The Phase-2 ATLAS ITk Pixel Upgrade

Size: px
Start display at page:

Download "The Phase-2 ATLAS ITk Pixel Upgrade"

Transcription

1 The Phase-2 ATLAS ITk Pixel Upgrade T. Flick (University of Wuppertal) - on behalf of the ATLAS collaboration 14th Topical Seminar on Innovative Particle and Radiation Detectors () October 2016 Siena

2 Overview now phase 2: 2024/25 LHC Upgrade towards High Luminosity LHC (HL-LHC) in (phase 2) ATLAS will replace its inner detector completely New all-silicon Inner Tracker (ITk), inner part pixels, outer part strips (see next talk by Afroditi Koutoulaki) In this presentation: Motivation Layout options (short view) FE-electronics and sensor development Powering scheme and its protection chip Readout architecture and data transmission scheme 2

3 ATLAS Phase-2 Upgrade Motivation 2024: LHC will become High Luminosity-LHC to produce 3000 fb -1 integrated luminosity until 2035 ( precision measurements and studies of rare processes). Instantaneous luminosity increase by factor 5-7 (particle density) up to 5*10 34 cm -2 s -1 Integrated luminosity increase by factor 10 (radiation damage) LHC: 25 vertices HL-LHC: 200 vertices Higher track density better tracking granularity Higher particle flow higher radiation damage (current components already damaged by 2024) LHC: 25 vertices HL-LHC: 200 vertices install new inner tracker (ITk) 3

4 Slim stave I-Beam stave Layout Options (Pixel View) Pixel / Strips Extended η=4.0 Inclined η=4.0 Two main layout options are under discussion: Conventional design: barrel + rings Inclined design: tilted modules at end of staves + rings 5 Pixel barrel layers plus end-cap ring structure Coverage up to ƞ=4.0 9 space points per track Innermost barrel-layer will have double-chip modules, outer barrel layers and rings/disks have quad-chip modules Around FE-chips in modules will be mounted conventional inclined 4

5 Front-end Electronics 3.5 mm New FE-Chip based on RD53 development: RD53 FE-I4 technology 65 nm 130 nm Pixel dimension 50 µm x 50 µm 50 µm x 250 µm # of pixels ~ chip dimension 18 mm x 20 mm 19 mm x 20 mm hit rate 3 GHz/cm GHz/cm 2 in-time threshold < 1000 e < 4000 e typ. noise (ENC) < 100 e < 300 e bandwidth 5 Gb/s 160 Mb/s rad. hardness > 5 MGy > 2.5 MGy Digital Sea Analog Island (4x) FE65-P2 4.2 mm A first RD53 test-chip in hand (general purpose for ATLAS & CMS): FE65-P2 Tests ongoing Large-scale prototype (RD53A chip) to be submitted in March 2017 Using a future chip based on RD53 developments is baseline, to be used with different kinds of sensors (planar, 3D, passive/active CMOS?) RD53A 5

6 First measurements of FE65-P2 connected to Sensor FE65-P2 module has been built and tested (64x64 pixel matrix) connected to planar sensor from Hamamatsu Measurements: Threshold tuned to 800 e - Noise measurement: < 40 e - Noise with sensor: increases only slightly w.r.t. bare chip Irradiation and beam measurements show good functionality of the prototype Row Occupancy after 20 s in beam Hits Row MeV proton tracks (45 incidence) TOT 0 some unconnected pixels Col Col 6

7 Sensor Development Planar Quadchips Three development strains ongoing: planar sensors 3D sensors CMOS technology (new technology) 3D column design Intensive sensor development program ongoing with different vendors (for each of the technologies) Currently the actual pixel FE chip (FE-I4) is used for testing: 4 chip modules have been mounted and tested CMOS as a new technology is undergoing a demonstrator program to show feasibility until early next year Small size prototypes bonded or glued to FE-I4 Full size prototypes bonded or glued to FE-I4 Fully monolithic large size demonstrator CMOS pixel 7

8 Planar Sensors 4 chip sensors, ganged and long pixels in inter-chip regions Different techniques to reduce the inactive edges: slim edges or even active edge designs Study of various topics: Efficiency, irradiation, very thin sensor bulks (50 µm), high eta efficiency, power dissipation, etc. Test devices show very good behavior (tested with IBL FE-I4 chips) Fully working modules, good HV stability The possible range of operation bias voltage for a pixel module with a 100 µm thick sensor is V after irradiation up to 1x10 16 n eq /cm 2 The resulting power dissipation at V is ~25-50 mw/cm 2 50µm Efficiency Pixel Map 250µm IV-curves edge-efficiency 8

9 3D Sensors Prototype runs for FE-I4 dimensions 50µm perpendicular incidence (50 µm x 250 µm) tested in lab, test beams, and for irradiation hardness good performance observed 250µm Hit collection efficiency of around 97-99% observable, dependent on incidence angel also after irradiation to high level New batches with small pitches (50 µm x 50 µm) under test show good performance as well Investigating different production techniques and sensors thicknesses (single sided production, SOI, column variants, UBM) Substrate thicknesses of around µm can be realized Test of ITk geometry and RD53 chip structures are foreseen Pixel Cell Design 9

10 Powering Scheme Powering will be serial, to reduce cable needs Serial powering setup installed in Bonn 6 modules mounted on double sided stavelet FE-I4 based quad modules Tests show a comparable functionality between parallel and serial powering Threshold and noise Noisy modules lead to a negligible higher noise in other modules (5 e - ) Full chain can be operated safely Dummy BNQ01 BNQ00 BNQ05 HV Cooling Power CLK, CMD, Data, NTC 10

