SCADA System Specification. Vantage Pipeline Project # May 2013

Similar documents
The SCADA Connection: Moving Beyond Auto Dialers

The SCADA Connection: Moving Beyond Auto Dialers

What is SCADA? What is Telemetry? What is Data Acquisition? Differences between SCADA and DCS? Components of SCADA. Field Instrumentation

SCADA Software. 3.1 SCADA communication architectures SCADA system

Scada, Controls, and Leak Detection Alphabetical Glossary

Pipeline Unit/Station Control. Combining Unit and Station Control into Siemens PCS 7. Application Brief

Electrical & Controls. September 28, 2017

21 st Century Landfill Technology: Telemetry, Automation, and Alternative Power Sources

FIGURE 1. Five Logical Levels of a SCADA System

Server/ Engineering Station. Filed Instrument. Filed Instrument. Filed Instrument. Switches. Fig1: Scheme for micro PLC to Master PLC Interface

Introduction to ICS Security

Connectivity 101 for Remote Monitoring Systems

Job Sheet 1 The SCADA System Network

Advances in Telemetry. Finding out what is really going on in your system

Lesson Learned CIP Version 5 Transition Program

Front End Engineering and Design (FEED)

Securing Industrial Control Systems

SC2000 MOTOR PROTECTION ELECTRONICS, INC. INSTRUCTION MANUAL. (407) Phone: Website:

SCADA Solutions Since 1981 DATA FLOW SYSTEMS

Prepared By Turki AL-Mugaiteeb Control System Engineer EASTEREN PEROCHEMICAL COMPANY SHARQ 3 rd Expansion Project (OLEFIN)

You Can t Manage What You Don t Monitor SEL Integrated Systems and Information Management

Information Management and Metering Solution for CGD

Instrumentation, Control and Automation

T66 Central Utility Building (CUB) Control System Reliability, Optimization & Demand Management

HARDWARE OF SUPERVISORY CONTROL & DATA ACQUISITION SYSTEM

Joe Bastone 27 September EXPERION PKS ORION The Future of Automation is Here

SCADA MANUAL Siemens WinCC Advanced Runtime

INSTRUCTION MANUAL STATION CONTROLLER SC1000 MOTOR PROTECTION ELECTRONICS, INC.

SC2000 MOTOR PROTECTION ELECTRONICS, INC. INSTRUCTION MANUAL. Phone: (407) Fax: (407) Vulcan Road Apopka, Florida 32703

Johan Hoolsema Expert System Solutions

DECEMBER 11, PLC-Based Waste Water Lift Station with Demo Box. by Lance McParlan Advisor & Instructor: Paul Lin. Outline

RTU and control in the same device

Tank terminal demonstrates the electrically operated solution for Emergency Shutdown Valves

METHODS OF GATHERING EGM DATA. David L Gaines. Standard Automation & Control LP 2450 South Shore Blvd, Suite 210, League City, TX 77573

PLC 22 WETLANDS & NITRIFYING BIO TOWERS SCADA SYSTEM OPERATION MANUAL. Revision 1.0 May 30, 2006

SPI PowerNet requirements for the non-contestable Interface Works at Deer Park Terminal Station

3/2/ /2/ :05 AM EET 415/4 Power System Operation 1 3/2/ :05 AM EET 415 2

Learners can have choices to obtain qualification from any of the following: Advanced Diploma in Instrumentation Maintenance Technician - IVQ: Level 3

INDUSTRIAL CONTROL SYSTEMS & COMPUTER PROCESS CONTROL

Removal of Hardware ESD, Independent of Safety Logic Solver

An Urgent Bulletin from CSA Group

I/A Series Remote Terminal Unit (RTU) RTU 20 for Oil, Gas, and Water SCADA Applications

Telemetry & SCADA Handbook

SCADA and Central Applications An introduction

Lecture #13 SCADA Systems

From Wikipedia, the free encyclopedia

Using Operator Interfaces to Optimize Performance of Industrial Wireless Networks

ISSN Vol.03,Issue.13 June-2014, Pages:

Electrical Demand Specification (Reference SOP: )

