AltaSens A5262-4T 4.5 Megapixel CMOS Image Sensor 0.18 µm IBM Process

Similar documents
Nokia N90 (Toshiba ET8EA3-AS) 2.0 Megapixel CMOS Image Sensor Process Review

Sharp NC µm Pixel CCD Image Sensor

Sharp NC Mp, 1.66 µm Pixel Size CCD Image Sensor

Texas Instruments TMX320TCI6488ZUNV Baseband Processor System on a Chip

Sample Table of Contents

Texas Instruments S W Digital Micromirror Device

Canon Digic II CH Digital Image Processor Structural Analysis

STMicroelectronics STM32F103ZET6 32 Bit MCU. Advanced Functional Analysis

Matsushita MN2DS0015 System on a Chip for DVD Players 65 nm CMOS Process Structural Analysis

STMicroelectronics STM32F103ZET6 32 Bit MCU Embedded NOR Flash

Samsung K9GAG08U0M-PCB0 16 Gbit Multi-Level Cell (MLC) 51 nm Process Technology NAND Flash Memory

NVIDIA Tegra T20-H-A2 Application Processor TSMC 40 nm Low Power CMOS Process

Nan Ya NT5DS32M8BT-6K 256 Mbit DDR SDRAM Structural Analysis

Sony ICX098BL ¼ Inch Optical Format 5.6 µm Pixel Size CCD Image Sensor

Numonyx JSPCM128A00B85ES 128 Mbit Phase Change Memory 90 nm BiCMOS PCM Process

Sigma Designs SMP8642 Secure Media Processor

QUALCOMM MSM6275 Chipset

Memjet ML Printhead from the RapidX1 Color Label Printer

Luxtera PN Silicon CMOS Photonic Chip Freescale 130 nm SOI CMOS Process

Atmel MXT540E Touch Screen Controller

IBM 43E7488 POWER6 Microprocessor from the IBM System 8203-E4A Server

Samsung S6E8AA0A01 Display Driver IC (DDI) Extracted from a Samsung Galaxy S III

Samsung S5PC210 Exynos 4210 Application Processor

Texas Instruments OMAP4460BCBS Application Processor

Layout Analysis Embedded Memory

Panasonic Mp, 4.4 µm Pixel Size LiveMOS Image Sensor from Panasonic LUMIX DMC-G1 Micro Four Thirds Digital Interchangeable Lens Camera

Broadcom BCM4335 5G Wi-Fi ac Combo Wireless Chip

Layout Analysis I/O. Analysis from an HD Video/Audio SoC

Qualcomm APQ8064 Avenger Snapdragon S4 Pro Application Processor

Micron Technology. MT41K512M8RH Gb DDR3 SDRAM. Circuit Analysis DQ, VDDQ, and VREFDQ I/O Pads

Motorola Mobility T6VP0XBG-0001 Baseband Processor With FVP0 Die Markings From the Motorola Mobility DROID RAZR and BIONIC Smartphones

Samsung Exynos 5250 Dual ARM Cortex -A15 Application Processor

SanDisk Flash Memory Controller. Partial Circuit Analysis

Texas Instruments OMAP4430FCBS (with Die Markings F781821F) Application Processor

Qualcomm WCN3660/WCN3680 Wireless Combo Chips

RF Micro Devices RF6260 Power Amplifier Module from the Samsung Galaxy S II Smartphone

G 32 Gb NAND Flash Multichip Package Controller Die Internal Voltage Converter and Oscillator

Sony ICX098BL ¼ Inch Optical Format 5.6 µm Pixel Size CCD Image Sensor

NXP Semiconductors. HTRC110 HITAG Read/Write IC. Full Circuit Analysis

Marvell. 88SE9123-NAA2 SATA 6 Gb/s RAID Controller. SATA 3.0 Interface Analog Macro Circuit Analysis

Texas Instruments. XIO2000AI PCI Express to PCI Bus Translation Bridge. PCI Express Interface Circuit Analysis