11 Pixel Serial Powering Protection Chip (PSPP) Serial powering is supplying a complete module chain by one line Need to prevent chain failure due to single module failure Bypass chip (PSPP) has been developed, being placed in parallel to each module Capable of bypassing each module in case of failure Overvoltage protection Controller chip communicates via I2C-HC to the PSPP s in order to switch manually Separate control and power line for PSPP chip I SP + HV Readout I SP - M1 FE FE FE FE M2 FE FE FE FE Mx-1 FE FE FE FE Mx FE FE FE FE needed, but lots of cables saved with this powering scheme To computer End-of-Stave Board Controller Chip PSPP Chip PSPP Chip PSPP Chip PSPP Chip PSPP power Cooling pipe 11

12 Readout Connection between on- and off-detector via electrical-optical link: Currently defining opto-converter location innermost layer: ~10 MGy!) From FE-chip to end of inner detector electrically (5-7 m) 1 m 5-7 m 80 m Then optically towards the off-detector electronics (~80 m) Around links needed: Downlink: likely to be done using a CERN commonly developed GigaBit- Transceiver (GBT) carrying 16x 160 Mb/s links towards modules well within the chip s capability. Uplink: Large bandwidth spread between inner and outer layer: 5 Gb/s per FE for innermost layer (3.3 Gb/s for innermost ring) 640 Mb/s per FE for outer layer (1 Gb/s for outermost ring) Combining lines would be desirable in terms of material. Low mass and high data rate is needed tricky! We are looking into different options how to drive out data fast enough in good quality 12

13 Micro Wires and Flexes Cables have been tested up to ~6 Gb/s transmission rate successfully: Flex cables ~1m Twisted pair ~1m TwinAx cables ~6m Flex cables (on-stave) 0.7 mm 1.1 mm 1.25 mm TwinAx cable AWG30 (off-stave) 1.95 mm Signal manipulation and balancing needed to reach these rates pre-emphasis, equalization, 8b/10b or 64b/66b encoding Also hybrid twisted pair (1 m) to TwinAx (5 m) has been tested Twisted pair cable AWG36 (on-stave) up to 5 Gb/s as well some cable properties: Flex 0.25 mm width % X/X0 Twisted Pair AWG 36 : mm 0.02% X/X0 TwinAx AWG 30 : mm 0.07% X/X0 Hybrid solution TwinAx to twisted pair cables 13

14 Conclusion & Outlook In 2024 (Phase-2) ATLAS will install a new all-silicon inner tracker (ITk). Currently there is lots of R&D ongoing in all the various fields: Layout and mechanics Sensors and FE-Chip Powering and protection Readout ASIC and sensor prototypes under testing. Test setups using FE-I4 (current ATLAS pixel chip) in various labs for testing. New FE-chip prototype submission foreseen for early Tests with ITk like sensor tiles envisaged. ITk Pixel TDR to be written by end of There is a big R&D going on. We will narrow down the options in the coming year to have a baseline design for the TDR by end of next year. 14

15 Thank you for your attention! 15

16 CMOS Demonstrator Program Passive CMOS sensor + R/O chip Study charge collection Passive sensor for hybrid detector Possible cost advantage if performance is the same as traditional sensor Active CMOS sensor + R/O chip CCPD hybrid detector Possible on-sensor functionality like sub-pixel encoding Active CMOS sensor with standalone R/O DMAPS Depleted Monolithic Active Pixel Sensor Significant cost reduction Suitable for outer layers Several chips and vendors under test Test-beam measurements and chip qualification ongoing Demonstrator by end of this year 16

Prototyping of large structures for the Phase-II upgrade of the pixel detector of the ATLAS experiment

Prototyping of large structures for the Phase-II upgrade of the pixel detector of the ATLAS experiment Prototyping of large structures for the Phase-II upgrade of the pixel detector of the ATLAS experiment Diego Alvarez Feito CERN EP-DT On Behalf of the ATLAS Collaboration 2017 IEEE NSS and MIC 26/10/2017

More information

Modules and Front-End Electronics Developments for the ATLAS ITk Strips Upgrade

Modules and Front-End Electronics Developments for the ATLAS ITk Strips Upgrade Modules and Front-End Electronics Developments for the ATLAS ITk Strips Upgrade Carlos García Argos, on behalf of the ATLAS ITk Collaboration University of Freiburg International Conference on Technology

More information

Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC A. Macchiolo, J. Beyer, A. La Rosa, R. Nisius, N. Savic Max-Planck-Institut für Physik, Munich 8 th International Workshop on Semiconductor

More information

Optimization of thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC arxiv: v1 [physics.ins-det] 12 Jan 2017

Optimization of thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC arxiv: v1 [physics.ins-det] 12 Jan 2017 Prepared for submission to JINST 8th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging. 5-9 September 26 Sestri Levante Optimization of thin n-in-p planar pixel modules

More information

ATLAS ITk Layout Design and Optimisation

ATLAS ITk Layout Design and Optimisation ATLAS ITk Layout Design and Optimisation Noemi Calace noemi.calace@cern.ch On behalf of the ATLAS Collaboration 3rd ECFA High Luminosity LHC Experiments Workshop 3-6 October 2016 Aix-Les-Bains Overview

More information

Quad Module Hybrid Development for the ATLAS Pixel Layer Upgrade

Quad Module Hybrid Development for the ATLAS Pixel Layer Upgrade Quad Module Hybrid Development for the ATLAS Pixel Layer Upgrade Lawrence Berkeley National Lab E-mail: kedunne@lbl.gov Maurice Garcia-Sciveres, Timon Heim Lawrence Berkeley National Lab, Berkeley, USA

More information

Endcap Modules for the ATLAS SemiConductor Tracker

Endcap Modules for the ATLAS SemiConductor Tracker Endcap Modules for the ATLAS SemiConductor Tracker RD3, Firenze, September 29 th, 23 Richard Nisius (MPI Munich) nisius@mppmu.mpg.de (For the ATLAS-SCT Collaboration) The plan of this presentation Introduction

More information

Validation of the front-end electronics and firmware for LHCb vertex locator.