Technical Information Tankvision Professional NXA85

Authorized Systems Integrator. Automation Systems Telemetry & SCADA

PLC 4 PRIMARY SEDIMENTATION SYSTEM SCADA SYSTEM OPERATION MANUAL. Revision 1.0 May 15, 2006

Pipeline engineer competency standards list: onshore sector

Distributed Generation Requirements Update

Minimum Support Needed for a Reliable SCADA System

PLC 5 BIOTOWERS SCADA SYSTEM OPERATION MANUAL. Revision 1.0 May 15, 2006

Getting the Most from Your SCADA Data

Peter Overgaauw Pascal Stijns 27 Oct 2016 EXPERION PKS CONTROLS ELECTRICAL SYSTEMS TOO!

PD 527 Valve Control Module PD Series 600. Product Data Sheet February 2015 SD E06

Industry Standards Utilities Engineering Technician

Deployment of the Festo PA Workstation for Undergraduate Training on Industrial Process Automation

A Guide to the Automation Body of Knowledge

THE RAINBOW SCADA D-500-LITE

The Future of Pump Controls

SIMULATION PIPELINE CONTROL SYSTEMS FOR OPERATOR TRAINING

PLC 24 FERRIC CHLORIDE AND POLYMER SYSTEM SCADA SYSTEM OPERATION MANUAL. Revision 1.0 May 3, 2006

SCADA Protocols. Overview of DNP3. By Michael LeMay

ControlEdge RTU Process Controller Product Information Note

Collections Exam Need to Know Criteria

Preferred Industry: EPC / Oil & Gas / Energy sector/cement & Steel Industry

SCADA. SurvalentONE. STC Explorer

ARC VIEW. Honeywell s New PLC Brings Digital Transformation to the ControlEdge. Keywords. Summary. The Edge and IIoT.

Engineering SCADA (Introduction) Dr. Sasidharan Sreedharan

THE RAINBOW SCADA D-700

AUTOMATION. Dr. Ibrahim Al-Naimi

Specification For SCADA and PLC Device Type (Siemens) Pr9844

SCADA Upgrades to Otay Water Treatment Plant

DeltaV Remote Client. Introduction. Remote engineering and operator consoles. View Multiple DeltaV Systems from a single workstation

Automation Services and Solutions

High performance monitoring & Control ACE3600 Remote Terminal Unit

SCADA Security at. City of Guelph Water Services

Sustain.Ability. Soroush Amidi and Andrew Nolan Advantages of a Plant-wide Wireless Network with Experion Integration

Madrid, 25 y 26 de mayo de 2015 ABB Automation Days Wireless Instrumentation

Guide to Industrial Control Systems (ICS) Security

Designing a new IEC substation architecture

Designing a Reliable Industrial Ethernet Network

PLC 23 DUAL MEDIA FILTERS 5 AND 6 SCADA SYSTEM OPERATION MANUAL. Revision 1.0 April 18, 2006

Challenges of Multivendor Systems in Implementation of IIoT-ready PLCs. ISA/Honeywell Webinar 10 November 2016

Inform IT Information Management Tenore. SCADA Extension ABB

MONITORING AND CONTROL REQUIREMENTS FOR DISTRIBUTED GENERATION FACILITIES

SC1000 MOTOR PROTECTION ELECTRONICS, INC. INSTRUCTION MANUAL. Phone: (407) Fax: (407) Vulcan Road Apopka, Florida 32703

Accord Builder. User Guide

HART USER GUIDE FOR GASSONIC OBSERVER-H ULTRASONIC GAS LEAK DETECTOR

IT and Instrumentation for industry. Modular RTU Controller: IoPAC 8000 Series. Cellular RTU Controller: iologik W5300 Series

1500ct Pump Controller

1500ct Pump Controller

Chapter 18 SaskPower Managing the Risk of Cyber Incidents 1.0 MAIN POINTS

Recorders for all applications

Kepware Whitepaper. A New Distributed Architecture for Remote Communications

CO General Specifications GS48D62Z00-00E-N GENERAL. ProSafe-COM extended communication system

Transcription:

