Refinable Polycube G-Splines

Similar documents
Smooth Multi-Sided Blending of bi-2 Splines

Refinable C 1 spline elements for irregular quad layout

Refinable Polycube G-Splines

Subdivision Curves and Surfaces: An Introduction

On Smooth Bicubic Surfaces from Quad Meshes

Smooth Bi-3 Spline Surfaces with fewest knots

Finite curvature continuous polar patchworks

Curve Corner Cutting

Subdivision Surfaces

Subdivision Curves and Surfaces

Subdivision Surfaces

INF3320 Computer Graphics and Discrete Geometry

Normals of subdivision surfaces and their control polyhedra

Example: Loop Scheme. Example: Loop Scheme. What makes a good scheme? recursive application leads to a smooth surface.

Advanced Modeling 2. Katja Bühler, Andrej Varchola, Eduard Gröller. March 24, x(t) z(t)

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link)

BICUBIC UNIFORM B-SPLINE SURFACE REFINEMENT

Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Smooth Surfaces from 4-sided Facets

Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches

Normals of subdivision surfaces and their control polyhedra

Curvature of Approximating Curve Subdivision Schemes

REAL-TIME SMOOTH SURFACE CONSTRUCTION ON THE GRAPHICS PROCESSING UNIT

09 - Designing Surfaces. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches

Improved shape for refinable surfaces with singularly parameterized irregularities

G 2 Interpolation for Polar Surfaces

Polar Embedded Catmull-Clark Subdivision Surface

Smooth Patching of Refined Triangulations

Curves, Surfaces and Recursive Subdivision

Subdivision on Arbitrary Meshes: Algorithms and Theory

Curves and Surfaces 2

Pairs of Bi-Cubic Surface Constructions Supporting Polar Connectivity

Recursive Subdivision Surfaces for Geometric Modeling

Volume Enclosed by Example Subdivision Surfaces

Using Semi-Regular 4 8 Meshes for Subdivision Surfaces

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018

Hierarchical Grid Conversion

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati

Subdivision Surfaces. Homework 1: Last Time? Today. Bilinear Patch. Tensor Product. Spline Surfaces / Patches

GL9: Engineering Communications. GL9: CAD techniques. Curves Surfaces Solids Techniques

2001, Denis Zorin. Subdivision Surfaces

Know it. Control points. B Spline surfaces. Implicit surfaces

Bézier and B-spline volumes Project of Dissertation

Trimming for Subdivision Surfaces

Approximating Subdivision Surfaces with Gregory Patches for Hardware Tessellation

Refinable C 1 spline elements for irregular quad layout

Curved PN Triangles. Alex Vlachos Jörg Peters

Spline Surfaces, Subdivision Surfaces

Non-Uniform Recursive Doo-Sabin Surfaces

Computer Graphics Curves and Surfaces. Matthias Teschner

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D

Subdivision surfaces. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

EFFICIENT, TIGHT BOUNDING VOLUMES FOR SUBDIVISION SURFACES

Computer Graphics Lecture 5

Computer Graphics Spline and Surfaces

Subdivision overview

A Heuristic Offsetting Scheme for Catmull-Clark Subdivision Surfaces

Interpolatory 3-Subdivision

Gauss curvature. curvature lines, needle plot. vertices of progenitor solid are unit size. Construction Principle. edge. edge. vertex. Patch.

Semi-Regular 4 8 Refinement and Box Spline Surfaces

08 - Designing Approximating Curves

Digital Geometry Processing. Computer Graphics CMU /15-662

Refinable bivariate quartic and quintic C 2 -splines for quadrilateral subdivisions

Efficient GPU Rendering of Subdivision Surfaces. Tim Foley,

3 Multiresolution by Local Least Squares: The Diagrammatic Approach

2D Spline Curves. CS 4620 Lecture 18

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

DESIGNING AND IMPLEMENTING A SURFACE MODELING SYSTEM

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside

Figure 5.1: Spline and ducks.