Comparison of Nine SDRAM Devices. Focused Technology Review

Texas Instruments. BQ2025 Single Wire Serial Interface for the Apple Lightning Cable. Full Circuit Analysis

Broadcom BCM7405 HD Video/Audio System-on-Chip (SoC)

Freescale. MCZ33905D5EK SBC Gen2 with CAN High Speed and LIN Interface. Circuit Analysis of Power Management Unit, CAN Interface, and LIN Block

STMicroelectronics L9959T Dual PMOS High-Side H-Bridge

LG Electronics LG4945 LCD Display Driver IC

Goodix BD10239A (ASIC Die from the GT1151) Touch Screen Controller ASIC

Apple iphone 6s Fingerprint Sensor

Samsung SGH-I987 Galaxy Tablet 7.0. Teardown Report

Samsung Exynos 5433 Application Processor

Qualcomm MSM8974AC Snapdragon 801 Application Processor

Sony IMX214 Second Generation 13 Mp Exmor RS Stacked BSI CIS with SME-HDR

Xilinx XC4VLX25-FF668AGQ FPGA. IOB Circuit Analysis

Texas Instruments TMS320F2812GHHA DSP Embedded Flash Macro Partial Circuit Analysis

Hewlett-Packard HDCS-2000 CMOS Image Sensor Circuit Analysis

Chapter 1 Introduction

Circuits Multi-Projets

IBG Protection for Anti-Fuse OTP Memory Security Breaches

28F K (256K x 8) FLASH MEMORY

AT&S Company. Presentation. 3D Component Packaging. in Organic Substrate. Embedded Component. Mark Beesley IPC Apex 2012, San Diego.

How Safe is Anti-Fuse Memory? IBG Protection for Anti-Fuse OTP Memory Security Breaches

Circuits. L3: Fabrication and Layout -1 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Mosel Vitelic (IBM-Siemens) V53C181608K60 1Mx16 CMOS EDO DRAM

Memory Design I. Array-Structured Memory Architecture. Professor Chris H. Kim. Dept. of ECE.

Lay ay ut Design g R ules

Scanning Acoustic Microscopy For Metrology of 3D Interconnect Bonded Wafers

9 rue Alfred Kastler - BP Nantes Cedex 3 - France Phone : +33 (0) website :

HIGH SPEED TDI EMBEDDED CCD IN CMOS SENSOR

Introduction 1. GENERAL TRENDS. 1. The technology scale down DEEP SUBMICRON CMOS DESIGN

EECS 598: Integrating Emerging Technologies with Computer Architecture. Lecture 10: Three-Dimensional (3D) Integration

Circuits Multi-Projets

3D systems-on-chip. A clever partitioning of circuits to improve area, cost, power and performance. The 3D technology landscape

Magnetic core memory (1951) cm 2 ( bit)

Process Technologies for SOCs

Micron MT54V512H18EF-10 9Mb QDR SRAM Circuit Analysis

Monolithic 3D Integration using Standard Fab & Standard Transistors. Zvi Or-Bach CEO MonolithIC 3D Inc.

Lecture 4a. CMOS Fabrication, Layout and Simulation. R. Saleh Dept. of ECE University of British Columbia

Digital Integrated Circuits (83-313) Lecture 2: Technology and Standard Cell Layout

Packaging of Selected Advanced Logic in 2x and 1x nodes. 1 I TechInsights

Memory Design I. Semiconductor Memory Classification. Read-Write Memories (RWM) Memory Scaling Trend. Memory Scaling Trend

Mixed-Signal&RF -0.18μm. 0.18um Process Feature. 0.18um Process Device Feature. 0.18um Process Key Design Rule. Isolation

Solving Integration Challenges for Printed and Flexible Hybrid Electronics

CMOS TECHNOLOGY- Chapter 2 in the Text

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FPGA Programming Technology

TFT-LCD Technology Introduction

Addressable Test Chip Technology for IC Design and Manufacturing. Dr. David Ouyang CEO, Semitronix Corporation Professor, Zhejiang University 2014/03