SCADA System Specification Vantage Pipeline Project #201011 May 2013 Revision 0 Issued for Approval May 24, 2013

TABLE OF CONTENTS REVISION HISTORY:...2 1 PROJECT OVERVIEW...3 2 SCOPE AND PURPOSE...4 3 RELIABILITY OF SCADA SYSTEMS...4 4 SAFETY AND SECURITY OF SCADA SYSTEM...5 5 PARAMETERS THAT WILL BE MONITORED BY INSTRUMENTATION...5 5.1 BLOCK VALVE SITE INSTRUMENTATION...5 5.2 PUMP STATION SITE INSTRUMENTATION...6 6 CONTROLLING MECHANISMS FOR BLOCK VALVE AND PUMP STATIONS...7 6.1 BLOCK VALVE SITES...7 6.2 PUMP STATION SITES...7 7 LOCATIONS OF REMOTE TERMINALS (RTU) AND COMMUNICATIONS...8 8 SITE POLLING SEQUENCE AND TIME...9 9 ALARM ANNUNCIATION AND ACKNOWLEDGEMENT...9 9.1 ALARM ANNUNCIATION...9 9.2 ALARM ACKNOWLEDGEMENT...9 10 INTERFACE BETWEEN SCADA AND LEAK DECTION SYSTEM...10 10.1 LEAK DETECTION SYSTEM...10 Page 1

Revision History: Version Date Author Comments Rev A March 26, 2013 Leona Colbourne Issued for Review Rev B April 26, 2013 Leona Colbourne Re-Issued for Review Rev C May 2, 2013 Leona Colbourne Re-Issued for Review Rev 0 May 24, 2013 Leona Colbourne Issued for Approval Reference Documents: Name Definitions, Acronyms, and Abbreviations: BS&W Local HMI SCADA HMI I&C LAN MOV MPR PLC Reset RTU SCADA VFD Basic Sediment and Water Human Machine Interface local to a facility Human Machine Interface in the Pipeline Control Centre Instrumentation and Controls Local Area Network Motor Operated Valve Motor Protection Relay Programmable Logic Controller The clearing of latched alarm activations in a local control system (i.e. PLC). Remote Telemetry Unit Supervisory Control & Data Acquisition Variable Frequency Drive Page 2

1 PROJECT OVERVIEW The Vantage Pipeline Project is developing a pipeline system for transporting liquid ethane originating from Hess Corporation s natural gas processing plant near Tioga, North Dakota, through Saskatchewan and connecting to the Alberta Ethane Gathering System (AEGS) near Empress, Alberta. This pipeline and associated facilities will be designed to deliver up to 6,360 cubic meters per day (m 3 /d) (40,000 barrels per day (b/d)) of liquid ethane, with ability to expand up to 9,540 m 3 /d (60,000 b/d). The Vantage Pipeline is a new 273.1 mm OD (NPS 10) high vapour pressure (HVP) pipeline approximately 713 kilometers (443 miles) in length as shown in Figure 1. The pipeline is currently scheduled to be in-service by Q4 2013. Figure 1-Vantage Pipeline Map Page 3 of 10

The automated Vantage Pipeline Block Valve sites and Pump Stations will be monitored and controlled remotely from the AEGS Pipeline Control Centre (SCADA HMI) and will normally operate as an unmanned facilities. These facilities may also be controlled locally from an onsite Local HMI. The facility will be protected, controlled and monitored by a local Programmable Logic Controller (PLC) based system. 2 SCOPE AND PURPOSE The primary purpose of this document is to address the NEB SCADA documentation requirements in relation to Condition 10 of Certificate OC-059. The scope of the document shall include all SCADA control systems associated with the Vantage Pipeline. 3 RELIABILITY OF SCADA SYSTEMS The Primary and Backup SCADA systems use Honeywell Experion PKS Release R400.2. The Primary SCADA system has multiple levels of redundancy built into the system. The system is configured to automatically migrate running systems from one host to the other in the event of a failure of one of the hosts. The Experion system itself uses a redundant server pair. At any given time one of the servers is designated as the primary and the other as the backup. The primary server polls all field instrumentation. In the event of a primary server failure the backup server automatically takes over the primary server s role. The system utilizes redundant network gear to minimize risk of loss of communication with the field. The Backup SCADA system is a simplified version of the Primary SCADA system. It offers the same basic functionality but it does not have the same level of redundancy since it is only intended for short term operation of the pipeline in the event of a failure of the primary SCADA system. In the day-to-day operation of the SCADA system that controls the AEGS pipelines for the last 5 years, during that time there has not been an instance to transfer control to the backup control center (BCC) due to communication, or system issues. During this period, control was transferred to the BCC a handful of times as a form of risk mitigation while doing system upgrades and system maintenance. Typically, this system operates with the Page 4 of 10

