34.4 m2 SCT Barrel (and Endcap) Endcap: 9 discs x 2 1976 modules 7104 sensors 1040 mm 1500 mm

SCT barrel module Hybrid assembly BeO facings (far side) p-in-n singled-sided sensors back-to-back gluing Slotted washer 40 mrad stereo 1.2% Xo Silicon sensors Baseboard TPG Datum washer Connector BeO facings (cooling side)

Barrel module parameters Sensors : 63.56 x 63.96 mm 2, p-in-n, single-sided Strip directions : 20 mrad Operating temperature : - 7 C Total chip power : 6.0 W nom., 8.1 W max. Thermal runaway heat flux: > 240 mw/mm 2 at 0 C Mechanical precisions : back-to-back: < 5 mm (in-plane lateral), < 10 mm (in-plane longitudinal), < 50 mm (out-of-plane) Fixation point: < 30 mm (in-plane) Radiation length: < 1.2% X 0

ATLAS silicon microstrip sensors production Hamamatsu Photonics: Barrel: 8448 + spares (~20%) ~ 10500 Japan + UK + Nordic Endcap: ~61% of (7104 + spares(~20%) ~ 5200 UK + Spain CIS: Endcap: ~39% ~ 3300 Germany Production: Mar. 2000 started, Nov. 2002 near completion

Hybrid of the barrel ATLAS SCT ABCD3T chips (12 x 128 ch) glass pitch-adaptor (2 x 6 x 128 ch) connector carbon-carbon bridge (underneath) flexible Cu/PI circuit

BeO facing ABCD chip Air gap (0.4mm) Cu/polyimide flex Connetor Cooling block Carbon-carbon bridge TPG Si sensor Cross section of the module 1 mm 10 mm Cooling block Flow paths of heat

Barrel module baseboard Encapsulated VHCPG Baseboard with BeO facing plates VHCPG:(very high thermal Conductivity pyrolytic graphite) In-plane thermal conductivity: 1450-1850 W/mK Thickness: 380 15 m

Thermal Properties -14 C -17 C -20 C Simulated thermal profile with Q chip =6W bulk heat generation (mw/mm 2 @0 C)

ATLAS silicon micstrip sensors 6 different shapes from 4-inch wafer p-in-n, 80 µm pitch, 768 strips, AC-coupled, 285 µm thick Barrel - Square Endcap - Wedges 100 62 64 5 63.6 5 Wedge detectors for forward 80 µm x 768 strip = 61.4 mm, 62.0 mm strip length 1 mm edge space

Operation bias voltage in ATLAS Non-irradiated ~ 150 V Near the end of experiment ~ 350~500 V 5 Median charge [fc] 4 3 2 1 Non-irradiated Irradiated 3x10 14 p/cm 2 mod1 mod2 mod5 mod6 mod3 mod4 0 0 100 200 300 400 500 Bias voltage [V] Y. Unno et al, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 4, AUGUST 2002

Pre-irradiation Pre-irradiation, room temp. 1 Leakage/Volume [ua/cm^3] 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Barrel sensor = 1.16 cm 3 ~200 na Very Good! 0 100 200 300 400 500 Bias voltage [V] 1331 1389 1416 1467

Post irradiation Leakage/Volume [ua/cm^3] 3x10 14 p/cm 2, -18C, 7d@25C Current 3 orders of magnitude higher 180 160 140 120 100 80 60 40 20 0 0 100 200 300 400 500 Bias voltage [V] Smooth up to 500 V! Average of irradiated sensors <B2-111> <W12> <W21> <W22> <W31> <W32> <B2-100> Little difference in shapes 15 4 3 2 3 6 5

What will happen in case... Microdischarges below 350 V 1 0.9 Samples from rejected sensors Pre-irradiation, room temp. (Spec: no MD below 350 V) Leakage/Volume [ua/cm^3] 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 729 737 751 834 921 0 0 100 200 300 400 500 Bias voltage [V]

Post irradiation of microdischarged sensors 180 160 Post irradiation, -18C No visible effect Leakage/Volume [ua/cm^3] 140 120 100 80 60 40 20 Smooth! Why? Type inversion P-N junction in the backside Little field till full-depletion in the strip side 729 737 751 834 921 0 0 100 200 300 400 500 Bias voltage [V]

Leakage current [ua] 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Series module production Series barrel module production started in Feb. 2002 As of Sep. 2002, ~100 modues I-V Curve at +15 C Two modules strip's pad damaged 0 100 200 300 400 500 Bias voltage [V] Microdischarge 11 modules >350 V

preirrad, +15C, 20220170200034 Post irradiation of microdischarge module Leakage [ua] 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 preirrad 0.1 0 0 100 200 300 400 500 Bias voltage [V] postirrad, -15C, 20220170200034 Smooth up to 500 V 1000 900 Same as individual sensors Leakage [ua] 800 700 600 500 400 300 postirrad 200 100 0 0 100 200 300 400 500 Bias voltage [V]

Decay of microdischarge current Also, microdischarge currents decay out to normal currents in a few hundred minutes 500V, +15 C Leakage current [ua] 10 9 8 7 6 5 4 3 2 1 0 #100 has very long time const... 0 200 400 600 800 1000 1200 1400 Time [min.] 55 61 69 74 88 99 100 101 102 106

Visualization of hot spot Discharging location is hot (minutely) CCD camera with extended sensitivity to infrared, and cooled to reduce thermal noise Hot spot is visible in overlaying over visual image #100 - tiny hairline metal between the wire (GND) and sensor edge (HV)

Multi-module system test 12 modules in a row, Double row overlap,... Room temp. run, Cold run (with irradiated modules) Studies of noise pickups, grounding and shielding, etc Barrel system test

Input-noise (ENC) ATLAS SCT: 3-pt gain scans - Wed Jul 31 11:08:34 2002 - B186 Barrel System Test Run 991 Scans 5-7 Input-noise at 2fC from 3point gain scans 2000 1800 Multimodule Elec. Stand 1600 1400 1200 0035 0046 0011 0019 0018 0029 0036 0026 0052 0030 0022 0008 Module

Endcap systemtest On-going...

Barrel sector test Final support structure, cooling pipes, refrigeration system Dummy heater modules Real modules

Barrel sector test Thermal imaging - visualize temperature distribution Coolant in - Blue cold pipes (Dummy) module heater on - green to yellow Sector carbon-fibre cylinder - room temp. red

Barrel support cylinder in production Carbon skin - Carbon honycomb core 1st cylinder (B3) delivered Still long way to attach brackets, cooling pipes, opto-powerharnesses

Summary ATLAS is targetting the completion of the detector in the end of 2006, expecting the first beam collision in Feb. 2007 Central solenoid was completed and is in preparation for installation at CERN Series production of SCT silicon microstrip sensors of ~18000 are near completion Sensors show good performance in pre- and post-irradiation, and even in the case of microdischarge as low as 250V there is no visible effect after irradiation. Together with the decay of the microdischarge current, the sensors are robust for high voltage operation Series production of SCT barrel modules has started. 1st support cylinder (B3) has been delivered System tests are progressing. No show-stopper, yet Lots of details lie ahead toward the installation of SCT in early 2005