Validation of the front-end electronics and firmware for LHCb vertex locator. Validation of the front-end electronics and firmware for LHCb vertex locator. Antonio Fernández Prieto Universidade de santiago de compostela, Spain E-mail: antonio.fernandez.prieto@cern.ch Pablo Vázquez

More information

Electrical Data Transmission

Electrical Data Transmission Electrical Data Transmission ACES Workshop Martin Kocian 8 March 2015 Martin Kocian (SLAC) Electrical Data Transmission 8 March 2015 1 / 23 Why copper links? High levels of radiation close to the beam

More information

Design of the new ATLAS Inner Tracker (ITk) for the High Luminosity LHC

Design of the new ATLAS Inner Tracker (ITk) for the High Luminosity LHC Design of the new ATLAS Inner Tracker (ITk) for the High Luminosity LHC Jike Wang (DESY) for the ATLAS Collaboration May/2017, TIPP 2017 LHC Machine Schedule In year 2015, ATLAS and CMS went into Run2

More information

First Operational Experience from the LHCb Silicon Tracker

First Operational Experience from the LHCb Silicon Tracker First Operational Experience from the LHCb Silicon Tracker 7 th International Hiroshima Symposium on Development and Application of Semiconductor Tracking Devices The LHCb Silicon Tracker Installation

More information

The LHCb upgrade. Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions

The LHCb upgrade. Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions The LHCb upgrade Burkhard Schmidt for the LHCb Collaboration Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions OT IT coverage 1.9

More information

Results on Array-based Opto-Links

Results on Array-based Opto-Links Results on Array-based Opto-Links, H.P. Kagan, R.D. Kass, H. Merritt, J. Moore, A. Nagarkar, D. Pignotti, S. Smith, M. Strang The Ohio State University P. Buchholz, A. Wiese, M. Ziolkowski Universität

More information

Tracker Optical Link Upgrade Options and Plans

Tracker Optical Link Upgrade Options and Plans Tracker Optical Link Upgrade Options and Plans K.K. Gan The Ohio State University July 19, 2005 K.K. Gan ATLAS Tracker Upgrade Workshop 1 Outline current pixel/strip opto-links lessons learned upgrade

More information

Integrated CMOS sensor technologies for the CLIC tracker

Integrated CMOS sensor technologies for the CLIC tracker Integrated CMOS sensor technologies for the CLIC tracker Magdalena Munker (CERN, University of Bonn) On behalf of the collaboration International Conference on Technology and Instrumentation in Particle

More information

Expected feedback from 3D for SLHC Introduction. LHC 14 TeV pp collider at CERN start summer 2008

Expected feedback from 3D for SLHC Introduction. LHC 14 TeV pp collider at CERN start summer 2008 Introduction LHC 14 TeV pp collider at CERN start summer 2008 Gradual increase of luminosity up to L = 10 34 cm -2 s -1 in 2008-2011 SLHC - major increase of luminosity up to L = 10 35 cm -2 s -1 in 2016-2017

More information

Production and Quality Assurance of Detector Modules for the LHCb Silicon Tracker

Production and Quality Assurance of Detector Modules for the LHCb Silicon Tracker Production and Quality Assurance of Detector Modules for the LHCb Silicon Tracker Olaf Steinkamp for Dmytro Volyanskyy Physik-Institut der Universität Zürich 10th ICATPP Conference on Astroparticle, Particle,

More information

GLAST Silicon Microstrip Tracker Status

GLAST Silicon Microstrip Tracker Status R.P. Johnson Santa Cruz Institute for Particle Physics University of California at Santa Cruz Mechanical Design Detector Procurement Work list for the Prototype Tracker Construction. ASIC Development Hybrids

More information

Prototype Opto Chip Results

Prototype Opto Chip Results Prototype Opto Chip Results K.K. Gan, H.P. Kagan, R.D. Kass, J. Moore, S. Smith The Ohio State University Nov 5, 2008 K.K. Gan ATLAS Tracker Upgrade Workshop 1 Outline Introduction VCSEL driver chip PIN

More information

Radiation-Hard/High-Speed Parallel Optical Links

Radiation-Hard/High-Speed Parallel Optical Links Radiation-Hard/High-Speed Parallel Optical Links K.K. Gan, H. Kagan, R. Kass, J. Moore, D.S. Smith The Ohio State University P. Buchholz, M. Ziolkowski Universität Siegen July 3, 2013 K.K. Gan RD13 1 Outline

More information

Upgrading the ATLAS Tile Calorimeter electronics

Upgrading the ATLAS Tile Calorimeter electronics ITIM Upgrading the ATLAS Tile Calorimeter electronics Gabriel Popeneciu, on behalf of the ATLAS Tile Calorimeter System INCDTIM Cluj Napoca, Romania Gabriel Popeneciu PANIC 2014, Hamburg 26th August 2014

More information

CMS Strip Tracker R&D

CMS Strip Tracker R&D CMS Alexander Dierlamm for the CMS TK collaboration INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Image credit: Andre Holzner KIT The Research University in the Helmholtz Association www.kit.edu Baseline Layout

More information

Construction of the Phase I upgrade of the CMS pixel detector

Construction of the Phase I upgrade of the CMS pixel detector Forward Pixel Barrel Pixel TECHNOLOGY AND INSTRUMENTATION IN PARTICLE PHYSICS 2017, May 22-26, 2017 Construction of the Phase I upgrade of the CMS pixel detector Satoshi Hasegawa Fermi National Accelerator

More information

I/O Choices for the ATLAS. Insertable B Layer (IBL) Abstract. Contact Person: A. Grillo

I/O Choices for the ATLAS. Insertable B Layer (IBL) Abstract. Contact Person: A. Grillo I/O Choices for the ATLAS Insertable B Layer (IBL) ATLAS Upgrade Document No: Institute Document No. Created: 14/12/2008 Page: 1 of 2 Modified: 8/01/2009 Rev. No.: 1.00 Abstract The ATLAS Pixel System