MISVR80A system configured as the primary server and MISVR80B system configured as the backup server. There have been approx. 5 times over the five year period when the primary server encountered an issue and automatically transferred control over to the backup server. Taking all the maintenance activities into account, it is estimated that less than 1 hour per year where the SCADA system is unavailable (because of transfers between the Primary Control Center and Backup Control Center). The historical uptime of this system is 99.99% 4 SAFETY AND SECURITY OF SCADA SYSTEM The SCADA system is secured from a physical security and cyber security perspective. The primary control room is located at the NOVA Chemicals Joffre site. Access to the site is restricted. The control room is manned 24/7. Other locations where SCADA equipment is installed or can be accessed at the Joffre site are secured by card key access. The Backup control room is located in the NOVA Chemical Pipeline office in Red Deer Alberta. This building is equipped with a security system and the Backup Control Center itself requires card key access. The Primary SCADA system is behind a series of firewalls. The Business LAN is isolated from the internet by a corporate firewall. The SCADA system is then isolated from the Business LAN by a De-Militarized Zone (DMZ) implementation. The critical SCADA system components are monitored for Honeywell and Windows security vulnerabilities on a regular basis. Every server and workstation operating system has an antivirus software installed that receive automatic updates on a weekly basis. 5 PARAMETERS THAT WILL BE MONITORED BY INSTRUMENTATION 5.1 Block Valve Site Instrumentation Automated Block Valve sites will be controlled by a local PLC interfaced to the Vantage Pipeline SCADA system. Block Valves will have instrumentation associated with the pipeline valve riser. The following instrumentation is monitored at pipeline block valves: Pipeline Ethane Pressure Pipeline Block Valve Actuator Limit Switches Page 5 of 10

Pipeline Block Valve Actuator Unit Alarms PLC Un-interruptible Power Supply status The SCADA system will relay this information to the Pipeline Operator and the Leak Detection system, for monitoring and control. 5.2 Pump Station Site Instrumentation Each Pump Station site, namely Empress Pump Station and Assiniboia Pump Station, will be controlled by a local PLC interfaced to the Vantage Pipeline SCADA system. Each Pump Station will have instrumentation associated with the control and monitoring of the station. The following instrumentation is monitored at each pipeline Pump Station: Pipeline and Station Ethane Pressure at key points Pipeline and Station Valve Actuator Limit Switches Pipeline and Station Actuator Unit Alarms Pump and Motor bearing and winding temperatures Pump and Motor bearing vibration, both proximity and seismic Pump Motor VFD control and monitoring Pump Motor starter control and monitoring Main utility power control, monitoring and metering Pump Building Fire and Gas Detection Metering Skid Ambient Gas Detection (Empress Pump Station only) Gas Chromatograph Building Gas and Oxygen Depletion Monitoring (Empress Pump Station only) Process flow metering (Empress Pump Station only) Process composition analysis (Empress Pump Station only) Process density analysis (Empress Pump Station only) Pump Station 24VDC Un-interruptible Power Supply status Electrical Building Smoke Detection The SCADA system will relay this information to the Pipeline Operator and the Leak Detection system, as applicable, for monitoring and control. Page 6 of 10