Investigation on seal-ring rules for IC product reliability in m CMOS technology

Literacy for Integrated Circuit Reverse Engineering

Applications, Processing and Integration Options for High Dielectric Constant Multi-Layer Thin-Film Barium Strontium Titanate (BST) Capacitors

Digital Integrated CircuitDesign

Moore s s Law, 40 years and Counting

Methodology on Extracting Compact Layout Rules for Latchup Prevention in Deep-Submicron Bulk CMOS Technology

Spiral 2-8. Cell Layout

AN Design guidelines for COG modules with NXP monochrome LCD drivers. Document information

Detector R&D at the LCFI Collaboration

Physical Implementation

CS310 Embedded Computer Systems. Maeng

Lecture 20: CAMs, ROMs, PLAs

Transcription:

AltaSens A5262-4T 4.5 Megapixel CMOS Image Sensor 0.18 µm IBM Process Imager Process Review For comments, questions, or more information about this report, or for any additional technical needs concerning semiconductor technology, please call Sales at Chipworks. 3685 Richmond Road, Suite 500, Ottawa, ON K2H 5B7, Canada Tel: 613.829.0414 Fax: 613.829.0515 www.chipworks.com

Imager Process Review Table of Contents 1 Overview 1.1 List of Figures 1.2 List of Tables 1.3 Company Profile 1.4 Introduction 1.5 Device Summary 1.6 Process Summary 2 Package and Die 2.1 Package 2.2 Die 2.3 Die Features 3 Process 3.1 General Structure 3.2 Organic Layers 3.3 Bond Pads 3.4 Dielectrics 3.5 Metals 3.6 Vias and Contacts 3.7 Peripheral Transistors and Poly 3.8 MIM Capacitors 3.9 Isolation 3.10 Wells, Epi, and Substrate 4 Pixel Array Analysis 4.1 Pixel Schematic 4.2 Pixel Array Plan View Analysis 4.3 Pixel Array Cross-Sectional Analysis 5 Memory Cell Analysis 5.1 Multi-Port SRAM Overview 5.2 Multi-Port SRAM Plan View Analysis 6 Critical Dimensions 6.1 Package and Die 6.2 Vertical Dimensions 6.3 Horizontal Dimensions

Imager Process Review 7 References 8 Statement of Measurement Uncertainty and Scope Variation Report Evaluation

Overview 1-1 1 Overview 1.1 List of Figures 2 Package and Die 2.1.1 Hitachi DZ-BD7H HD Camcorder 2.1.2 Identification Markings of Hitachi DZ-BD7H HD Camcorder 2.1.3 Hitachi DZ-BD7H HD Camcorder Side View 2.1.4 Hitachi DZ-BD7H HD Camcorder Front View 2.1.5 Inside of Hitachi DZ-BD7H HD Camcorder 2.1.6 A5262-4T Image Sensor and Lens Assembly Extracted from the Hitachi DZ-BD7H 2.1.7 A5262-4T Package on PCB Top View 2.1.8 A5262-4T Package on PCB X-Ray 2.1.9 A5262-4T Package on PCB with Copper Plate Intact Bottom View 2.1.10 A5262-4T Package on PCB With Copper Plate Removed Bottom View 2.1.11 A5262-4T Package on PCB X-Ray Top View 2.2.1 Die Photograph Intact 2.2.2 Die Photograph Decapsulated 2.2.3 Die Markings 1 2.2.4 Die Markings 2 2.2.5 A5262-4T Metal 1 Die Photograph 2.2.6 Annotated Die Photograph 2.3.1 Die Corner A 2.3.2 Die Corner B 2.3.3 Die Corner C 2.3.4 Die Corner D 2.3.5 Die Edge A 2.3.6 Die Edge B 2.3.7 Die Edge C 2.3.8 Die Edge D 2.3.9 Minimum Pitch Bond Pads 2.3.10 Minimum Pitch Bond Pads Detail 2.3.11 Pixel Array Corner A 2.3.12 Pixel Array Corner B 2.3.13 Pixel Array Corner C 2.3.14 Pixel Array Corner D 2.3.15 SRAM Block