More information

CMS FPGA Based Tracklet Approach for L1 Track Finding

CMS FPGA Based Tracklet Approach for L1 Track Finding CMS FPGA Based Tracklet Approach for L1 Track Finding Anders Ryd (Cornell University) On behalf of the CMS Tracklet Group Presented at AWLC June 29, 2017 Anders Ryd Cornell University FPGA Based L1 Tracking

More information

Charged particle detection performances of CMOS Pixel Sensors designed in a 0.18 µm CMOS process based on a high resistivity epitaxial layer

Charged particle detection performances of CMOS Pixel Sensors designed in a 0.18 µm CMOS process based on a high resistivity epitaxial layer Charged particle detection performances of CMOS Pixel Sensors designed in a 0.18 µm CMOS process based on a high resistivity epitaxial layer Jérôme Baudot on behalf of the PICSEL team of IPHC-Strasbourg

More information

The LHCb VERTEX LOCATOR performance and VERTEX LOCATOR upgrade

The LHCb VERTEX LOCATOR performance and VERTEX LOCATOR upgrade Journal of Instrumentation OPEN ACCESS The LHCb VERTEX LOCATOR performance and VERTEX LOCATOR upgrade To cite this article: P Rodríguez Pérez Related content - Upgrade of the LHCb Vertex Locator A Leflat

More information

ATLAS Dr. C. Lacasta, Dr. C. Marinas

ATLAS Dr. C. Lacasta, Dr. C. Marinas ATLAS Dr. C. Lacasta, Dr. C. Marinas cmarinas@uni-bonn.de 1 http://www.atlas.ch/multimedia/# Why? In particle physics, the processes occur on a scale that is either too brief or too small to be observed

More information

Radiation-Hard ASICS for Optical Data Transmission in the First Phase of the LHC Upgrade

Radiation-Hard ASICS for Optical Data Transmission in the First Phase of the LHC Upgrade Radiation-Hard ASICS for Optical Data Transmission in the First Phase of the LHC Upgrade A. Adair, W. Fernando, K.K. Gan, H.P. Kagan, R.D. Kass, H. Merritt, J. Moore, A. Nagarkar, S. Smith, M. Strang The

More information

Silicon pixel R&D for the CLIC detector

Silicon pixel R&D for the CLIC detector -Conf-6-7 3 December 6 Silicon pixel R&D for the CLIC detector D. Hynds ) On behalf of the collaboration CERN, Switzerland Abstract The physics aims at the future CLIC high-energy linear e + e collider

More information

LHC Detector Upgrades

LHC Detector Upgrades Su Dong SLAC Summer Institute Aug/2/2012 1 LHC is exceeding expectations in many ways Design lumi 1x10 34 Design pileup ~24 Rapid increase in luminosity Even more dramatic pileup challenge Z->µµ event

More information

ATLAS ITk Strip Module Production

ATLAS ITk Strip Module Production ATLAS ITk Strip Module Production Xin SHI On behalf of the IHEP/THU ATLAS ITk Group 23 December 2017 CMS 27 km LHCb ALICE ATLAS. 2 LHC Point 1: The ATLAS Experiment The ATLAS Collaboration 3000 Members

More information

Fast pattern recognition with the ATLAS L1Track trigger for the HL-LHC

Fast pattern recognition with the ATLAS L1Track trigger for the HL-LHC Fast pattern recognition with the ATLAS L1Track trigger for the HL-LHC On behalf of the ATLAS Collaboration Uppsala Universitet E-mail: mikael.martensson@cern.ch ATL-DAQ-PROC-2016-034 09/01/2017 A fast

More information

Summary of Optical Link R&D

Summary of Optical Link R&D Summary of Optical Link R&D K.K. Gan The Ohio State University November 6, 2008 K.K. Gan ATLAS Tracker Upgrade Workshop 1 Outline Introduction Plan for insertable B-layer Status of Versatile Link Project

More information

SoLID GEM Detectors in US

SoLID GEM Detectors in US SoLID GEM Detectors in US Kondo Gnanvo University of Virginia SoLID Collaboration Meeting @ JLab, 08/26/2016 Outline Design Optimization U-V strips readout design Large GEMs for PRad in Hall B Requirements

More information

Alignment of the ATLAS Inner Detector tracking system

Alignment of the ATLAS Inner Detector tracking system Alignment of the ATLAS Inner Detector tracking system Instituto de Física Corpuscular (IFIC), Centro Mixto UVEG-CSIC, Apdo.22085, ES-46071 Valencia, E-mail: Regina.Moles@ific.uv.es The ATLAS experiment

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2008/100 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 02 December 2008 (v2, 03 December 2008)

More information

The LHCb Upgrade. LHCC open session 17 February Large Hadron Collider Physics (LHCP) Conference New York, 2-7 June 2014

The LHCb Upgrade. LHCC open session 17 February Large Hadron Collider Physics (LHCP) Conference New York, 2-7 June 2014 The LHCb Upgrade LHCC open session 17 February 2010 Large Hadron Collider Physics (LHCP) Conference New York, 2-7 June 2014 Andreas Schopper on behalf of Motivation LHCb is a high precision experiment

More information

Irradiation Results and Transmission on Small Cables/Fiber

Irradiation Results and Transmission on Small Cables/Fiber Irradiation Results and Transmission on Small Cables/Fiber W. Fernando, K.K. Gan, A. Law, H.P. Kagan, R.D. Kass, A. Rau, S. Smith The Ohio State University M.R.M. Lebbai, P.L. Skubic University of Oklahoma

More information

Development of CMOS Pixel sensors (CPS) for vertex detectors in present and future collider experiments

Development of CMOS Pixel sensors (CPS) for vertex detectors in present and future collider experiments 14th ICATPP Conference, 23-27 September 2013 Development of CMOS Pixel sensors (CPS) for vertex detectors in present and future collider experiments Auguste Besson On behalf of IPHC-Strasbourg group (CNRS

More information

THE ATLAS INNER DETECTOR OPERATION, DATA QUALITY AND TRACKING PERFORMANCE.

