PolSARpro v4.03 Forest Applications

Similar documents
Forest Retrievals. using SAR Polarimetry. (Practical Session D3P2a)

Do It Yourself 8. Polarization Coherence Tomography (P.C.T) Training Course

Software Tool PolSARpro v3.0

Eric Pottier, Laurent Ferro-Famil, Sophie Allain, Stéphane Méric. Irena Hajnsek, Kostas Papathanassiou, Alberto Moreira,

Coherence Based Polarimetric SAR Tomography

An Overview of the PolSARpro v3.0 Software The Educational Toolbox for Polarimetric and Interferometric Polarimetric SAR Data Processing

PolSARpro v4.0 Main Window

Po P ls l A S Rpro v5.0. Pr P actic i al E. E. Po P ttie i r E.Pottier (2013)

Tree Height Estimation Methodology With Xband and P-band InSAR Data. Lijun Lu Guoman Huang Qiwei Li CASM

Interferometric processing. Rüdiger Gens

Interferometry Tutorial with RADARSAT-2 Issued March 2014 Last Update November 2017

GIS. PDF created with pdffactory Pro trial version ... SPIRIT. *

Sentinel-1 Toolbox. Interferometry Tutorial Issued March 2015 Updated August Luis Veci

SAR IMAGE PROCESSING FOR CROP MONITORING

In addition, the image registration and geocoding functionality is also available as a separate GEO package.

SAR Interferometry. Dr. Rudi Gens. Alaska SAR Facility

AN APPROACH TO DETERMINE THE MAXIMUM ACCEPTABLE DISTORTION LEVEL IN POLARIMETRIC CALIBRATION FOR POL-INSAR APPLICATIONS

FOREST HEIGHT ESTIMATION FROM INDREX-II L-BAND POLARIMETRIC INSAR DATA

InSAR Operational and Processing Steps for DEM Generation

Sentinel-1 Toolbox. TOPS Interferometry Tutorial Issued May 2014

DINSAR: Differential SAR Interferometry

Polarimetric Radar Remote Sensing

POLSARpro v3.0: THE VERSATILE EDUCATIONAL TOOLBOX FOR POLARIMETRIC AND INTERFEROMETRIC SAR DATA PROCESSING

The 2017 InSAR package also provides support for the generation of interferograms for: PALSAR-2, TanDEM-X

STUDIES OF PHASE CENTER AND EXTINCTION COEFFICIENT OF BOREAL FOREST USING X- AND L-BAND POLARIMETRIC INTERFEROMETRY COMBINED WITH LIDAR MEASUREMENTS

Signal Processing Laboratory

FIRST RESULTS OF THE ALOS PALSAR VERIFICATION PROCESSOR

TanDEM-X Pol-InSAR Inversion for Mangroves of East Africa

Mission Status and Data Availability: TanDEM-X

MULTI-BASELINE POLINSAR INVERSION AND SIMULATION OF INTERFEROMETRIC WAVENUMBER FOR FOREST HEIGHT RETRIEVAL USING SPACEBORNE SAR DATA

INTERFEROMETRIC MULTI-CHROMATIC ANALYSIS OF HIGH RESOLUTION X-BAND DATA

Chalmers Publication Library

DIGITAL ELEVATION MODEL GENERATION FROM INTERFEROMETRIC SYNTHETIC APERTURE RADAR USING MULTI-SCALE METHOD

Interferometric Evaluation of Sentinel-1A TOPS data

Exploiting the High Dimensionality of Polarimetric Interferometric Synthetic Aperture Radar Observations

InSAR DEM; why it is better?

ALOS PALSAR VERIFICATION PROCESSOR

Operational process interferometric for the generation of a digital model of ground Applied to the couple of images ERS-1 ERS-2 to the area of Algiers

MODELLING OF THE SCATTERING BY A SMOOTH DIELECTRIC CYLINDER: STUDY OF THE COMPLEX SCATTERING MATRIX

ADVANCED CONCEPTS IN POLARIMETRY PART 2 (Polarimetric Target Classification) 1 INTRODUCTION

A Correlation Test: What were the interferometric observation conditions?

