Forest Retrievals. using SAR Polarimetry. (Practical Session D3P2a)

Similar documents
PolSARpro v4.03 Forest Applications

Do It Yourself 8. Polarization Coherence Tomography (P.C.T) Training Course

Coherence Based Polarimetric SAR Tomography

Software Tool PolSARpro v3.0

Tree Height Estimation Methodology With Xband and P-band InSAR Data. Lijun Lu Guoman Huang Qiwei Li CASM

GIS. PDF created with pdffactory Pro trial version ... SPIRIT. *

Do It Yourself 2. Representations of polarimetric information

An Overview of the PolSARpro v3.0 Software The Educational Toolbox for Polarimetric and Interferometric Polarimetric SAR Data Processing

MODELLING OF THE SCATTERING BY A SMOOTH DIELECTRIC CYLINDER: STUDY OF THE COMPLEX SCATTERING MATRIX

STUDIES OF PHASE CENTER AND EXTINCTION COEFFICIENT OF BOREAL FOREST USING X- AND L-BAND POLARIMETRIC INTERFEROMETRY COMBINED WITH LIDAR MEASUREMENTS

FOREST HEIGHT ESTIMATION FROM INDREX-II L-BAND POLARIMETRIC INSAR DATA

AN APPROACH TO DETERMINE THE MAXIMUM ACCEPTABLE DISTORTION LEVEL IN POLARIMETRIC CALIBRATION FOR POL-INSAR APPLICATIONS

Eric Pottier, Laurent Ferro-Famil, Sophie Allain, Stéphane Méric. Irena Hajnsek, Kostas Papathanassiou, Alberto Moreira,

Exploiting the High Dimensionality of Polarimetric Interferometric Synthetic Aperture Radar Observations

Interferometric processing. Rüdiger Gens

Interferometry Tutorial with RADARSAT-2 Issued March 2014 Last Update November 2017

Sentinel-1 Toolbox. Interferometry Tutorial Issued March 2015 Updated August Luis Veci

Interferometry Module for Digital Elevation Model Generation

InSAR Operational and Processing Steps for DEM Generation

In addition, the image registration and geocoding functionality is also available as a separate GEO package.

Polarimetric SAR tomography of tropical forests using P-Band TropiSAR data

TanDEM-X Pol-InSAR Inversion for Mangroves of East Africa

Po P ls l A S Rpro v5.0. Pr P actic i al E. E. Po P ttie i r E.Pottier (2013)

RESOLUTION enhancement is achieved by combining two

fraction of Nyquist

Pine Forest Height Inversion Using Single-Pass X-Band PolInSAR Data

MULTI-BASELINE POLINSAR INVERSION AND SIMULATION OF INTERFEROMETRIC WAVENUMBER FOR FOREST HEIGHT RETRIEVAL USING SPACEBORNE SAR DATA

Signal Processing Laboratory

Chalmers Publication Library

PolSARpro v4.0 Main Window

SAR IMAGE PROCESSING FOR CROP MONITORING

IMPROVEMENT OF VEGETATION PARAMETER RETRIEVAL FROM POLARIMETRIC SAR INTERFEROMETRY USING A SIMPLE POLARIMETRIC SCATTERING MODEL

Forest Structure Estimation in the Canadian Boreal forest

Sentinel-1 Toolbox. TOPS Interferometry Tutorial Issued May 2014

Lateral Ground Movement Estimation from Space borne Radar by Differential Interferometry.

DINSAR: Differential SAR Interferometry

Radar Data Processing, Quality Analysis and Level-1b Product Generation for AGRISAR and EAGLE campaigns

Motion compensation and the orbit restitution

Interferometric Evaluation of Sentinel-1A TOPS data

Repeat-pass SAR Interferometry Experiments with Gaofen-3: A Case Study of Ningbo Area

Interferometric coherence optimization

POLSARpro v3.0: THE VERSATILE EDUCATIONAL TOOLBOX FOR POLARIMETRIC AND INTERFEROMETRIC SAR DATA PROCESSING

SAR Interferometry. Dr. Rudi Gens. Alaska SAR Facility

InSAR Processing. Sentinel 1 data Case study of subsidence in Mexico city. Marie-Pierre Doin, Cécile Lasserre, Raphaël Grandin, Erwan Pathier

