Monte Carlo methods in proton beam radiation therapy. Harald Paganetti

Similar documents
gpmc: GPU-Based Monte Carlo Dose Calculation for Proton Radiotherapy Xun Jia 8/7/2013

Proton dose calculation algorithms and configuration data

Michael Speiser, Ph.D.

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations

Basics of treatment planning II

Significance of time-dependent geometries for Monte Carlo simulations in radiation therapy. Harald Paganetti

Dosimetry Simulations with the UF-B Series Phantoms using the PENTRAN-MP Code System

CLINICAL ASPECTS OF COMPACT GANTRY DESIGNS

Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers

Monitor Unit (MU) Calculation

DUAL-ENERGY CT IN PROTON THERAPY

Hidenobu Tachibana The Cancer Institute Hospital of JFCR, Radiology Dept. The Cancer Institute of JFCR, Physics Dept.

A fast and accurate GPU-based proton transport Monte Carlo simulation for validating proton therapy treatment plans

Chapter 9 Field Shaping: Scanning Beam

Monaco VMAT. The Next Generation in IMRT/VMAT Planning. Paulo Mathias Customer Support TPS Application

Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms.

Integrated proton-photon treatment planning

Basics of treatment planning II

Image-based Monte Carlo calculations for dosimetry

The IORT Treatment Planning System. radiance. GMV, 2012 Property of GMV All rights reserved

Transitioning from pencil beam to Monte Carlo for electron dose calculations

TOPAS Simulation of the Mevion S250 compact proton therapy unit

Spiral CT. Protocol Optimization & Quality Assurance. Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA

CT vs. VolumeScope: image quality and dose comparison

Outline. Outline 7/24/2014. Fast, near real-time, Monte Carlo dose calculations using GPU. Xun Jia Ph.D. GPU Monte Carlo. Clinical Applications

Effects of the difference in tube voltage of the CT scanner on. dose calculation

TomoTherapy Related Projects. An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram

GPU applications in Cancer Radiation Therapy at UCSD. Steve Jiang, UCSD Radiation Oncology Amit Majumdar, SDSC Dongju (DJ) Choi, SDSC

Comparison of absorbed dose distribution 10 MV photon beam on water phantom using Monte Carlo method and Analytical Anisotropic Algorithm

Basic Radiation Oncology Physics

IMRT and VMAT Patient Specific QA Using 2D and 3D Detector Arrays

Representing Range Compensators in the TOPAS Monte Carlo System

The theory and practical aspects of proton imaging proton radiography (prad) and proton tomography (pct)

VALIDATION OF A MONTE CARLO DOSE CALCULATION ALGORITHM FOR CLINICAL ELECTRON BEAMS IN THE PRESENCE OF PHANTOMS WITH COMPLEX HETEROGENEITIES

Photon beam dose distributions in 2D

Voxel phantoms and Monte Carlo methods applied to internal and external dose calculations.

The effect of beam purity and scanner complexity on proton CT accuracy

New Technology in Radiation Oncology. James E. Gaiser, Ph.D. DABR Physics and Computer Planning Charlotte, NC

Validation of Proton Nozzle. Jae-ik Shin (KIRAMS) Sebyeong Lee (NCC)

Assesing multileaf collimator effect on the build-up region using Monte Carlo method

THE SIMULATION OF THE 4 MV VARIAN LINAC WITH EXPERIMENTAL VALIDATION

A CT-based Monte Carlo Dose Calculations for Proton Therapy Using a New Interface Program

Detector simulations for in-beam PET with FLUKA. Francesco Pennazio Università di Torino and INFN, TORINO

Indrin Chetty Henry Ford Hospital Detroit, MI. AAPM Annual Meeting Houston 7:30-8:25 Mon 08/07/28 1/30

PARTNER. Grant Agreement Number WP13 - D.1 Report on basic principles for treatment planning software for light ions.

Measurement of depth-dose of linear accelerator and simulation by use of Geant4 computer code

Loma Linda University Medical Center Dept. of Radiation Medicine

Acknowledgments. Ping Xia, Ph.D., UCSF. Pam Akazawa, CMD, UCSF. Cynthia Chuang, Ph.D., UCSF

Monte Carlo Treatment Planning: Implementation of Clinical Systems

The team. Disclosures. Ultrasound Guidance During Radiation Delivery: Confronting the Treatment Interference Challenge.