Brix workshop. Mauro Mariotti d Alessandro, Stefano Tebaldini ESRIN

Repeat-pass SAR Interferometry Experiments with Gaofen-3: A Case Study of Ningbo Area

RESOLUTION enhancement is achieved by combining two

Interferometry Module for Digital Elevation Model Generation

Processing and Analysis of ALOS/Palsar Imagery

PSI Precision, accuracy and validation aspects

ADVANCED CONCEPTS IN POLARIMETRIC SAR IMAGE ANALYSIS A TUTORIAL REVIEW

A Hybrid Entropy Decomposition and Support Vector Machine Method for Agricultural Crop Type Classification

Lateral Ground Movement Estimation from Space borne Radar by Differential Interferometry.

ALOS PALSAR SCANSAR INTERFEROMETRY AND ITS APPLICATION IN WENCHUAN EARTHQUAKE

Do It Yourself 2. Representations of polarimetric information

Pine Forest Height Inversion Using Single-Pass X-Band PolInSAR Data

CLASSIFICATION OF EARTH TERRAIN COVERS USING THE MODIFIED FOUR- COMPONENT SCATTERING POWER DECOMPOSITION,

TanDEM-X Interferometric Processing Chain and SAR Products. Thomas Fritz H. Breit, M. Eineder, M. Lachaise & ITP Development Team

Motion compensation and the orbit restitution

SARscape. Table of Contents. Preface 1. Overview 3. Basic Module 5. Focusing Module 11. Gamma and Gaussian Filtering Module 11

Interferometric Processing of TanDEM-X. Images for Forest Height Estimation

Synthetic Aperture Radar (SAR) Polarimetry for Wetland Mapping & Change Detection

Synthetic Aperture Radar Interferometry (InSAR)

Individual Interferograms to Stacks

SNAP-Sentinel-1 in a Nutshell

Concept and methodology of SAR Interferometry technique

NEST 4C-1.1: an ESA toolbox for scientific exploitation of SAR data

Interferometric SAR Processing

Ice surface velocities using SAR

Flood detection using radar data Basic principles

InSAR Processing. Sentinel 1 data Case study of subsidence in Mexico city. Marie-Pierre Doin, Cécile Lasserre, Raphaël Grandin, Erwan Pathier

Interferometric coherence optimization

Individual Interferograms to Stacks!

SEA SURFACE SPEED FROM TERRASAR-X ATI DATA

MULTI-TEMPORAL SAR DATA FILTERING FOR LAND APPLICATIONS. I i is the estimate of the local mean backscattering

IMPROVEMENT OF VEGETATION PARAMETER RETRIEVAL FROM POLARIMETRIC SAR INTERFEROMETRY USING A SIMPLE POLARIMETRIC SCATTERING MODEL

Memorandum. Clint Slatton Prof. Brian Evans Term project idea for Multidimensional Signal Processing (EE381k)

fraction of Nyquist

RADARGRAMMETRY AND INTERFEROMETRY SAR FOR DEM GENERATION

SAR Polarimetry Workstation

First TOPSAR image and interferometry results with TerraSAR-X

TECHNICAL SPECIFICATIONS AND ARCHITECTURE DESIGN

Four-component Scattering Power Decomposition with Rotation of Coherency Matrix

ADVANCED CONCEPTS IN POLARIMETRY PART 2 (Polarimetric Target Classification) 1 INTRODUCTION

AN IMPROVED SAR RADIOMETRIC TERRAIN COR- RECTION METHOD AND ITS APPLICATION IN PO- LARIMETRIC SAR TERRAIN EFFECT REDUCTION

SNAP-Sentinel-1 in a Nutshell

SAR Polarimetry Workstation

Polarimetric SAR tomography of tropical forests using P-Band TropiSAR data

Target recognition by means of spaceborne C-band SAR data

Differential Interferometry and Geocoding Software DIFF&GEO

GAMMA Software. Introduction:

ALOS PALSAR. Orthorectification Tutorial Issued March 2015 Updated August Luis Veci

On the Implementation of a Vegetation Baseline for ALOS/PALSAR

Forest Vertical Parameter Estimation Using PolInSAR Imagery Based on Radiometric Correction