TREE HEIGHT RETRIEVAL USING SINGLE BASELINE POLARIMETRIC INTERFEROMETRY. S. R. Cloude (1), D. Corr (2)

Chalmers Publication Library

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 35, NO. 5, SEPTEMBER

ADVANCED CONCEPTS IN POLARIMETRY PART 2 (Polarimetric Target Classification) 1 INTRODUCTION

FIRST RESULTS OF THE ALOS PALSAR VERIFICATION PROCESSOR

Processing and Analysis of ALOS/Palsar Imagery

Memorandum. Clint Slatton Prof. Brian Evans Term project idea for Multidimensional Signal Processing (EE381k)

Polarimetric Radar Remote Sensing

A Hybrid Entropy Decomposition and Support Vector Machine Method for Agricultural Crop Type Classification

SAR Polarimetry Workstation

ON THE PHYSICAL NATURE OF URBAN SAR PERMANENT SCATTERERS

URBAN FOOTPRINT MAPPING WITH SENTINEL-1 DATA

Synthetic Aperture Radar (SAR) Polarimetry for Wetland Mapping & Change Detection

Brix workshop. Mauro Mariotti d Alessandro, Stefano Tebaldini ESRIN

A knowledge based classification method for polarimetric SAR data

Concept and methodology of SAR Interferometry technique

Scattering Properties of Electromagnetic Waves in Stratified air/vegetation/soil and air/snow/ice media : Modeling and Sensitivity Analysis!

Sentinel-1 InSAR AP workshop

Forest Vertical Parameter Estimation Using PolInSAR Imagery Based on Radiometric Correction

ALOS-2/PALSAR-2 Calibration and Validation Results

Course Outline (1) #6 Data Acquisition for Built Environment. Fumio YAMAZAKI

Interferometric Processing of TanDEM-X. Images for Forest Height Estimation

SAR Polarimetry Workstation

A Comparison of ALOS PALSAR-2 Calibration Data by Using External DEM

SAR Imaging in the Time Domain for

WEIGHTED PYRAMID LINKING FOR SEGMENTATION OF FULLY-POLARIMETRIC SAR DATA

Lidar and GIS: Applications and Examples. Dan Hedges Clayton Crawford

Four-component Scattering Power Decomposition with Rotation of Coherency Matrix

ADVANCED CONCEPTS IN POLARIMETRY PART 2 (Polarimetric Target Classification) 1 INTRODUCTION

Atmospheric distortions of spaceborne SAR polarimetric signatures at X and Ka-band

PSI Precision, accuracy and validation aspects

WIDE AREA DEFORMATION MAP GENERATION WITH TERRASAR-X DATA: THE TOHOKU-OKI EARTHQUAKE 2011 CASE

Sentinel-1 processing with GAMMA software

Synthetic Aperture Radar Interferometry (InSAR)

Mission Status and Data Availability: TanDEM-X

The 2017 InSAR package also provides support for the generation of interferograms for: PALSAR-2, TanDEM-X

SCIENCE CHINA Earth Sciences. Improvement of a 3D radar backscattering model using matrix-doubling method

Heath Yardley University of Adelaide Radar Research Centre

ALOS-2 PALSAR-2 support in GAMMA Software

InSAR DEM; why it is better?

Bistatic SAR coherence improvement through spatially variant polarimetry

Operational process interferometric for the generation of a digital model of ground Applied to the couple of images ERS-1 ERS-2 to the area of Algiers

IDENTIFICATION OF THE LOCATION PHASE SCREEN OF ERS-ENVISAT PERMANENT SCATTERERS

IMPROVING DEMS USING SAR INTERFEROMETRY. University of British Columbia. ABSTRACT

Airborne Differential SAR Interferometry: First Results at L-Band

ALOS PALSAR VERIFICATION PROCESSOR

InSAR Data Coherence Estimation Using 2D Fast Fourier Transform

Detection of Buried Objects using GPR Change Detection in Polarimetric Huynen Spaces

ADVANCED CONCEPTS IN POLARIMETRIC SAR IMAGE ANALYSIS A TUTORIAL REVIEW

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to

A Correlation Test: What were the interferometric observation conditions?