Guided spline surfaces

An Interpolatory Subdivision for Volumetric Models over Simplicial Complexes

Modeling. Simulating the Everyday World

Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches

SEMIREGULAR PENTAGONAL SUBDIVISIONS

The Essentials of CAGD

Curves D.A. Forsyth, with slides from John Hart

Computer Graphics Fundamentals. Jon Macey

Curves and Surfaces Computer Graphics I Lecture 9

An Efficient Data Structure for Representing Trilateral/Quadrilateral Subdivision Surfaces

Evaluation of Loop Subdivision Surfaces

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification

CAGD PACKAGE FOR MATHEMATICA AND ITS USAGE IN THE TEACHING

Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets

Mesh Representations & Geometry Processing

BS-Patch: Constrained Bezier Parametric Patch

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

C 2 SplinesCoveringPolarConfigurations

CS-184: Computer Graphics

Surface and Solid Geometry. 3D Polygons

A Continuous 3-D Medial Shape Model with Branching

Subdivision Surfaces. Homework 1: Questions on Homework? Last Time? Today. Tensor Product. What s an illegal edge collapse?

On the Linear Independence of Truncated Hierarchical Generating Systems

Shape optimization of smooth surfaces with arbitrary topology

Subdivision Surfaces. Homework 1: Questions/Comments?

Lecture 3 Mesh. Dr. Shuang LIANG. School of Software Engineering Tongji University Spring 2013

Combining 4- and 3-direction Subdivision

Transcription:

Refinable Polycube G-Splines Martin Sarov Jörg Peters University of Florida NSF CCF-0728797 M. Sarov, J. Peters (UF) SMI 2016 1 / 21

Background Quest Surfaces with rational linear reparameterization = as close as possible to regular splines M. Sarov, J. Peters (UF) SMI 2016 2 / 21

Geometric Continuity Geometric Continuity G 1 = C 1 continuity after change of variables M. Sarov, J. Peters (UF) SMI 2016 3 / 21

Geometric Continuity Geometric Continuity G 1 = C 1 continuity after change of variables Simplest non-affine change of variables: rational linear q = p(ρ) M. Sarov, J. Peters (UF) SMI 2016 3 / 21

Geometric Continuity Geometric Continuity G 1 = C 1 continuity after change of variables Simplest non-affine change of variables: rational linear q = p(ρ) Implies linear scaling by ω: p(t, 0) = q(0, t), ω(t) 1 p (t, 0) = 2 p (t, 0) + 1 q (0, t), ( ω(t) := (1 t)ω 0 + tω 1, ω 0, ω 1 R, M. Sarov, J. Peters (UF) SMI 2016 3 / 21

Geometric Continuity Geometric Continuity G 1 = C 1 continuity after change of variables Simplest non-affine change of variables: rational linear q = p(ρ) Implies linear scaling by ω: p(t, 0) = q(0, t), ω(t) 1 p (t, 0) = 2 p (t, 0) + 1 q (0, t), ( ω(t) := (1 t)ω 0 + tω 1, ω 0, ω 1 R, : rational linear = closest to regular spline (ω = const) : maximizes the number of control handles M. Sarov, J. Peters (UF) SMI 2016 3 / 21

Geometric Continuity Geometric Continuity G 1 = C 1 continuity after change of variables Simplest non-affine change of variables: rational linear q = p(ρ) Implies linear scaling by ω: p(t, 0) = q(0, t), ω(t) 1 p (t, 0) = 2 p (t, 0) + 1 q (0, t), ( ω(t) := (1 t)ω 0 + tω 1, ω 0, ω 1 R, : rational linear = closest to regular spline (ω = const) : maximizes the number of control handles : ω 0 = ω 1 or p(0, 0) and p(1, 0) have the same valence M. Sarov, J. Peters (UF) SMI 2016 3 / 21

Geometric Continuity Geometric Continuity G 1 = C 1 continuity after change of variables Simplest non-affine change of variables: rational linear q = p(ρ) Implies linear scaling by ω: p(t, 0) = q(0, t), ω(t) 1 p (t, 0) = 2 p (t, 0) + 1 q (0, t), ( ω(t) := (1 t)ω 0 + tω 1, ω 0, ω 1 R, : rational linear = closest to regular spline (ω = const) : maximizes the number of control handles : ω 0 = ω 1 or p(0, 0) and p(1, 0) have the same valence [PS15]: valence restricted to 3, 6 M. Sarov, J. Peters (UF) SMI 2016 3 / 21

Polycube connectivity and control handles Outline 1 Polycube connectivity and control handles 2 Surface Construction 3 Multi-resolution M. Sarov, J. Peters (UF) SMI 2016 4 / 21

Polycube connectivity and control handles Restricted Connectivity: Polycube Configurations n {3, 4, 5, 6}: M. Sarov, J. Peters (UF) SMI 2016 5 / 21