THE ATLAS INNER DETECTOR OPERATION, DATA QUALITY AND TRACKING PERFORMANCE. Proceedings of the PIC 2012, Štrbské Pleso, Slovakia THE ATLAS INNER DETECTOR OPERATION, DATA QUALITY AND TRACKING PERFORMANCE. E.STANECKA, ON BEHALF OF THE ATLAS COLLABORATION Institute of Nuclear Physics

More information

Status Report of the ATLAS SCT Optical Links.

Status Report of the ATLAS SCT Optical Links. Status Report of the ATLAS SCT Optical Links. D.G.Charlton, J.D.Dowell, R.J.Homer, P.Jovanovic, T.J. McMahon, G.Mahout J.A.Wilson School of Physics and Astronomy, University of Birmingham, Birmingham B15

More information

ATLAS IBL Pixel Module Assembly. ATLAS IBL Pixel Module Assembly. ATU-SYS-AN Modified: 02/04/2013 Rev. No.:5

ATLAS IBL Pixel Module Assembly. ATLAS IBL Pixel Module Assembly. ATU-SYS-AN Modified: 02/04/2013 Rev. No.:5 ATLAS IBL Pixel Module Assembly ATLAS Project Document No: Institute Document No. Created: 31/05/12 Page: 1 of 13 ATU-SYS-AN-0001 1221780 Modified: 02/04/2013 Rev. No.:5 ATLAS IBL Pixel Module Assembly

More information

Time and position resolution of high granularity, high counting rate MRPC for the inner zone of the CBM-TOF wall

Time and position resolution of high granularity, high counting rate MRPC for the inner zone of the CBM-TOF wall Time and position resolution of high granularity, high counting rate MRPC for the inner zone of the CBM-TOF wall M. Petris, D. Bartos, G. Caragheorgheopol, M. Petrovici, L. Radulescu, V. Simion IFIN-HH

More information

Beam test measurements of the Belle II vertex detector modules

Beam test measurements of the Belle II vertex detector modules Beam test measurements of the Belle II vertex detector modules Tadeas Bilka Charles University, Prague on behalf of the Belle II Collaboration IPRD 2016, 3 6 October 2016, Siena, Italy Outline Belle II

More information

SVT detector Electronics Status

SVT detector Electronics Status SVT detector Electronics Status On behalf of the SVT community Mauro Citterio INFN Milano Overview: - SVT design status - F.E. chips - Electronic design - Hit rates and data volumes 1 SVT Design Detectors:

More information

Detector R&D at the LCFI Collaboration

Detector R&D at the LCFI Collaboration LCFI Overview Detector R&D at the LCFI Collaboration (Bristol U, Oxford U, Lancaster U, Liverpool U, RAL) Konstantin Stefanov on behalf of the LCFI collaboration LCWS2005, Stanford, 18-22 March 2005 Introduction

More information

Adding timing to the VELO

Adding timing to the VELO Summer student project report: Adding timing to the VELO supervisor: Mark Williams Biljana Mitreska Cern Summer Student Internship from June 12 to August 4, 2017 Acknowledgements I would like to thank

More information

GLAST. Prototype Tracker Tower Construction Status

GLAST. Prototype Tracker Tower Construction Status Prototype Tracker Tower Construction Status June 22, 1999 R.P. Johnson Santa Cruz Institute for Particle Physics University of California at Santa Cruz 1 1 11 2 3 5 4 Prototype Tracker Tower Configuration

More information

Datasheet ADVAPIX TPX3. Version Datasheet. Model No.: APXMD3-Xxx170704

Datasheet ADVAPIX TPX3. Version Datasheet. Model No.: APXMD3-Xxx170704 Datasheet ADVAPIX TPX3 Version 1.0 - Datasheet Model No.: APXMD3-Xxx170704 Datasheet Device Parameters The ADVAPIX TPX3 modules were designed with special emphasis to performance and versatility which

More information

3D-Triplet Tracking for LHC and Future High Rate Experiments

3D-Triplet Tracking for LHC and Future High Rate Experiments 3D-Triplet Tracking for LHC and Future High Rate Experiments André Schöning Physikalisches Institut, Universität Heidelberg Workshop on Intelligent Trackers WIT 2014 University of Pennsylvania May 14-16,

More information

Recent R&D Results on a Pixel Detector for Belle. Gary S. Varner University of Hawai, i SVD Upgrades October 23, 2000

Recent R&D Results on a Pixel Detector for Belle. Gary S. Varner University of Hawai, i SVD Upgrades October 23, 2000 Recent R&D Results on a Pixel Detector for Belle Gary S. Varner University of Hawai, i SVD Upgrades October 23, 2000 Presentation Outline Sensor fabrication A dedicated Belle planar sensor has been in

More information

SoLID GEM Detectors in US

SoLID GEM Detectors in US SoLID GEM Detectors in US Kondo Gnanvo University of Virginia SoLID Collaboration Meeting @ Jlab, 01/13/2016 Outline Overview of SoLID GEM Trackers Large area GEM R&D @ UVa Update on APV25 Electronics

More information

Introduction. Bill Cooper LDC Meeting May 25,

Introduction. Bill Cooper LDC Meeting May 25, The Vertex Detector in the SiD Concept Bill Cooper Fermilab (Layer 1) (Layer 5) VXD Introduction SiD is a closely integrated detector. Designs of the outer tracker and the vertex detector have been developed

More information

Electron and Photon Reconstruction and Identification with the ATLAS Detector

Electron and Photon Reconstruction and Identification with the ATLAS Detector Electron and Photon Reconstruction and Identification with the ATLAS Detector IPRD10 S12 Calorimetry 7th-10th June 2010 Siena, Italy Marine Kuna (CPPM/IN2P3 Univ. de la Méditerranée) on behalf of the ATLAS

More information

LHC-B. 60 silicon vertex detector elements. (strips not to scale) [cm] [cm] = 1265 strips

LHC-B. 60 silicon vertex detector elements. (strips not to scale) [cm] [cm] = 1265 strips LHCb 97-020, TRAC November 25 1997 Comparison of analogue and binary read-out in the silicon strips vertex detector of LHCb. P. Koppenburg 1 Institut de Physique Nucleaire, Universite de Lausanne Abstract

More information

A Configurable Radiation Tolerant Dual-Ported Static RAM macro, designed in a 0.25 µm CMOS technology for applications in the LHC environment.