Overview 1-2 3 Process 3.1.1 Array General Structure 3.1.2 Peripheral General Structure 3.1.3 Die Edge and Die Seal 3.1.4 Die Seal and Organic Layer Edge 3.2.1 Blue Filter Edge 3.2.2 Organic Lens Boundary 3.3.1 Bond Pad 3.3.2 Right Bond Pad Edge 3.3.3 Left Bond Pad Edge 3.3.4 Left Bond Pad Edge Detail 3.4.1 Passivation 3.4.2 ILD 3 3.4.3 ILD 2 3.4.4 PMD 3.4.5 PMD 1 and Pixel AR Layer 3.5.1 Minimum Peripheral Metal 4 3.5.2 Minimum Pitch Metal 3 3.5.3 Minimum Metal 2 3.5.4 Metal 2 TEM 3.5.5 Minimum Metal 1 3.5.6 Metal 1 TEM 3.6.1 Minimum Pitch Via 3s 3.6.2 Minimum Pitch Via 2s 3.6.3 Minimum Pitch Via 1s 3.6.4 Minimum Pitch Contacts to Poly 3.6.5 Contact to Poly TEM 3.6.6 Minimum Pitch Contacts to Substrate 3.7.1 Peripheral NMOS Glass Etch 3.7.2 Peripheral NMOS Si Etch 3.7.3 Peripheral PMOS Si Etch 3.8.1 MIM Capacitor 3.8.2 MIM Capacitor in Detail Contact to Lower Plate 3.8.3 MIM Capacitor in Detail Contact to Upper Plate 3.9.1 Minimum Width STI in Periphery 3.9.2 Poly Over STI 3.9.3 TEM Minimum Width STI in Pixel Area 3.10.1 Peripheral P-Wells at the Die Edge 3.10.2 Peripheral P-Wells and N-Wells 3.10.3 SCM Peripheral Wells at Die Edge 3.10.4 SCM Peripheral Wells at Die Edge Detail 3.10.5 SCM Peripheral Wells Detail 3.10.6 SRP Periphery P-Well 3.10.7 SRP in Periphery Shallow N-Well 2 3.10.8 SRP in Pixel Array

Overview 1-3 4 Pixel Array Analysis 4.1.1 Pixel Schematic Circuit 4.2.1 Pixel Array Corner Optical 4.2.2 Pixel Array Lenses 4.2.3 Pixel Array Lenses Tilt View 4.2.4 Pixel Array at Metal 3 4.2.5 Pixel Array at Metal 2 4.2.6 Pixel Array at Metal 2 Detail 4.2.7 Pixel Array at Via 1 4.2.8 Pixel Array at Metal 1 4.2.9 Pixel Array at Poly 4.2.10 Pixel Array at Poly Detail 4.2.11 Pixel Array at Substrate 4.2.12 Pixel Array at Substrate SCM 4.2.13 Pixel Array at Substrate Detail SCM 4.3.1 Pixel at Poly Showing Cross-Sectional Planes Plan View 4.3.2 Pixel Array General Structure (S1 Blue-Green Filters) 4.3.3 Pixel Array General Structure (S1 Red-Green Filters) 4.3.4 Pixel Array Right Edge (S1) 4.3.5 Pixel Array Bottom Edge (S2) 4.3.6 Lenses and Green Color Filters (S2) TEM 4.3.7 Lenses and Red Color Filters (S2) TEM 4.3.8 Blue Color Filters (S2) TEM 4.3.9 Blue and Green Color Filter Edge (S2) TEM 4.3.10 General Structure T1 and T4 Transfer Transistors (S2) 4.3.11 General Structure T2 and T3 Transfer Transistors (S2) 4.3.12 T2/T3 Transfer Transistors (S2) TEM 4.3.13 General Structure T5 Transistor (S1) 4.3.14 General Structure T6 and T7 Transistors (S1) 4.3.15 T1 Transfer Transistor (S2) Glass Etch 4.3.16 T1 Transfer Transistor (S2) Silicon Etch 4.3.17 T2 Transfer Transistor (S2) Silicon Etch 4.3.18 T3 Transfer Transistor (S2) Silicon Etch 4.3.19 T4 Transfer Transistor (S2) Silicon Etch 4.3.20 Transfer Transistor and FD Contact TEM 4.3.21 Transfer Transistor in Detail TEM 4.3.22 Right Edge of Transfer Transistor TEM 4.3.23 TEM Transfer Transistor Gate Oxide TEM 4.3.24 SCM Pixel Through Transfer Transistors (S2) 4.3.25 SCM Pixel Through Transfer Transistors (S2) Detail