Polycube connectivity and control handles 2x2 split: Control Handles c i M. Sarov, J. Peters (UF) SMI 2016 6 / 21

Polycube connectivity and control handles 2x2 split: Control Handles c i Control handles c i Boundary points b i (Bézier) M. Sarov, J. Peters (UF) SMI 2016 6 / 21

Polycube connectivity and control handles 2x2 split: Control Handles c i Edge Recovery: c i b i M. Sarov, J. Peters (UF) SMI 2016 6 / 21

Polycube connectivity and control handles 2x2 split: Control Handles c i Edge Recovery: c i b i smooth? M. Sarov, J. Peters (UF) SMI 2016 6 / 21

Polycube connectivity and control handles 2x2 split: Control Handles c i M. Sarov, J. Peters (UF) SMI 2016 6 / 21

Surface Construction Outline 1 Polycube connectivity and control handles 2 Surface Construction 3 Multi-resolution M. Sarov, J. Peters (UF) SMI 2016 7 / 21

Surface Construction PGS: G 1 construction for vertex valences 3, 4, 5, 6 G 1 constraints on BB-coefficients (technical). M. Sarov, J. Peters (UF) SMI 2016 8 / 21

Surface Construction PGS: G 1 construction for vertex valences 3, 4, 5, 6 G 1 constraints on BB-coefficients Apparent valence (mimic 3 6). 2c p b α,11 10 = b α+1,11 10 + b α 1,11 10, c p := cos 2π p. M. Sarov, J. Peters (UF) SMI 2016 9 / 21

Surface Construction PGS: G 1 construction for vertex valences 3, 4, 5, 6 G 1 constraints on BB-coefficients Apparent valence Assign labels: n, m edge. M. Sarov, J. Peters (UF) SMI 2016 10 / 21

Surface Construction PGS: G 1 construction for vertex valences 3, 4, 5, 6 G 1 constraints on BB-coefficients Apparent valence Assign labels: n, m edge Simple G 1 constraints work for n, m {3, 4, 5, 6} except n, 4, 4, m with n m. M. Sarov, J. Peters (UF) SMI 2016 11 / 21

Surface Construction PGS: G 1 construction for vertex valences 3, 4, 5, 6 G 1 constraints on BB-coefficients Apparent valence Assign labels: n, m edge Simple G 1 constraints work for n, m {3, 4, 5, 6} except n, 4, 4, m with n m. Construction steps:. M. Sarov, J. Peters (UF) SMI 2016 11 / 21

Surface Construction PGS: G 1 construction for vertex valences 3, 4, 5, 6 G 1 constraints on BB-coefficients Apparent valence Assign labels: n, m edge Simple G 1 constraints work for n, m {3, 4, 5, 6} except n, 4, 4, m with n m. M. Sarov, J. Peters (UF) SMI 2016 11 / 21

Surface Construction Smooth PGS surfaces M. Sarov, J. Peters (UF) SMI 2016 12 / 21

Surface Construction Smooth PGS surfaces M. Sarov, J. Peters (UF) SMI 2016 13 / 21

Multi-resolution Outline 1 Polycube connectivity and control handles 2 Surface Construction 3 Multi-resolution M. Sarov, J. Peters (UF) SMI 2016 14 / 21

Multi-resolution Multi-resolution of Polycube G1 -splines M. Sarov, J. Peters (UF) SMI 2016 15 / 21

Multi-resolution Multi-resolution of Polycube G 1 -splines How to refine the control handles? M. Sarov, J. Peters (UF) SMI 2016 16 / 21

Multi-resolution Multi-resolution of Polycube G 1 -splines How to refine the control handles? : [PS15] add (refined) surfaces M. Sarov, J. Peters (UF) SMI 2016 16 / 21

Multi-resolution Multi-resolution of Polycube G 1 -splines How to refine the control handles? : [PS15] add (refined) surfaces : Catmull-Clark on polycube quad net M. Sarov, J. Peters (UF) SMI 2016 16 / 21

Multi-resolution Multi-resolution of Polycube G 1 -splines How to refine the control handles? : [PS15] add (refined) surfaces : Catmull-Clark on polycube quad net : C 1 bicubic spline refinement: depends on b i M. Sarov, J. Peters (UF) SMI 2016 16 / 21