A Configurable Radiation Tolerant Dual-Ported Static RAM macro, designed in a 0.25 µm CMOS technology for applications in the LHC environment. A Configurable Radiation Tolerant Dual-Ported Static RAM macro, designed in a 0.25 µm CMOS technology for applications in the LHC environment. 8th Workshop on Electronics for LHC Experiments 9-13 Sept.

More information

Alignment of the CMS Silicon Tracker

Alignment of the CMS Silicon Tracker Alignment of the CMS Silicon Tracker Tapio Lampén 1 on behalf of the CMS collaboration 1 Helsinki Institute of Physics, Helsinki, Finland Tapio.Lampen @ cern.ch 16.5.2013 ACAT2013 Beijing, China page 1

More information

Simulation of digital pixel readout chip architectures with the RD53 SystemVerilog-UVM verification environment using Monte Carlo physics data

Simulation of digital pixel readout chip architectures with the RD53 SystemVerilog-UVM verification environment using Monte Carlo physics data Journal of Instrumentation OPEN ACCESS Simulation of digital pixel readout chip architectures with the RD53 SystemVerilog-UVM verification environment using Monte Carlo physics data To cite this article:

More information

Simulating the RF Shield for the VELO Upgrade

Simulating the RF Shield for the VELO Upgrade LHCb-PUB-- March 7, Simulating the RF Shield for the VELO Upgrade T. Head, T. Ketel, D. Vieira. Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil European Organization for Nuclear Research

More information

Level-1 Data Driver Card of the ATLAS New Small Wheel Upgrade Compatible with the Phase II 1 MHz Readout

Level-1 Data Driver Card of the ATLAS New Small Wheel Upgrade Compatible with the Phase II 1 MHz Readout Level-1 Data Driver Card of the ATLAS New Small Wheel Upgrade Compatible with the Phase II 1 MHz Readout Panagiotis Gkountoumis National Technical University of Athens Brookhaven National Laboratory On

More information

Track reconstruction with the CMS tracking detector

Track reconstruction with the CMS tracking detector Track reconstruction with the CMS tracking detector B. Mangano (University of California, San Diego) & O.Gutsche (Fermi National Accelerator Laboratory) Overview The challenges The detector Track reconstruction

More information

APV-25 based readout electronics for the SBS front GEM Tracker

APV-25 based readout electronics for the SBS front GEM Tracker APV-25 based readout electronics for the SBS front GEM Tracker Authors: Evaristo Cisbani, Paolo Musico Date: 26/June/2014 Version: 1.0 APV-25 based readout electronics for the SBS front GEM Tracker...

More information

Implementation of the support of arbitrary pixel geometries in an existing testbeam analysis framework

Implementation of the support of arbitrary pixel geometries in an existing testbeam analysis framework Fakultät für Physik Bachelor s Thesis Implementation of the support of arbitrary pixel geometries in an existing testbeam analysis framework Implementation der Unterstu tzung arbitra rer Pixelgeometrien

More information

Investigation of Proton Induced Radiation Effects in 0.15 µm Antifuse FPGA

Investigation of Proton Induced Radiation Effects in 0.15 µm Antifuse FPGA Investigation of Proton Induced Radiation Effects in 0.15 µm Antifuse FPGA Vlad-Mihai PLACINTA 1,2, Lucian Nicolae COJOCARIU 1, Florin MACIUC 1 1. Horia Hulubei National Institute for R&D in Physics and

More information

Updated impact parameter resolutions of the ATLAS Inner Detector

Updated impact parameter resolutions of the ATLAS Inner Detector Updated impact parameter resolutions of the ATLAS Inner Detector ATLAS Internal Note Inner Detector 27.09.2000 ATL-INDET-2000-020 06/10/2000 Szymon Gadomski, CERN 1 Abstract The layout of the ATLAS pixel

More information

SiD VXD Conceptual Design Su Dong SLAC

SiD VXD Conceptual Design Su Dong SLAC SiD VXD Conceptual Design Su Dong SLAC Aug/23/05 Su Dong Snowmass 05 VTX WG: SiD VXD conceptual Design 1 Common Design Features Like other detector concepts, SiD VXD design is open to all sensor technology

More information

ATLAS Tracking Detector Upgrade studies using the Fast Simulation Engine

ATLAS Tracking Detector Upgrade studies using the Fast Simulation Engine Journal of Physics: Conference Series PAPER OPEN ACCESS ATLAS Tracking Detector Upgrade studies using the Fast Simulation Engine To cite this article: Noemi Calace et al 2015 J. Phys.: Conf. Ser. 664 072005

More information

ATLAS silicon microstrip detector System (SCT)

ATLAS silicon microstrip detector System (SCT) ATLAS silicon microstrip detector System (SCT) Barrel modules Y. Unno, KEK For SCT collaboration Endcap modules SCT ATLAS detector Diameter Barrel toroid length Endcap end-wall chamber span Overall weight

More information

The Belle Silicon Vertex Detector. T. Tsuboyama (KEK) 6 Dec Workshop New Hadrons with Various Flavors 6 7 Dec Nagoya Univ.