Airborne Differential SAR Interferometry: First Results at L-Band

Sentinel-1 Toolbox. Offset Tracking Tutorial Issued August Jun Lu Luis Veci

IMPROVING DEMS USING SAR INTERFEROMETRY. University of British Columbia. ABSTRACT

InSAR Data Coherence Estimation Using 2D Fast Fourier Transform

IDENTIFICATION OF THE LOCATION PHASE SCREEN OF ERS-ENVISAT PERMANENT SCATTERERS

SENTINEL-1 PRECISE ORBIT CALIBRATION AND VALIDATION

Terrain correction. Backward geocoding. Terrain correction and ortho-rectification. Why geometric terrain correction? Rüdiger Gens

ALOS-2 PALSAR-2 support in GAMMA Software

Practical work on SAR Interferometry Data Processing using DORIS Software Y.S. Rao CSRE, IIT Bombay

Transcription:

PolSARpro v4.03 Forest Applications Laurent Ferro-Famil Lecture on polarimetric SAR Theory and applications to agriculture & vegetation Thursday 19 April, morning

Pol-InSAR Tutorial Forest Application

PolSARpro v4.0 SOFTWARE GIMP Google Earth Viewer Display Tools PDF About PolSARpro NEST SRTM PolSARproSIM Ground Small Veg Forest Tutorial on POLSAR and POLinSAR Help Files

Lecture Notes Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry W.M. Boerner 31 pages Basic Concepts in Radar Polarimetry W.M. Boerner 100 pages Advanced Concepts E. Pottier, J.S. Lee, L. Ferro-Famil 65 pages POL-InSAR Training Course S.R. Cloude 44 pages PCT Training Course S.R. Cloude 55 pages

Do It Yourself Do It Yourself

PolSARpro v4.0 SOFTWARE PolSARproSIM Ground Small Veg Forest

PolSARpro v3.31 SOFTWARE PolSARproSim is a rapid, coherent, fully polarimetric and interferometric SAR simulation of forest.

PolSARpro SIM The SAR image is evaluated as a coherent sum of scattering events from small elements of the scene Direct-Ground, Direct-Volume and Ground-Volume contributions are included, with both trees and short vegetation comprising Volume terms. DECIDUOUS GV DG DV PINE RANDOM HEDGE Given the map of tree locations and dimensions a grid of points is used to sample the attenuation of the coherent wave in 3D

PolSARpro Simulators PolSARproSIM

PolSARpro Simulators Pol-InSAR Data Geometric configuration Platform altitude : 3000m Incidence angle: 45 Horizontal Baseline : 10m Vertical Baseline : 0m System Configuration Frequency : 1.5 GHz Azimuth resolution : 1.3811 m Range resolution : 0.6905 m Ground Surface Configuration Surface properties : 0 (smoothest) Ground moisture Content : 0 (driest) Azimuth / Range ground slope : 0 % Forest configuration Tree Species : 0 (hedge) Tree Height: 10m Forest stand density : 0.2 Forest Stand Circular Area : 1 Ha

PolSARpro Simulators DATA_MASTERDIR DATA_SLAVEDIR config.txt s11.bin, s12.bin s21.bin, s22.bin config.txt s11.bin, s12.bin s21.bin, s22.bin flat_earth.bin kz.bin

PolSARpro v4.0 SOFTWARE PolSARpro Full Software Single Data Set Multi Data Sets Spaceborne Sensors: ALOS, ENVISAT RADARSAT2, TerraSar, SIR-C Airborne Sensors: AIRSAR, Convair, EMISAR ESAR, PISAR, RAMSES PolSARpro Multi Data Sets package

MAIN MENU

MAIN MENU Environment Display Import Data Process Data Convert Data

ENVIRONNEMENT Environment Display Import Data Calibration Assessment Process Data Convert Data

ENVIRONNEMENT Configure Data Main Directories location Input Master Directory: C:/POLinSAR_Training_Course/Master_Track Input Slave Directory: C:/POLinSAR_Training_Course/Slave_Track

ENVIRONNEMENT Configure Data Main Directory location Automatic Data Check (Null or NaN) Configuration File (ENVI) Image Display Size setting

ENVIRONNEMENT Color Palette Edition & Modification

PROCESS DATA [S2] - MENU

PROCESS DATA [S2] - MENU

ELEMENTS Do it Yourself: Select some elements, set the parameters and view the corresponding BMP files (select BMP).