TOPOGRAPHIC NORMALIZATION INTRODUCTION

INVESTIGATING THE PERFORMANCE OF SAR POLARIMETRIC FEATURES IN LAND-COVER CLASSIFICATION

Generate Digital Elevation Models Using Laser Altimetry (LIDAR) Data. Christopher Weed

CLASSIFICATION OF EARTH TERRAIN COVERS USING THE MODIFIED FOUR- COMPONENT SCATTERING POWER DECOMPOSITION,

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene

Transcription:

Forest Retrievals using SAR Polarimetry (Practical Session D3P2a) Laurent FERRO-FAMIL - Eric POTTIER University of Rennes 1

Pol-InSAR Practical Forest Application

PolSARpro SIM PolSARproSim is a rapid, coherent, fully polarimetric and interferometric SAR simulation of forest.

PolSARpro SIM The SAR image is evaluated as a coherent sum of scattering events from small elements of the scene Direct-Ground, Direct-Volume and Ground-Volume contributions are included, with both trees and short vegetation comprising Volume terms. DECIDUOUS GV DG DV PINE RANDOM HEDGE Given the map of tree locations and dimensions a grid of points is used to sample the attenuation of the coherent wave in 3D

B = 10m PolSARpro SIM Pol-InSAR Data = 45 o h=3km r 2 r 1 h v =10m y Bragg Surface Scattering Geometric configuration Platform altitude : 3000m Incidence angle: 45 Horizontal Baseline : 10m Vertical Baseline : 0m System Configuration Frequency : 1.5 GHz Azimuth resolution : 1.3811 m Range resolution : 0.6905 m Ground Surface Configuration Surface properties : 0 (smoothest) Ground moisture Content : 0 (driest) Azimuth / Range ground slope : 0 % Forest configuration Tree Species : 0 (hedge) Tree Height: 10m Forest stand density : 0.2 Forest Stand Circular Area : 1 Ha

PolSARpro SIM DATA_MASTERDIR config.txt s11.bin, s12.bin s21.bin, s22.bin DATA_SLAVEDIR config.txt s11.bin, s12.bin s21.bin, s22.bin flat_earth.bin kz.bin

MAIN MENU

ENVIRONMENT Configure Data Main Directories location Input Master Directory: C:/Pol-InSAR_Training_Course/Master_Track Input Slave Directory: C:/Pol-InSAR_Training_Course/Slave_Track

PROCESS DATA

PROCESS DATA

ELEMENTS Do it Yourself: Select some elements, set the parameters and view the corresponding BMP files (select BMP).

ELEMENTS DATA_MASTERDIR config.txt s11.bin, s12.bin s21.bin, s22.bin Axy.bin, Ixy.bin Ixy_db.bin sxy_pha.bin Axy.bmp, Ixy.bmp Ixy_db.bmp sxy_pha.bmp

PROCESS DATA

RAW INTERFEROGRAM Do it Yourself: Select polarization channels, set the parameters and view the corresponding BMP files. Note: The Output Directory is automatically set to: MasterDir_SlaveDir

RAW INTERFEROGRAM DATA_MASTERDIR_SLAVEDIR config.txt interferogram_xx_xx.bin interferogram_xx_xx.bmp

PROCESS DATA

FLAT EARTH REMOVAL DATA_SLAVEDIR config.txt s11.bin, s12.bin s21.bin, s22.bin DATA_SLAVEDIR_FER config.txt s11.bin, s12.bin s21.bin, s22.bin Do it Yourself: Enter Flat Earth file name, set the parameters and run the function. Note: The Input Slave Directory is automatically set to: SlaveDir_FER

RAW INTERFEROGRAM Do it Yourself: Select polarization channels, set the parameters and view the corresponding BMP files. Note: The Output Directory is automatically set to: MasterDir_SlaveDir_FER

RAW INTERFEROGRAM DATA_MASTERDIR_SLAVEDIR_FER config.txt interferogram_xx_xx.bin interferogram_xx_xx.bmp

PROCESS DATA

COHERENCE ESTIMATION Do it Yourself: Select polarization channels (linear, circular, pauli), set the parameters (Box Car = 11x11) and view the corresponding BMP files (select BMP).