The Belle Silicon Vertex Detector. T. Tsuboyama (KEK) 6 Dec Workshop New Hadrons with Various Flavors 6 7 Dec Nagoya Univ. The Belle Silicon Vertex Detector T. Tsuboyama (KEK) 6 Dec. 2008 Workshop New Hadrons with Various Flavors 6 7 Dec. 2008 Nagoya Univ. Outline Belle Silicon vertex detector Upgrade plan R&D and beam tests

More information

The Silicon Vertex Detector of the Belle II Experiment

The Silicon Vertex Detector of the Belle II Experiment Thomas Bergauer (HEPHY Vienna) 12th Pisa Meeting on Advanced Detectors Belle and Belle II DEPFET Pixel Detector Double-sided Strip Detector Summary Thomas Bergauer 2 KEKB and Belle @ KEK (1999-2010) KEKB

More information

IEEE Nuclear Science Symposium San Diego, CA USA Nov. 3, 2015

IEEE Nuclear Science Symposium San Diego, CA USA Nov. 3, 2015 The New Front-End Electronics For the ATLAS Tile Calorimeter Phase 2 Upgrade Gary Drake Argonne National Laboratory, USA On behalf of the ATLAS TileCal System IEEE Nuclear Science Symposium San Diego,

More information

ALICE inner tracking system readout electronics prototype testing with the CERN ``Giga Bit Transceiver''

ALICE inner tracking system readout electronics prototype testing with the CERN ``Giga Bit Transceiver'' Journal of Instrumentation OPEN ACCESS ALICE inner tracking system readout electronics prototype testing with the CERN ``Giga Bit Transceiver'' Related content - The ALICE Collaboration - The ALICE Collaboration

More information

A LVL2 Zero Suppression Algorithm for TRT Data

A LVL2 Zero Suppression Algorithm for TRT Data A LVL2 Zero Suppression Algorithm for TRT Data R. Scholte,R.Slopsema,B.vanEijk, N. Ellis, J. Vermeulen May 5, 22 Abstract In the ATLAS experiment B-physics studies will be conducted at low and intermediate

More information

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction Dan Peterson, Cornell University The Cornell group has constructed, operated and maintained the charged particle tracking detectors

More information

HL-LHC ATLAS ITk Strip Detector

HL-LHC ATLAS ITk Strip Detector HL-LHC ATLAS ITk Strip Detector Developing ITk Front-End Silicon-Strip Readout ASIC Testing Capability at Carleton University James Botte (jbotte@cern.ch) On behalf of the ATLAS Canada ITk Collaboration

More information

The CLICdp Optimization Process

The CLICdp Optimization Process ILDOptWS, Feb, 2016 A. Sailer: The CLICdp Optimization Process 1/17 The CLICdp Optimization Process André Sailer (CERN-EP-LCD) On Behalf of the CLICdp Collaboration ILD Software and Optimisation Workshop

More information

A Possible Redundancy System for Opto-Links

A Possible Redundancy System for Opto-Links A Possible Redundancy System for Opto-Links A. Adair, W. Fernando, K.K. Gan, H.P. Kagan, R.D. Kass, H. Merritt, J. Moore, A. Nagarkar, S. Smith, M. Strang The Ohio State University P. Buchholz, A. Wiese,

More information

From 3D Toolbox to 3D Integration: Examples of Successful 3D Applicative Demonstrators N.Sillon. CEA. All rights reserved

From 3D Toolbox to 3D Integration: Examples of Successful 3D Applicative Demonstrators N.Sillon. CEA. All rights reserved From 3D Toolbox to 3D Integration: Examples of Successful 3D Applicative Demonstrators N.Sillon Agenda Introduction 2,5D: Silicon Interposer 3DIC: Wide I/O Memory-On-Logic 3D Packaging: X-Ray sensor Conclusion

More information

Development of LYSO Detector Modules for an EDM Polarimeter at COSY. for the JEDI Collaboration

Development of LYSO Detector Modules for an EDM Polarimeter at COSY. for the JEDI Collaboration Mitglied der Helmholtz-Gemeinschaft Development of LYSO Detector Modules for an EDM Polarimeter at COSY for the JEDI Collaboration February 28, 2018 DPG Spring Meeting, PhD @ SMART EDM_Lab, TSU, Georgia

More information

First experiences with the ATLAS pixel detector control system at the combined test beam 2004

First experiences with the ATLAS pixel detector control system at the combined test beam 2004 Nuclear Instruments and Methods in Physics Research A 565 (2006) 97 101 www.elsevier.com/locate/nima First experiences with the ATLAS pixel detector control system at the combined test beam 2004 Martin

More information

Update on PRad GEMs, Readout Electronics & DAQ

Update on PRad GEMs, Readout Electronics & DAQ Update on PRad GEMs, Readout Electronics & DAQ Kondo Gnanvo University of Virginia, Charlottesville, VA Outline PRad GEMs update Upgrade of SRS electronics Integration into JLab DAQ system Cosmic tests

More information

SoLID GEM Detectors in US

SoLID GEM Detectors in US SoLID GEM Detectors in US Kondo Gnanvo University of Virginia SoLID Collaboration Meeting @ JLab, 05/07/2016 Outline Overview of SoLID GEM Trackers Design Optimization Large Area GEMs for PRad in Hall

More information

The evolution of Vertex Detectors

The evolution of Vertex Detectors The evolution of Vertex Detectors From Gas to Silicon Strips Better and better Silicon Strips From Strips to (Fast, Micro) Pixels (From Off-line Vertex to On-line Track Seeding) Bigger and bigger Silicon

More information

The performance of the ATLAS Inner Detector Trigger Algorithms in pp collisions at the LHC

The performance of the ATLAS Inner Detector Trigger Algorithms in pp collisions at the LHC X11 opical Seminar IPRD, Siena - 7- th June 20 he performance of the ALAS Inner Detector rigger Algorithms in pp collisions at the LHC Mark Sutton University of Sheffield on behalf of the ALAS Collaboration

More information

Challenges and performance of the frontier technology applied to an ATLAS Phase-I calorimeter trigger board dedicated to the jet identification

Challenges and performance of the frontier technology applied to an ATLAS Phase-I calorimeter trigger board dedicated to the jet identification Challenges and performance of the frontier technology applied to an ATLAS Phase-I calorimeter trigger board dedicated to the jet identification B. Bauss, A. Brogna, V. Büscher, R. Degele, H. Herr, C. Kahra*,

More information

GEANT4 is used for simulating: RICH testbeam data, HCAL testbeam data. GAUSS Project: LHCb Simulation using GEANT4 with GAUDI.