ELEMENTS DATA_MASTERDIR config.txt s11.bin, s12.bin s21.bin, s22.bin Axy.bin, Ixy.bin Ixy_db.bin sxy_pha.bin Axy.bmp, Ixy.bmp Ixy_db.bmp sxy_pha.bmp

PROCESS DATA [S2] - MENU

RAW INTERFEROGRAM Do it Yourself: Select polarization channels, set the parameters and view the corresponding BMP files. Note: The Output Directory is automatically set to: MasterDir_SlaveDir

RAW INTERFEROGRAM DATA_MASTERDIR_SLAVEDIR config.txt interferogram_xx_xx.bin interferogram_xx_xx.bmp

PROCESS DATA [S2] - MENU

FLAT EARTH REMOVAL Do it Yourself: Enter Flat Earth file name, set the parameters and run the function. Note: The Input Slave Directory is automatically set to: SlaveDir_FER

FLAT EARTH REMOVAL DATA_SLAVEDIR config.txt s11.bin, s12.bin s21.bin, s22.bin DATA_SLAVEDIR_FER config.txt s11.bin, s12.bin s21.bin, s22.bin

RAW INTERFEROGRAM Do it Yourself: Select polarization channels, set the parameters and view the corresponding BMP files. Note: The Output Directory is automatically set to: MasterDir_SlaveDir_FER

RAW INTERFEROGRAM DATA_MASTERDIR_SLAVEDIR_FER config.txt interferogram_xx_xx.bin interferogram_xx_xx.bmp

PROCESS DATA [S2] - MENU

COHERENCE ESTIMATION Do it Yourself: Select polarization channels (linear, circular, pauli), set the parameters (Box Car = 11x11) and view the corresponding BMP files (select BMP).

COHERENCE ESTIMATION DATA_MASTERDIR_SLAVEDIR_FER config.txt cmplx_coh_xx.bin cmplx_coh_xx_mod.bmp cmplx_coh_xx_pha.bmp

PROCESS DATA [S2] - MENU

HEIGHT ESTIMATION INVERSION PROCEDURES

HEIGHT ESTIMATION INVERSION PROCEDURES INVERSION PROCEDURES DEM Differencing Algorithm Coherence Amplitude Inversion Procedure Ground Phase Estimation RVOG Inversion Procedure

VOLUME COHERENCE MODEL Modeling z Parameter Estimation z h v h v 0 0 Simplifications : Only 2 significant mechanisms Low density medium No refraction

VOLUME COHERENCE MODEL γ VOL = j 0 e φ h v 0 f ( z )e h v 0 jk z z f ( z )dz dz φ0 k z = Topographic Phase 4π θ λ sin( θ 0 ) Vertical Wavenumber POLARIZATION INDEPENDENT

VOLUME COHERENCE MODEL γ VOL = j 0 e φ h v 0 f ( z )e h v 0 jk z z f ( z )dz dz Vertical Structure function f ( z ) = e σ z cos( θ Case of Uniform Random Layer θ 0 σ Incidence Angle Extinction Coefficient 0 ) POLARIZATION INDEPENDENT

RVOG COHERENCE MODEL (Random Volume Over Ground) 2 Layer Combined Surface and random Volume Scattering µ ( w) = γ ( w) jφ VOL e 0 γ + = 1 + µµ ( w) ( w) Surface Scattering Contribution Volume Scattering Contribution B. Treuhaft (2000), S.R. Cloude (2003) POLARIZATION DEPENDENT G / V ratio

FOREST HEIGHT ESTIMATION w v Polarisation Channel corresponding to Volume Scattering γ jφ0 ( w v ) a = e γ VOL µ a0 2HV w s Polarisation Channel corresponding to Surface Scattering γ ( w ) s = e jφ γ + µ 1 + µ ( w s ) ( w ) 0 VOL j s a µ a e φ 0 HH-VV