COHERENCE ESTIMATION DATA_MASTERDIR_SLAVEDIR_FER config.txt cmplx_coh_xx.bin cmplx_coh_xx_mod.bmp cmplx_coh_xx_pha.bmp

PROCESS DATA

HEIGHT ESTIMATION

HEIGHT ESTIMATION INVERSION PROCEDURES DEM Differencing Algorithm Coherence Amplitude Inversion Procedure Ground Phase Estimation RVOG Inversion Procedure

VOLUME COHERENCE MODEL Modeling z Parameter Estimation z h v h v 0 0 Simplifications : Only 2 significant mechanisms Low density medium No refraction

VOLUME COHERENCE MODEL VOL j 0 e h v 0 h f(ze) v 0 jkz z dz f(z) dz 0 k z Topographic Phase 4 sin( ) 0 Vertical Wavenumber POLARIZATION INDEPENDENT

VOLUME COHERENCE MODEL VOL j 0 e h v 0 h f(ze) v 0 jkz z dz f(z) dz Vertical Structure function z cos( ) f(z) e 0 Case of Uniform Random Layer 0 Incidence Angle Extinction Coefficient POLARIZATION INDEPENDENT

RVOG COHERENCE MODEL RVOG = Random Volume Over Ground 2 Layer Combined Surface and random Volume Scattering w 1w w w e j 0 VOL Surface Scattering Contribution Volume Scattering Contribution B. Treuhaft (2000), S.R. Cloude (2003) POLARIZATION DEPENDENT G / V ratio

FOREST HEIGHT ESTIMATION w v Polarisation Channel corresponding to Volume Scattering j v e 0 VOL 0 w 2HV w s Polarisation Channel corresponding to Surface Scattering j we s ws e 0 1w 0VOL j s HH-VV

FOREST HEIGHT ESTIMATION 0 j0 we v VOL h v 1 w v j VOL w s Model 0 we s w s 1w s 4 Parameters 4 Observables INVERSION

v z 0 0 h jk s VOL s v j s VOL j v e w w w e w e w DEM Differencing Algorithm z s v v k ) w ( arg ) w ( arg h FOREST HEIGHT ESTIMATION

FOREST HEIGHT ESTIMATION Coherence Amplitude Inversion Procedure Assumption: Only Volume Scattering is present j0 wv e VOL wv VOL min h v ( w v ) p p 1 e e p 1 h ph v v 1 1 1-D Search Procedure Look Up Table (LUT)

L 1 w w arg ˆ L L 1 w w e w 1 w e w e w v s 0 v s j s s VOL j s VOL j v 0 0 0 Topographic Phase Estimation s s w 1 w L With: Estimation of L 0 C BL AL 1 L L 1 w w 2 2 v s 2 v s s * v s 2 v w w C w w w 2 B 1 w A 2A 4 AC B B L 2 FOREST HEIGHT ESTIMATION

FOREST HEIGHT ESTIMATION RVOG Inversion Procedure min h v, ( w v ) e j ˆ 0 p p 1 e e p 1 h ph v v 1 1 Expensive 2-D Search Procedure! h v arg ˆ 1 ( w ) 2 sinc ( w ) k z v 0 k z v 0.3 0.5 Suitable Compromise DEM Differencing Inversion Coherence Amplitude Inversion

HEIGHT ESTIMATION DATA_MASTERDIR_SLAVEDIR_FER config.txt DEM_diff_heights.bin, Coh_heights.bin Ground_phase.bin, Ground_phase_median.bin RVOG_phase_heights.bin, RVOG_heights.bin DEM_diff_heights.bmp, Coh_heights.bmp Ground_phase.bmp, Ground_phase_median.bmp RVOG_phase_heights.bmp, RVOG_heights.bmp 2HV Do it Yourself: Set the parameters (Median Size = 21, Factor = 0.4) and view the corresponding BMP files. HH-VV