Multi-resolution Multi-resolution of Polycube G 1 -splines How to refine the control handles? : [PS15] add (refined) surfaces : Catmull-Clark on polycube quad net : C 1 bicubic spline refinement: depends on b i : if c i is set by PGS (= satisfies G1) then c i is unchanged by Edge Recovery + PGS. M. Sarov, J. Peters (UF) SMI 2016 16 / 21

Multi-resolution Multi-resolution of Polycube G 1 -splines How to refine the control handles? : [PS15] add (refined) surfaces : Catmull-Clark on polycube quad net : C 1 bicubic spline refinement: depends on b i : if c i is set by PGS (= satisfies G1) then c i is unchanged by Edge Recovery + PGS. de Casteljau preserves G1 of finer c i M. Sarov, J. Peters (UF) SMI 2016 16 / 21

Multi-resolution Multi-resolution of Polycube G 1 -splines How to refine the control handles? : [PS15] add (refined) surfaces : Catmull-Clark on polycube quad net : C 1 bicubic spline refinement: depends on b i : if c i is set by PGS (= satisfies G1) then c i is unchanged by Edge Recovery + PGS. de Casteljau preserves G1 of finer c i Edge Recovery + PGS = same surface M. Sarov, J. Peters (UF) SMI 2016 16 / 21

Multi-resolution Multi-resolution of Polycube G 1 -splines How to refine the control handles? : [PS15] add (refined) surfaces : Catmull-Clark on polycube quad net : C 1 bicubic spline refinement: depends on b i : if c i is set by PGS (= satisfies G1) then c i is unchanged by Edge Recovery + PGS. de Casteljau preserves G1 of finer c i Edge Recovery + PGS = same surface perturb c i = different smooth surface M. Sarov, J. Peters (UF) SMI 2016 16 / 21

Multi-resolution Summary Smooth surface covering irregularities of valence n = 3, 4, 5, 6 in a C 1 bi-3 spline surface M. Sarov, J. Peters (UF) SMI 2016 17 / 21

Multi-resolution Summary Smooth surface covering irregularities of valence n = 3, 4, 5, 6 in a C 1 bi-3 spline surface Control Handles = as for C 1 bi-3 spline (larger support) M. Sarov, J. Peters (UF) SMI 2016 17 / 21

Multi-resolution Summary Smooth surface covering irregularities of valence n = 3, 4, 5, 6 in a C 1 bi-3 spline surface Control Handles = as for C 1 bi-3 spline (larger support) Refinable reproduces surfaces at finer level QUESTIONS? M. Sarov, J. Peters (UF) SMI 2016 17 / 21

Multi-resolution Summary Smooth surface covering irregularities of valence n = 3, 4, 5, 6 in a C 1 bi-3 spline surface Control Handles = as for C 1 bi-3 spline (larger support) Refinable reproduces surfaces at finer level QUESTIONS? M. Sarov, J. Peters (UF) SMI 2016 17 / 21

Multi-resolution Multiresolution: algebraic challenge Challenge: global system, : additional constraint ω( k 2 l ) ( bα;k 1,1 10 + 2b α;k 1,1 20 2b α;k1 10 + b α;k,1 20 ) = 0. }{{} C 2 boundary : large support of c i handles : decay fast M. Sarov, J. Peters (UF) SMI 2016 18 / 21

Multi-resolution PGSER M. Sarov, J. Peters (UF) SMI 2016 19 / 21

Multi-resolution PGS: G 1 construction for vertex valences 3, 4, 5, 6 G 1 constraints on BB-coefficients: d d b(u, v) := b ij Bi d (u)bj d (v), i=0 j=0 p 01 + q 10 = ω 0 p 10 + (2 ω 0 )p 00, (1) p 11 + q 11 = ρ(ω 0, ω 1 ), (2) p 21 + q 12 = σ(ω 0, ω 1 ), (3) p 31 + q 13 = (2 + ω 1 )p 30 ω 1 p 20. (4) ρ(ω 0, ω 1 ) := 1 ( ) 2ω0 p 20 ω 1 p 00 + (6 2ω 0 + ω 1 )p 10 3 σ(ω 0, ω 1 ) := 1 ) ω0 p 30 2ω 1 p 10 + (6 ω 0 + 2ω 1 )p 20. 3( M. Sarov, J. Peters (UF) SMI 2016 20 / 21

Multi-resolution What goes wrong when n, 4, 4, m with n m? M. Sarov, J. Peters (UF) SMI 2016 21 / 21