FOREST HEIGHT ESTIMATION γ γ ( w ) v ( w ) s = = e e jφ 0 jφ 0 γ VOL γ VOL + µ 1 + µ ( w s ) ( w ) s a φ0 h v σ µ = [ Model] 1 γ γ ( w v ) ( ) w s 4 Parameters 4 Observables INVERSION

HEIGHT ESTIMATION INVERSION PROCEDURES DATA_MASTERDIR_SLAVEDIR_FER config.txt DEM_diff_heights.bin, Coh_heights.bin Ground_phase.bin, Ground_phase_median.bin RVOG_phase_heights.bin, RVOG_heights.bin DEM_diff_heights.bmp, Coh_heights.bmp Ground_phase.bmp, Ground_phase_median.bmp RVOG_phase_heights.bmp, RVOG_heights.bmp 2HV Do it Yourself: Set the parameters (Median Size = 21, Factor = 0.4) and view the corresponding BMP files. HH-VV

HEIGHT ESTIMATION INVERSION PROCEDURES DEM_diff_heights Coh_heights Ground_phase Ground_phase_median RVOG_phase_heights RVOG_heights

PROCESS DATA [S2] - MENU

HEIGHT ESTIMATION INVERSION PROCEDURES Do it Yourself: Select a BMP file Select a BIN file Select Input Data Format Select Show Select Area SAVE PLOT

HEIGHT ESTIMATION INVERSION PROCEDURES DEM_diff_heights Coh_heights RVOG_heights

PROCESS DATA [S2] - MENU

HEIGHT ESTIMATION INVERSION PROCEDURES Do it Yourself: Select a BMP file Select a BIN file Select Input Data Format Select Pixel Select Show Select Representation X Range / Y Range = 200pix XY Range = 30 pix (3D) Set Min / Max Values PLOT

HEIGHT ESTIMATION INVERSION PROCEDURES DEM_diff_heights Coh_heights RVOG_heights

Polarization Coherence Tomography Tutorial

PolSARpro v4.0 SOFTWARE GIMP Google Earth Viewer Display Tools PDF About PolSARpro NEST SRTM PolSARproSIM Ground Small Veg Forest Tutorial on POLSAR and POLinSAR Help Files

Lecture Notes Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry W.M. Boerner 31 pages Basic Concepts in Radar Polarimetry W.M. Boerner 100 pages Advanced Concepts E. Pottier, J.S. Lee, L. Ferro-Famil 65 pages POL-InSAR Training Course S.R. Cloude 44 pages PCT Training Course S.R. Cloude 55 pages

Do It Yourself Do It Yourself

VOLUME COHERENCE MODEL γ VOL = j 0 e φ h v 0 f ( z )e h v 0 jk z z f ( z )dz dz Vertical Structure function f ( z ) = e σ z cos( θ Case of Uniform Random Layer θ 0 σ Incidence Angle Extinction Coefficient 0 )

VOLUME COHERENCE MODEL γ VOL = j 0 e φ h v 0 f ( z )e h v 0 jk z z f ( z )dz dz Assuming we know the estimates of: φ (topographic phase) and h (height) 0 Techniques for the reconstruction of: f ( z ) (Vertical Structure Function) v

POLARIMETRIC COHERENCE TOMOGRAPHY f ( ) z L Develop in a Fourier-Legendre series on [-1, +1] P n ( f ( a z n L z L ) = anpn ( zl ) n 2n + 1 = 2 ) 1 1 f ( z L )P Legendre Polynomials n ( z L )dz L a n

POLARIMETRIC COHERENCE TOMOGRAPHY Calculate Legendre Spectrum for polarization w Select an arbitrary polarization scattering mechanisms: w w γ ~ j ˆ φ0 kˆ v ( w) γ = γ ( w) e e j ( ) Re γ â20 = ( ~ γ ) f 0 = a 20 f 2 f 2 ( ~ γ ) = ja f Im( ~ γ ) Re = Im Reconstruct normalized vertical structure fˆ â 10 ( w,z) ( 1 â ( w) ) 1 10 = j ( w) 1 â20 = 10 + 2 z ĥ ĥ v v ~ f 1 f 0 With: 0 < z < ĥv

PROCESS DATA [S2] - MENU

POLARIMETRIC COHERENCE TOMOGRAPHY PCT Parameters Estimation Do it Yourself: Set the parameters (Window Size = 11, Epsilon = 0.8) and view the corresponding BMP files.