MCNP4C3-BASED SIMULATION OF A MEDICAL LINEAR ACCELERATOR

Source Model Tuning for a 6 MV Photon Beam used in Radiotherapy

15 Dose Calculation Algorithms

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago

Dose Calculations: Where and How to Calculate Dose. Allen Holder Trinity University.

THESIS NEUTRON PRODUCTION AND TRANSPORT AT A MEDICAL LINEAR ACCELERATOR. Submitted by. Amber Allardice

DETERMINISTIC 3D RADIATION TRANSPORT SIMULATION FOR DOSE DISTRIBUTION AND ORGAN DOSE EVALUATION IN DIAGNOSTIC CT

Development a simple point source model for Elekta SL-25 linear accelerator using MCNP4C Monte Carlo code

Verification of dose calculations with a clinical treatment planning system based on a point kernel dose engine

Comparison of Predictions by MCNP and EGSnrc of Radiation Dose

Validation of GEANT4 Monte Carlo Simulation Code for 6 MV Varian Linac Photon Beam

Quantitative imaging for clinical dosimetry

Implementation of the EGSnrc / BEAMnrc Monte Carlo code - Application to medical accelerator SATURNE43

Monte Carlo simulations. Lesson FYSKJM4710 Eirik Malinen

UNCOMPROMISING QUALITY

Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code

Monte Carlo simulations

Preface. Med. Phys. 35(9), , Mechanical QA. Radiation Survey Mechanical tests Light radiation Table, Collimator, Gantry Jaws.

A DOSIMETRIC MODEL FOR SMALL-FIELD ELECTRON RADIATION THERAPY A CREATIVE PROJECT (3 SEMESTER HOURS) SUBMITTED TO THE GRADUATE SCHOOL

Monte Carlo Simulation for Neptun 10 PC Medical Linear Accelerator and Calculations of Electron Beam Parameters

Voxels and Medical Applications. FLUKA Beginners course

Influence of electron density spatial distribution and X-ray beam quality during CT simulation on dose calculation accuracy

Three Dimensional Dosimetry Analyses In Radionuclide Therapy Using IDL And MCNP-based Software Tools

IAEA-TECDOC-1583 Commissioning of Radiotherapy Treatment Planning Systems: Testing for Typical External Beam Treatment Techniques

Mathematical methods and simulations tools useful in medical radiation physics

ROBUST OPTIMIZATION THE END OF PTV AND THE BEGINNING OF SMART DOSE CLOUD. Moe Siddiqui, April 08, 2017

Determination of primary electron beam parameters in a Siemens Primus Linac using Monte Carlo simulation

Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon

DESIGN AND SIMULATION OF A PASSIVE-SCATTERING NOZZLE IN PROTON BEAM RADIOTHERAPY. A Thesis FADA GUAN

FAST, precise. qa software

Verification measurements of an emc algorithm using a 2D ion chamber array

A SYSTEM OF DOSIMETRIC CALCULATIONS

Technical Note: Defining cyclotron-based clinical scanning proton machines in a FLUKA Monte Carlo system

IMSURE QA SOFTWARE FAST, PRECISE QA SOFTWARE

Image Guided Multibeam Radiotherapy

Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning

Geant4-DICOM Interface-based Monte Carlo Simulation to Assess Dose Distributions inside the Human Body during X-Ray Irradiation

Outline. Monte Carlo Radiation Transport Modeling Overview (MCNP5/6) Monte Carlo technique: Example. Monte Carlo technique: Introduction

ANALYSIS OF CT AND PET/SPECT IMAGES FOR DOSIMETRY CALCULATION

Three-dimensional gamma criterion for patient-specific quality assurance of spot scanning proton beams

Improvements in Monte Carlo simulation of large electron fields

Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition

Using a research real-time control interface to go beyond dynamic MLC tracking

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT

Room scatter effects in Total Skin Electron Irradiation: Monte Carlo simulation study

3DVH : SUN NUCLEAR On The Accuracy Of The corporation Planned Dose Perturbation Algorithm Your Most Valuable QA and Dosimetry Tools *Patent Pending

Development of a Monte Carlo Based Treatment Planning Verification Tool for Particle Therapy