Overview 1-4 4.3.26 Reset Transistor T5 (S1) 4.3.27 Source Follower Transistor T6 (S1) 4.3.28 Row Select Transistor T7 (S1) 4.3.29 Reset Transistor T5 Width (S2) 4.3.30 Source Follower Transistor T6 Width (S2) 4.3.31 Row Select Transistor T7 Width (S2) 5 Memory Cell Analysis 5.1.1 Single Multi-Port SRAM Sub-Block 5.2.1 Multi-Port SRAM Metal 3 5.2.2 Multi-Port SRAM Poly 5.2.3 Multi-Port SRAM in Detail Poly 5.2.4 SRAM Transistor Width TEM 5.2.5 SRAM Transistor Gate Oxide 5.2.6 ROM Block 5.2.7 ROM Poly

Overview 1-5 1.2 List of Tables 1 Overview 1.4.1 Device Identification 1.5.1 Device Summary 1.6.1 Summary of Major Findings 2 Package and Die 2.2.1 Functional Block Sizes 2.3.1 Die and Bond Pad Dimensions 3 Process 3.4.1 Dielectric Composition and Thicknesses 3.5.1 Metallization Composition and Thicknesses 3.5.2 Minimum Metals Horizontal Dimensions 3.6.1 Via and Contact Horizontal Dimensions 3.7.1 Transistor and Polysilicon Horizontal Dimensions 3.7.2 Transistor and Polysilicon Vertical Dimensions 3.9.1 Isolation Horizontal Dimensions 3.10.1 Wells and Epi Vertical Dimensions 4 Pixel Array Analysis 4.2.1 Pixel Horizontal Dimensions 4.3.1 Pixel Vertical Dimensions 4.3.2 Transistor Dimensions in Pixel Array 6 Critical Dimensions 6.1.1 Die and Bond Pad Dimensions 6.2.1 Dielectric Composition and Thicknesses 6.2.2 Metallization Composition and Thicknesses 6.2.3 Transistor and Polysilicon Vertical Dimensions 6.2.4 Wells and Epi Vertical Dimensions 6.2.5 Pixel Vertical Dimensions 6.3.1 Minimum Metals Peripheral Horizontal Dimensions 6.3.2 Minimum Metals Pixel Array Horizontal Dimensions 6.3.3 Via and Contact Horizontal Dimensions 6.3.4 Transistor and Polysilicon Horizontal Dimensions 6.3.5 Isolation Horizontal Dimension 6.3.6 Pixel Horizontal Dimensions 6.3.7 Transistor Dimensions in Pixel Array

About Chipworks Chipworks is the recognized leader in reverse engineering and patent infringement analysis of semiconductors and electronic systems. The company s ability to analyze the circuitry and physical composition of these systems makes them a key partner in the success of the world s largest semiconductor and microelectronics companies. Intellectual property groups and their legal counsel trust Chipworks for success in patent licensing and litigation earning hundreds of millions of dollars in patent licenses, and saving as much in royalty payments. Research & Development and Product Management rely on Chipworks for success in new product design and launch, saving hundreds of millions of dollars in design, and earning even more through superior product design and faster launches. Contact Chipworks To find out more information on this report, or any other reports in our library, please contact Chipworks at: Chipworks 3685 Richmond Rd. Suite 500 Ottawa, Ontario K2H 5B7 Canada T: 1.613.829.0414 F: 1.613.829.0515 Web site: www.chipworks.com Email: info@chipworks.com Please send any feedback to feedback@chipworks.com