POLARIMETRIC COHERENCE TOMOGRAPHY PCT Parameters Estimation DATA_MASTERDIR_SLAVEDIR_FER config.txt cmplx_coh_pctgamhi.bin, cmplx_coh_pctgamlo.bin PCT_TopoPhase.bin, PCT_Kv.bin, PCT_Height.bin cmplx_coh_pctgamhi_mod.bmp, cmplx_coh_pctgamhi_pha.bmp, cmplx_coh_pctgamlo_mod.bmp, cmplx_coh_pctgamlo_pha.bmp, PCT_TopoPhase.bmp, PCT_Kv.bmp, PCT_Height.bmp Do it Yourself: Set the parameters (Window Size = 11, Epsilon = 0.8) and view the corresponding BMP files.

POLARIMETRIC COHERENCE TOMOGRAPHY PCT Parameters Estimation Optimal PolInSAR Coherences Topographic Phase Normalized Baseline Kv Estimated Height

POLARIMETRIC COHERENCE TOMOGRAPHY PCT Engine Do it Yourself: Select a Polarimetric channel, run and view the corresponding BMP files.

POLARIMETRIC COHERENCE TOMOGRAPHY PCT Engine DATA_MASTERDIR_SLAVEDIR_FER config.txt PCT_f0.bin, PCT_f1.bin, PCT_f2.bin, PCT_a10.bin, PCT_a20.bin PCT_a10.bmp, PCT_a20.bmp Legendre Coefficients a10 and a20

POLARIMETRIC COHERENCE TOMOGRAPHY PCT Engine Do it Yourself: Select the Hist function Legendre Functions f0, f1 and f2

POLARIMETRIC COHERENCE TOMOGRAPHY PCT Engine Do it Yourself: Select the Display PCT function

Questions?

ALOS / PALSAR Pol-InSAR DataSets

BASELINE CALCULATOR TOOL PALSAR Data Level 1.1 1. Read orbit Position and Velocity vectors (28 SVs) from L1.1 product header 2. Interpolate the 2 ALOS orbits 3. Align the time reference between the orbits 4. Read timing and geometry information from the SAR scene 5. Calculate perpendicular baseline 1 28 SVs perpendicular baseline 5 3 2 ALOS orbit SAR scene 4

BASELINE CALCULATOR TOOL PALSAR Data Level 1.1 INTERFEROMETRIC BASELINE TOOL Check the Pol-InSAR application feasibility Generate Flat-Earth and Vertical Wavenumber Provide coarse co-registration SLC #1 SLC #2

PolSARpro v4.0 SOFTWARE ALOS : Advanced Land Observing Satellite PALSAR : Phase Array L-Band SAR

PROCESSING CHAIN Configuration Data Import Input Data File: Spaceborne Sensors Extract Raw Data Data already extracted Data Process Flat Earth Estimation Baseline Estimation Flat Earth Estimation Spectral Estimation Tools Sub Data Extraction Complex Coherence Estimation Coarse Co-Registration Flat Earth Estimation Spectral Estimation Complex Coherence Estimation Flat Earth Removal Complex Coherence Estimation

PROCESSING CHAIN Configuration Data Process Flat Earth Estimation Baseline Estimation Flat Earth Estimation Spectral Estimation Tools Sub Data Extraction Complex Coherence Estimation Coarse Co-Registration Flat Earth Estimation Spectral Estimation Complex Coherence Estimation Flat Earth Removal Complex Coherence Estimation

MAIN MENU

ENVIRONNEMENT Configure Data Main Directories location Input Master Directory: C:/ Prague_280307_Master Input Slave Directory: C:/ Prague_130507_Slave

DISPLAY

DISPLAY Master Pauli Image Slave Pauli Image

PROCESSING CHAIN Configuration Data Process Flat Earth Estimation Baseline Estimation Flat Earth Estimation Spectral Estimation Tools Sub Data Extraction Complex Coherence Estimation Coarse Co-Registration Flat Earth Estimation Spectral Estimation Complex Coherence Estimation Flat Earth Removal Complex Coherence Estimation

PROCESS DATA Environment Display Import Data Calibration Assessment Process Data Convert Data

PROCESS DATA [S2] - MENU

BASELINE ESTIMATION Do it Yourself: Run the Baseline Estimation Select some auxiliary parameters and view the corresponding BMP files.