Accuracy of parameterized proton range models; a comparison

Suitability Study of MCNP Monte Carlo Program for Use in Medical Physics

Transcription:

Monte Carlo methods in proton beam radiation therapy Harald Paganetti

Introduction: Proton Physics Electromagnetic energy loss of protons Distal distribution Dose [%] 120 100 80 60 40 p e p Ionization Excitation Interaction probability is proportional to proton energy 20 0 0 50 100 150 200 250 300 depth [mm] Peak broadening due to range straggling

Introduction: Proton Physics Electromagnetic energy loss of protons Lateral distribution Multiple Coulomb scattering (small angles) p θ p 160 MeV 200 MeV

Introduction: Proton Physics p Nuclear interactions of protons p p p γ, n Elastic nuclear collision (large θ) Inelastic int. Nuclear interactions cause a decrease in fluence Nuclear interactions lead to secondary particles and thus to local dose deposition (secondary protons) non-local dose deposition (secondary neutrons)

Introduction: Monte Carlo Probability Density Function expresses the relative likelihood that a variable will have a certain value p p Monte Carlo f ( x) 0 on [ a, b] f ( x) dx= 1 e θ p p b a p p p p γ, n

Introduction: Monte Carlo

Introduction: Monte Carlo step size definition Condensed history algorithms group many charged particles track segments into one single condensed step grouped interactions elastic scattering on nucleus multiple Coulomb scattering soft inelastic collisions collision stopping power etc discrete interactions hard d-ray production energy > cut hard bremstrahlung emission energy > cut etc

Monte Carlo applications to proton radiation therapy Quality assurance Treatment head simulation Patient dose calculations Treatment head simulation Phase space calculations Patient (CT) simulations Clinical implementation Neutron dose calculations Treatment head simulation Patient simulations

Treatment Head Simulation Double scattering system Beam Aperture High-Density Structure Body Surface Target Volume Critical Structure Modulator Dose [%] 120 100 80 60 40 20 0 0 50 100 150 200 Depth [mm]

Treatment Head Simulation Monte Carlo model of the nozzle (~1000 objects)

Monte Carlo model of the nozzle at the FHBPTC Treatment Head Simulation

Monte Carlo model of the nozzle at the FHBPTC Treatment Head Simulation

Treatment Head Simulation 4D Monte Carlo: Geometry changes during the simulation via C++ class architecture High Z Low Z

Range Modulator Wheel Issues Treatment Head Simulation 1. Beam Gating Dose [%] 2. Beam Current Modulation 120 100 80 60 40 20 0 Beam range: 17.19 cm Modulation: 6.78 cm 0 50 100 150 200 Depth [mm] Dose [%] 120 100 80 60 40 20 0 Beam range: 17.19 cm Modulation: 6.78 cm 0 50 100 150 200 Depth [mm]

Treatment Head Simulation Parameters to characterize the beam at nozzle entrance 1. Beam size and spread (IC measurement) 2. Beam angular spread (manufacturer info) 3. Beam energy (range!) (control system) 4. Beam energy spread (manufacturer info, measured) Are these parameters correlated?

60 100 55 50 45 80 Dose [%] 40 100 35 60 30 20 40 40 60 80 100 80 N 0 20 40 60 60 80 100 120 N D e p th [m m ] 0.02 0.02 0.01 0.01 0.00 0.4 am Be 5 10 Si z 0.0 0.5 1.0 1.5 2.0 2.5 0.01 0.01 0.00-0.00-0.01-0.02 15-0.2 0.0 e ma Sig 0.2 0.4-0.2-0.02-0.4 am Be Siz ] [cm 0.02 0.02-0.02-0.4 0.0 d] 0 a igm es 0.4 0.2-0.01 [ra d] [ ra 0 0.0-0.2-0.4 ] [cm 0.2 Beam Size Sigma [cm] Depth [cm] 20 0.4 Angular Spread [rad] ad -0.02 0.02 20 0.2-0.01 0.00 ad re Sp re Sp 40 Angular Spread [rad] 0 l ar gu An Dose [%] 20 l ar gu An Treatment Head Simulation Commissioning of the Monte Carlo 0.02 0.01 0.01 0.00-0.00-0.01-0.02 25-0.2-0.02-0.4 0.0 Beam Size Sigma [cm] 30