6 CONTROLLING MECHANISMS FOR BLOCK VALVE AND PUMP STATIONS 6.1 Block Valve Sites Automated Block Valve Sites shall have a pipeline actuator valve that can be closed remotely from a SCADA command from the pipeline operator. There will be local/remote indication on Block Valve actuators to let the automated valve, SCADA operator know if the actuator is in local or remote mode. A local or control room operator, at their discretion, may close all pipeline block valves with a single pipeline ESD (Emergency Shut Down) command. Automated Block Valve Sites will be connected to utility power and will have an UPS (Uninterruptable Power Supply) and battery back-up system to operate the automated valve, SCADA and PLC Control System in the event of a utility power supply interruption. 6.2 Pump Station Sites Each Pump Station shall have actuator operated valves that follow the operation of the pipeline block valves to isolate and block the pipeline and station. These valves may be operated individually, or in concert with the pipeline block valves during a pipeline ESD. Each Pump Station shall have pumps powered by its own VFD and motor starter. The SCADA operator shall have the capability of starting and stopping the Station pumps on a routine or emergency basis. Pump stations will be connected to utility power and will have an UPS and battery back-up system to operate the automated valves, SCADA and PLC control in the event of a utility power supply interruption. There is instrumentation protecting each pump and its associated motor. This instrumentation is capable of automated shutdown of the pumps. For example, the motor windings are monitored by a Motor Protection Relay that will shutdown the pump motor VFD on detection of abnormal pump motor winding temperature value. In each pump building there shall be fire and gas detection. These instruments have the capability of triggering pump shutdown and station isolation on detection of a gas leak or fire. Page 7 of 10

Vantage Pipeline Project 7 LOCATIONS OF REMOTE TERMINALS (RTU) AND COMMUNICATIONS Automated Block Valve Sites along the pipeline shall have PLCs acting as the Remote Terminal (RTU). Each of these sites shall communicate to the Primary Control Centre and the Backup Control Center of the SCADA system. The meter station at Tioga will use a hard wired Multi-Protocol Label Switching (MPLS) connection. The majority of the block valve sites will use cellular modems to interface to the SCADA system. Block valve sites where cellular coverage is not available will be connected to the SCADA system using either wired MPLS connections or radio / satellite modems. Please refer to the following map for overview locations of each of these Block Valve Sites: Page 8 of 10

8 SITE POLLING SEQUENCE AND TIME The polling sequence is determined by the SCADA system and is based on optimizing the scanning. Every site is sequenced based on its poll rate Any output signals to the field will not wait for the next poll but will be transmitted immediately when the command is issued. All valve sites will be set to poll at a 15 second frequency for all input data.. 9 ALARM ANNUNCIATION AND ACKNOWLEDGEMENT 9.1 Alarm Annunciation Alarms are annunciated in the pipeline control room. There is always an operator in the control room to respond to alarms. Alarms generate an audible horn following the Abnormal Situation Management (ASM) consortium guidelines for alarm sounds. Each pipeline system has a unique alarm sound, and each alarm priority has a unique alarm sound as well. All alarms appear on the SCADA Alarm Summary. This alarm summary is always displayed on the SCADA station. The point in alarm will also be displayed in an alarm colour on the SCADA display. There are also colour indications on the navigation tabs of all graphics to indicate which displays have active alarms. All alarms will be displayed in historical order. 9.2 Alarm Acknowledgement Alarms will continue to generate an audible horn in the control room until they are acknowledged. Unacknowledged alarms will show a flashing icon on the SCADA Alarm Summary. The point in alarm will also flash. The navigation tabs flash to indicate graphics with unacknowledged alarms. Page 9 of 10

The operator must acknowledge an alarm by selecting a button on the alarm summary or selecting the point on a graphic and acknowledging it on the point. 10 INTERFACE BETWEEN SCADA AND LEAK DECTION SYSTEM 10.1 Leak Detection System The leak detection system polls the SCADA OPC server for data once per minute for all data required for the leak detection calculations. Leak detection parameters are configured for all SCADA points polled by the leak detection system. The parameters will be used in place of SCADA point data to ensure continued operation of the leak detection system. The SCADA point quality is also polled by the leak detection system so malfunctioning data is not used in the leak detection calculations. The leak detection system communicates data back to the SCADA OPC server for display on the SCADA graphics and to allow historizing. Page 10 of 10