BASELINE ESTIMATION kz kz Radar Incidence Angle

BASELINE ESTIMATION Master Pauli Image Flat Earth

PROCESSING CHAIN Configuration Data Process Flat Earth Estimation Baseline Estimation Flat Earth Estimation Spectral Estimation Tools Sub Data Extraction Complex Coherence Estimation Coarse Co-Registration Flat Earth Estimation Spectral Estimation Complex Coherence Estimation Flat Earth Removal Complex Coherence Estimation

PROCESS DATA [S2] - MENU

SPECTRAL ESTIMATION Do it Yourself: Select the polarization channel Set the Analysis Window size Set the output format View the corresponding BMP files.

SPECTRAL ESTIMATION Master Pauli Image Flat Earth FFT

SPECTRAL ESTIMATION Flat Earth Flat Earth FFT

PROCESSING CHAIN Configuration Data Process Flat Earth Estimation Baseline Estimation Flat Earth Estimation Spectral Estimation Tools Sub Data Extraction Complex Coherence Estimation Coarse Co-Registration Flat Earth Estimation Spectral Estimation Complex Coherence Estimation Flat Earth Removal Complex Coherence Estimation

TOOLS Do it Yourself: Init Row = 1 End Row = 5000 Init Col = 1 End Col = 1248 MASTER DIR config.txt Fully Polarimetric Data Files MASTER DIR_SUB config.txt Fully Polarimetric Data Files

TOOLS Do it Yourself: Init Row = 1 End Row = 5000 Init Col = 1 End Col = 1248 SLAVE DIR config.txt Fully Polarimetric Data Files SLAVE DIR_SUB config.txt Fully Polarimetric Data Files

TOOLS Do it Yourself: Init Row = 1 End Row = 5000 Init Col = 1 End Col = 1248 SLAVE DIR flat_earth.bin flat_earth.bin SLAVE DIR_SUB flat_earth.bin

ENVIRONNEMENT Configure Data Main Directories location Input Master Directory: C:/ Prague_280307_Master_SUB_SUB Input Slave Directory: C:/ Prague_130507_Slave_SUB_SUB

DISPLAY

DISPLAY

DISPLAY Master Pauli Image Slave Pauli Image

PROCESSING CHAIN Configuration Data Process Flat Earth Estimation Baseline Estimation Flat Earth Estimation Spectral Estimation Tools Sub Data Extraction Complex Coherence Estimation Coarse Co-Registration Flat Earth Estimation Spectral Estimation Complex Coherence Estimation Flat Earth Removal Complex Coherence Estimation

PROCESS DATA [S2] - MENU

COMPLEX COHERENCE ESTIMATION Do it Yourself: Select the polarization channel Set the Analysis Window size (7) Select BMP and Averaging Set the Analysis Averaging Window size (7) View the corresponding BMP files.

COMPLEX COHERENCE ESTIMATION cmplx_coh_avg_vv_mod cmplx_coh_avg_vv_pha

COMPLEX COHERENCE ESTIMATION Master Pauli Image Slave Pauli Image

COMPLEX COHERENCE ESTIMATION Master Pauli Image Slave Pauli Image SHIFT

PROCESSING CHAIN Configuration Data Process Flat Earth Estimation Baseline Estimation Flat Earth Estimation Spectral Estimation Tools Sub Data Extraction Complex Coherence Estimation Coarse Co-Registration Flat Earth Estimation Spectral Estimation Complex Coherence Estimation Flat Earth Removal Complex Coherence Estimation