Treatment Head Simulation Dose [%] Dose [%] Dose [%] Dose [%] 120 100 80 60 40 20 0 120 100 80 60 40 20 0 120 100 80 60 40 20 0 120 100 80 60 40 20 0 2 4 6 8 10 2 4 6 8 10 12 14 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 22 24 depth [cm]

Aperture and Compensator Treatment Head Simulation

Aperture and Compensator Treatment Head Simulation Monte Carlo simulation based on milling machine files

Example: Quality Assurance / Tolerance Studies Alignment of second scatterer 120 Quality Assurance Dose [%] 100 80 60 40 20 100 second scatterer aligned 0 0 20 40 60 80 100 120 140 160 Depth [mm] Dose [%] 100 80 60 40 20 0-80 -60-40 -20 0 20 40 60 80 120 Lateral distance to isocenter [mm] 100 80 Dose [%] 60 40 Dose [%] 80 60 40 20 second scatterer tilted by 5 o 0 0 20 40 60 80 100 120 140 160 20 0-80 -60-40 -20 0 20 40 60 80 Depth [mm] Lateral distance to isocenter [mm]

Treatment Head Simulation Phase Space plane Phase Space Format Example: (part, x, y, p x, p y, p z, flags )

Treatment Head Simulation Absolute dosimetry (output factor prediction) by simulating the ionization chamber output charge Volume for absolute dosimetry Output Factor [cgy / MU] 2.2 2.0 1.8 1.6 1.4 1.2 1.0 12 cm < SOBP r < 15 cm Output Factor i Output Factor [cgy / MU] ic 2.2 2.0 1.8 1.6 1.4 1.2 1.0 D cal i ic cgy MU e ε ic de = p dξdf W dx air 20 cm < SOBP r < 24 cm air 0.8 0.8 0.1 1 10 0.1 1 10 (SOBP r - SOBP m ) / SOBP m (SOBP r - SOBP m ) / SOBP m

Monte Carlo dose calculation Patient Simulation Simulate a large number of particle histories until all primary and secondary particles are absorbed or have left the calculation grid Calculate and store the amount of absorbed energy of each particle in each region (voxel) The statistical accuracy of the dose is determined by the number of particle histories

HP1 Patient Simulation Patient information Example: CT scan: 134 CT slices, 512 512 voxels/slice 0.488 mm 0.488 mm 1.25/2.5 mm Treatment planning grid: 2.0 mm 2.0 mm 2.5 mm Challenges: - Memory Consumption - Many boundary crossings

Slide 24 HP1 Harald Paganetti, 3/14/2008

CT conversion Hounsfield Units (HU) Patient Simulation 0 500 1000 1500 2000 2500 3000 HU Photon Planning System HU versus electron density Dose-to-water Density; Material comp. Density; Material comp. Proton Planning System HU versus rel. stopping power Dose-to-water Monte Carlo HU versus mass density HU versus material Dose-to-medium (tissue)