HEIGHT ESTIMATION DEM_diff_heights Coh_heights Ground_phase Ground_phase_median RVOG_phase_heights RVOG_heights

PROCESS DATA

Do it Yourself: Select a BMP file Select a BIN file Select Input Data Format Select Show Select Area (line or rect) SAVE PLOT HEIGHT ESTIMATION

HEIGHT ESTIMATION DEM_diff_heights Coh_heights RVOG_heights

PROCESS DATA

Do it Yourself: Select a BMP file Select a BIN file Select Input Data Format Select Pixel Select Show Select Representation X Range / Y Range = 200pix XY Range = 30 pix (3D) Set Min / Max Values PLOT HEIGHT ESTIMATION

HEIGHT ESTIMATION DEM_diff_heights Coh_heights RVOG_heights

Pol-InSAR Practical Forest Application

MAIN MENU

ENVIRONMENT Configure Data Main Directories location Input Master Directory: C:/Taunstein_ESAR/master_slc Input Slave Directory: C:/Traunstein_ESAR/slave_slc

PROCESS DATA

PROCESS DATA

RAW INTERFEROGRAM Do it Yourself: Select polarization channels, set the parameters and view the corresponding BMP files. Note: The Output Directory is automatically set to: MasterDir_SlaveDir

RAW INTERFEROGRAM DATA_MASTERDIR_SLAVEDIR config.txt interferogram_xx_xx.bin interferogram_xx_xx.bmp

PROCESS DATA

FLAT EARTH REMOVAL DATA_SLAVEDIR config.txt s11.bin, s12.bin s21.bin, s22.bin DATA_SLAVEDIR_FER config.txt s11.bin, s12.bin s21.bin, s22.bin Do it Yourself: Enter Flat Earth file name, set the parameters and run the function. Note: The Input Slave Directory is automatically set to: SlaveDir_FER

RAW INTERFEROGRAM Do it Yourself: Select polarization channels, set the parameters and view the corresponding BMP files. Note: The Output Directory is automatically set to: MasterDir_SlaveDir_FER

RAW INTERFEROGRAM DATA_MASTERDIR_SLAVEDIR_FER config.txt interferogram_xx_xx.bin interferogram_xx_xx.bmp

Convert S2 - T6 : Multilook

Convert S2 - T6 : Multilook Do it Yourself: Select Multi Look : Row = 6 and Col = 2 Select Output Data Format : 2 x [S2] >> [T6] Note: The Output Directory is automatically set to: MasterDir_SlaveDir_FER_MLK

PROCESS DATA

PROCESS DATA Do it Yourself: Set the parameters : Num Looks = 3 ; Window Size = 3. Note: The Output Directory is automatically set to: MasterDir_SlaveDir_FER_MLK_LEE

Create RGB file PROCESS DATA

PROCESS DATA

PROCESS DATA

PROCESS DATA Do it Yourself: Select the correlation coefficients, set the parameters (Box Car= 5x5) and view the corresponding BMP files.

PROCESS DATA

PROCESS DATA

PROCESS DATA

COHERENCE ESTIMATION Do it Yourself: Select polarization channels (linear, circular, pauli), set the parameters (Box Car = 7x7) and view the corresponding BMP files (select BMP).

COHERENCE ESTIMATION

COHERENCE ESTIMATION

PROCESS DATA

HEIGHT ESTIMATION

HEIGHT ESTIMATION 2HV HH-VV Do it Yourself: Set the parameters (Median Size = 21, Factor = 0.4) and view the corresponding BMP files. 2D Kz File : DataDirectory / kz-ph-mlk / kz.bin

HEIGHT ESTIMATION

HEIGHT ESTIMATION Min = 0m Max = 50m

HEIGHT ESTIMATION Data Analysis : Histogram

HEIGHT ESTIMATION Do it Yourself: Select a BMP file Select a BIN file Select Input Data Format Select Show Select Area SAVE PLOT

PROCESS DATA

Do it Yourself: Select a BMP file Select a BIN file Select Input Data Format Select Pixel Select Show Select Representation X Range / Y Range = 30pix XY Range = 30 pix (3D) Set Min / Max Values PLOT HEIGHT ESTIMATION

Questions?