PROCESS DATA [S2] - MENU

BASIC COARSE COREGISTRATION Do it Yourself: Set the Analysis Window size Row = 1024 Col = 256 SLAVE DIR_SUB config.txt Fully Polarimetric Data Files SLAVE DIR_SUB_COR config.txt Fully Polarimetric Data Files

BASIC COARSE COREGISTRATION Master Pauli Image Slave Pauli Image

PROCESSING CHAIN Configuration Data Process Flat Earth Estimation Baseline Estimation Flat Earth Estimation Spectral Estimation Tools Sub Data Extraction Complex Coherence Estimation Coarse Co-Registration Flat Earth Estimation Spectral Estimation Complex Coherence Estimation Flat Earth Removal Complex Coherence Estimation

PROCESS DATA [S2] - MENU

SPECTRAL ESTIMATION Do it Yourself: Select the polarization channel Set the Analysis Window size Row = 1024 Col = 256 Set the output format View the corresponding BMP files.

SPECTRAL ESTIMATION Flat Earth Flat Earth FFT

PROCESSING CHAIN Configuration Data Process Flat Earth Estimation Baseline Estimation Flat Earth Estimation Spectral Estimation Tools Sub Data Extraction Complex Coherence Estimation Coarse Co-Registration Flat Earth Estimation Spectral Estimation Complex Coherence Estimation Flat Earth Removal Complex Coherence Estimation

PROCESS DATA [S2] - MENU

COMPLEX COHERENCE ESTIMATION Do it Yourself: Select the polarization channel Set the Analysis Window size (7) Select BMP and Averaging Set the Analysis Averaging Window size (7) View the corresponding BMP files.

COMPLEX COHERENCE ESTIMATION cmplx_coh_avg_vv_mod cmplx_coh_avg_vv_pha

COMPLEX COHERENCE ESTIMATION cmplx_coh_avg_vv_pha Flat Earth FFT

PROCESSING CHAIN Configuration Data Process Flat Earth Estimation Baseline Estimation Flat Earth Estimation Spectral Estimation Tools Sub Data Extraction Complex Coherence Estimation Coarse Co-Registration Flat Earth Estimation Spectral Estimation Complex Coherence Estimation Flat Earth Removal Complex Coherence Estimation

PROCESS DATA [S2] - MENU

FLAT EARTH REMOVAL Do it Yourself: Enter the 2D Flat Earth file Select conjugate SLAVE DIR_SUB_COR config.txt Fully Polarimetric Data Files SLAVE DIR_SUB_COR_FER config.txt Fully Polarimetric Data Files

PROCESSING CHAIN Configuration Data Process Flat Earth Estimation Baseline Estimation Flat Earth Estimation Spectral Estimation Tools Sub Data Extraction Complex Coherence Estimation Coarse Co-Registration Flat Earth Estimation Spectral Estimation Complex Coherence Estimation Flat Earth Removal Complex Coherence Estimation

COMPLEX COHERENCE ESTIMATION Do it Yourself: Select the polarization channel Set the Analysis Window size (7) Select BMP and Averaging Set the Analysis Averaging Window size (7) View the corresponding BMP files.

COMPLEX COHERENCE ESTIMATION cmplx_coh_avg_vv_mod cmplx_coh_avg_vv_pha

COMPLEX COHERENCE ESTIMATION cmplx_coh_avg_vv_pha cmplx_coh_avg_vv_pha

CONCLUSION Master Pauli Image cmplx_coh_avg_vv_mod?

CONCLUSION T* POLSAR IMAGES I1 = w 1 k and 1 I T* 2 = w 2 k 2 ( w, ) With: Complex Unitary Vectors 1 w 2 * I1I 2 γ ( w 1,w 2 ) = = I I I I 1 * 1 2 * 2 w [ Ω ] T* w 1 12 w 2 T* 1[ T1 ] w 1 w 2[ T2 ] w T* 2 COMPLEX POLARIMETRIC INTERFEROMETRIC COHERENCE γ = γ SNR γ spatial γ temporal γ polar 46 days

TanDEM-X TerraSAR X (1 & 2) (2010) Pol InSAR Sensors

TanDEM-L DESDynl Monitoring the Earth s Dynamics with Pol-InSAR Courtesy of Pr. A. Moreira POLINSAR09

Questions?