Patient Simulation HU conversion Group HU range Density Density Material [g/cm3] correction composition weights [%] (center of HU bin) H C N O Na Mg P S Cl Ar K Ca Ti 1 [ ; -951 ] 0.0270 1.051 75.5 23.2 1.3 2 [ -950 ; -121 ] 0.4800 0.977 10.3 10.5 3.1 74.9 0.2 0.2 0.3 0.3 0.2 3 [ -120 ; -83 ] 0.9264 0.948 11.6 68.1 0.2 19.8 0.1 0.1 0.1 4 [ -82 ; -53 ] 0.9577 0.958 11.3 56.7 0.9 30.8 0.1 0.1 0.1 5 [ -52 ; -23] 0.9845 0.968 11.0 45.8 1.5 41.1 0.1 0.1 0.2 0.2 6 [ -22 ; 7 ] 1.0113 0.976 10.8 35.6 2.2 50.9 0.1 0.2 0.2 7 [ 8 ; 18 ] 1.0296 0.983 10.6 28.4 2.6 57.8 0.1 0.2 0.2 0.1 8 [19 ; 79 ] 1.0609 0.993 10.3 13.4 3.0 72.3 0.2 0.2 0.2 0.2 0.2 9 [ 80 ; 119 ] 1.1199 0.971 9.4 20.7 6.2 62.2 0.6 0.6 0.3 10 [ 120 ; 199 ] 1.1117 1.002 9.5 45.5 2.5 35.5 0.1 2.1 0.1 0.1 0.1 4.5 11 [ 200 ; 299 ] 1.1650 1.005 8.9 42.3 2.7 36.3 0.1 3.0 0.1 0.1 0.1 6.4 12 [ 300 ; 399 ] 1.2244 1.010 8.2 39.1 2.9 37.2 0.1 3.9 0.1 0.1 0.1 8.3 13 [ 400 ; 499 ] 1.2834 1.014 7.6 36.1 3.0 38.0 0.1 0.1 4.7 0.2 0.1 0.1 14 [ 500 ; 599 ] 1.3426 1.018 7.1 33.5 3.2 38.7 0.1 0.1 5.4 0.2 11.7 15 [ 600 ; 699 ] 1.4018 1.021 6.6 31.0 3.3 39.4 0.1 0.1 6.1 0.2 13.2 16 [ 700 ; 799 ] 1.4610 1.025 6.1 28.7 3.5 40.0 0.1 0.1 6.7 0.2 14.6 17 [ 800 ; 899 ] 1.5202 1.030 5.6 26.5 3.6 40.5 0.1 0.2 7.3 0.3 15.9 18 [ 900 ; 999 ] 1.5794 1.033 5.2 24.6 3.7 41.1 0.1 0.2 7.8 0.3 17.0 19 [ 1000 ;1099 ] 1.6386 1.035 4.9 22.7 3.8 41.6 0.1 0.2 8.3 0.3 18.1 20 [ 1100 ; 1199 ] 1.6978 1.038 4.5 21.0 3.9 42.0 0.1 0.2 8.8 0.3 19.2 21 [ 1200 ; 1299 ] 1.7570 1.041 4.2 19.4 4.0 42.5 0.1 0.2 9.2 0.3 20.1 22 [ 1300 ; 1399 ] 1.8162 1.043 3.9 17.9 4.1 42.9 0.1 0.2 9.6 0.3 21.0 23 [ 1400 ; 1499 ] 1.8754 1.046 3.6 16.5 4.2 43.2 0.1 0.2 10.0 0.3 21.9 24 [ 1500 ; 1599 ] 1.9346 1.048 3.4 15.5 4.2 43.5 0.1 0.2 10.3 0.3 22.5 25 [ 1600 ; 1999 ] 2.0826 1.042 3.4 15.5 4.2 43.5 0.1 0.2 10.3 0.3 22.5 26 [ 2000 ; 3060 ] 2.4655 1.049 3.4 15.5 4.2 43.5 0.1 0.2 10.3 0.3 22.5 27 [ 3061 ; ] 4.5400 1.000 100.0 HU space is divided into 27 groups with members of each group sharing the same element composition but differ in mass density (4000 densities)

Patient Simulation Gantry Angle Position XYZ Rotation Pitch Roll Air Gap Gantry Couch ISO AP1A 0º 0º 1 AS1A 65º 270º 1 RS1A 305º 50º 1 RA1A 295º 0º 2 RS2A 300º 60º 2 AS2B 90º 270º 3

Patient Database Treatment Planning FOCUS/XiO Clinical Implementation Treatment Control System Treatment Head Geometry Beam Setup Patient Geometry Patient Setup Phase Space Calculation Dose Calculation Monte Carlo Dose Cube Monte Carlo Dose Cube FOCUS/XiO format FOCUS and XiO: Computerized Medical Systems Inc.

Example 1 Clinical Examples Case 1: Para-spinal tumor 176 x 147 x 126 slices voxels: 0.932 x 0.932 x 2.5-3.75 mm 3

Proton dose in the presence of range uncertainty Clinical Examples

Proton dose in the presence of range uncertainty Clinical Examples

Clinical Examples Monte Carlo Pencil Beam 1 Gy(RBE) 3 Gy(RBE) 5 Gy(RBE) 7 Gy(RBE) 9 Gy(RBE) 11 Gy(RBE) 13 Gy(RBE) 15 Gy(RBE) 17 Gy(RBE) Range