GEANT4 is used for simulating: RICH testbeam data, HCAL testbeam data. GAUSS Project: LHCb Simulation using GEANT4 with GAUDI. Status of GEANT4 in LHCb S. Easo, RAL, 30-9-2002 The LHCbexperiment. GEANT4 is used for simulating: RICH testbeam data, HCAL testbeam data. GAUSS Project: LHCb Simulation using GEANT4 with GAUDI. Summary.

More information

arxiv:physics/ v1 [physics.ins-det] 18 Dec 1998

arxiv:physics/ v1 [physics.ins-det] 18 Dec 1998 Studies of 1 µm-thick silicon strip detector with analog VLSI readout arxiv:physics/981234v1 [physics.ins-det] 18 Dec 1998 T. Hotta a,1, M. Fujiwara a, T. Kinashi b, Y. Kuno c, M. Kuss a,2, T. Matsumura

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title A new inner vertex detector for STAR Permalink https://escholarship.org/uc/item/1863684z Authors Wieman, H. Beiser, F.

More information

A generic firmware core to drive the Front-End GBT-SCAs for the LHCb upgrade

A generic firmware core to drive the Front-End GBT-SCAs for the LHCb upgrade A generic firmware core to drive the Front-End GBT-SCAs for the LHCb upgrade F. Alessio 1, C. Caplan, C. Gaspar 1, R. Jacobsson 1, K. Wyllie 1 1 CERN CH-, Switzerland CBPF Rio de Janeiro, Brazil Corresponding

More information

Design and construction of Micromegas detectors for the ATLAS Muon Spectrometer Upgrade

Design and construction of Micromegas detectors for the ATLAS Muon Spectrometer Upgrade IL NUOVO CIMENTO 39 C (2016) 266 DOI 10.1393/ncc/i2016-16266-1 Colloquia: IFAE 2015 Design and construction of Micromegas detectors for the ATLAS Muon Spectrometer Upgrade Marco Sessa Dipartimento di Matematica

More information

CMS Alignement and Calibration workflows: lesson learned and future plans

CMS Alignement and Calibration workflows: lesson learned and future plans Available online at www.sciencedirect.com Nuclear and Particle Physics Proceedings 273 275 (2016) 923 928 www.elsevier.com/locate/nppp CMS Alignement and Calibration workflows: lesson learned and future

More information

TEST, QUALIFICATION AND ELECTRONICS INTEGRATION OF THE ALICE SILICON PIXEL DETECTOR MODULES

TEST, QUALIFICATION AND ELECTRONICS INTEGRATION OF THE ALICE SILICON PIXEL DETECTOR MODULES TEST, QUALIFICATION AND ELECTRONICS INTEGRATION OF THE ALICE SILICON PIXEL DETECTOR MODULES I.A.CALI 1,2, G.ANELLI 2, F.ANTINORI 3, A.BADALA 4, A.BOCCARDI 2, G.E.BRUNO 1, M.BURNS 2, M.CAMPBELL 2, M.CASELLE

More information

Electron detector(s) decision to proceed with 2 detectors

Electron detector(s) decision to proceed with 2 detectors Electron detector(s) decision to proceed with 2 detectors Direct hit detector (DH1K) reciprocal space Fast application (DH80K) real space imaging Thin nonlinear DEPFETs Thin (nonlinear) Fast DEPFETs Thin

More information

Performance of the ATLAS Inner Detector at the LHC

Performance of the ATLAS Inner Detector at the LHC Performance of the ALAS Inner Detector at the LHC hijs Cornelissen for the ALAS Collaboration Bergische Universität Wuppertal, Gaußstraße 2, 4297 Wuppertal, Germany E-mail: thijs.cornelissen@cern.ch Abstract.

More information

A Scintillating Fiber Tracker for Cosmic Muon Tomography

A Scintillating Fiber Tracker for Cosmic Muon Tomography A Scintillating Fiber Tracker for Cosmic Muon Tomography Carsten Mai I. Physikalisches Institut B der RWTH Aachen GK Seminar Bad Honnef, September 2011 Outline A Particle Physicist's Approach to Archeological

More information

A Triple-GEM Detector with Pixel Readout for High-Rate Beam Tracking

A Triple-GEM Detector with Pixel Readout for High-Rate Beam Tracking A Triple-GEM Detector with Pixel Readout for High-Rate Beam Tracking A. Austregesilo, F. Haas, B. Ketzer, I. Konorov, M. Krämer, A. Mann, T. Nagel, S. Paul TU München, Physik Department E18 11 th Vienna

More information

HPS128-LT-S Hybrid pyroelectric linear array with 128 responsive elements and integrated CMOS multiplexer

HPS128-LT-S Hybrid pyroelectric linear array with 128 responsive elements and integrated CMOS multiplexer HPS128-LT-S Hybrid pyroelectric linear array with 128 responsive elements and integrated CMOS multiplexer Description The pyroelectric linear array 128-LT is a hybrid detector with 128 responsive elements

More information

PoS(High-pT physics09)036

PoS(High-pT physics09)036 Triggering on Jets and D 0 in HLT at ALICE 1 University of Bergen Allegaten 55, 5007 Bergen, Norway E-mail: st05886@alf.uib.no The High Level Trigger (HLT) of the ALICE experiment is designed to perform

More information

Interface electronics

Interface electronics Peter Göttlicher, DESY-FEB, June 11th 2008 1 Interface electronics Links to backend/control implications to mechanical design, to effort in FPGA's Peter Göttlicher, DESY-FEB specifications of signals at

More information