Clinical Examples 10 Gy(RBE) 20 Gy(RBE) 30 Gy(RBE) 35 Gy(RBE) 40 Gy(RBE) 42 Gy(RBE) 44 Gy(RBE) 46 Gy(RBE) 48 Gy(RBE) Penumbra Dose homogeneity Range 1 Gy(RBE) 2 Gy(RBE) 3 Gy(RBE) 4 Gy(RBE) Dose-to-water Dose-to-tissue

Planned SOBP versus delivered SOBP 1.2 1.0 Clinical Examples Dose [relative] 0.8 0.6 0.4 0.2 0.0 0 2 4 6 8 10 12 14 16 18 Depth [cm] 1.2 1.0 Dose [relative] 0.8 0.6 0.4 0.2 0.0 0 2 4 6 8 10 12 14 16 18 Depth [cm]

Total DVH MC XiO Clinical Examples

Example 2 Clinical Examples Case 3: Maxillary sinus 121x121x101 slices voxels: 0.656 x 0.656 x 1.25-3.75 mm 3 PTV A 50 50 Critical Structure B C

PTV A 50 50 Critical Structure B C Clinical Examples Monte Carlo Pencil Beam 2 Gy(RBE) 6 Gy(RBE) 10 Gy(RBE) 14 Gy(RBE) 18 Gy(RBE) 20 Gy(RBE) 22 Gy(RBE) 24 Gy(RBE) 26 Gy(RBE)

Clinical Examples 5 Gy(RBE) 10 Gy(RBE) 15 Gy(RBE) 20 Gy(RBE) 22 Gy(RBE) 24 Gy(RBE) 26 Gy(RBE) 28 Gy(RBE) 30 Gy(RBE) 1 Gy(RBE) 1.5 Gy(RBE) 2 Gy(RBE) 2.5 Gy(RBE) 3 Gy(RBE)

Clinical Examples 10 Gy(RBE) 20 Gy(RBE) 30 Gy(RBE) 40 Gy(RBE) 50 Gy(RBE) 60 Gy(RBE) 65 Gy(RBE) 70 Gy(RBE) 75 Gy(RBE) 2 Gy(RBE) 4 Gy(RBE) 6 Gy(RBE) 8 Gy(RBE) MC XiO

Neutron Dose Simulation Scattered dose as a function of lateral distance

Simulation of the radiation field entering the patient Neutron Dose Simulation External Internal Output: Neutrons leaving the treatment head Protons leaving the treatment head

Pediatric phantoms Lee, Lee, Williams, et al. Whole-body voxel phantoms of paediatric patients - UF Series B. Phys Med Biol. 51, 4649-4661 (2006) Neutron Dose Simulation phantom number of voxels voxel dim (mm) X Y Z X Y Z 9 month old 289 180 241 0.9 0.9 3 4 year old 351 207 211 0.9 0.9 5 8 year old 322 171 220 1.1 1.1 6 11 year old 398 242 252 0.9 0.9 6 14 year old 349 193 252 1.2 1.2 7 Adult 147 86 470 4 4 4

Neutron Dose Simulation From: Annals of the ICRP; ICRP Publication 92; Relative Biological Effectiveness (RBE), QualityFactor (Q), and Radiation Weighting Factor (w R )

Neutron Dose Simulation

Neutron Dose Simulation Organ equivalent dose thyroid (circles) lung (squares) liver (triangles)

References Proton Therapy Paganetti and Bortfeld: Proton Therapy. In: New Technologies in Radiation Oncology (Series: Medical Radiology; Subseries: Radiation Oncology); Eds. Schlegel, W.; Bortfeld, T.; Grosu, A.L.; ISBN 3-540- 00321-5; Springer Verlag, Heidelberg 2005: 345-63 Monte Carlo dose calculation Chetty et al., Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 2007: 34, 4818-53 Proton treatment head simulation Paganetti et al: Accurate Monte Carlo simulations for nozzle design, commissioning, and quality assurance in proton radiation therapy. Med Phys 2004: 31, 2107-18 Simulation of neutron doses in proton therapy Zacharatou Jarlskog et al: Assessment of organ specific neutron equivalent doses in proton therapy using computational whole-body agedependent voxel phantoms. Phys Med Biol 2008: 53, 693-717 Monte Carlo code Geant4 http://geant4.web.cern.ch/geant4/