The basics of rigidity

Similar documents
Flavors of Rigidity Flavor III - Universal Rigidity and Tensegrities

Chapter 4 Concepts from Geometry

GEOMETRY OF POINT-HYPERPLANE AND SPHERICAL FRAMEWORKS

A Study of the Rigidity of Regular Polytopes

INFINITESIMALLY RIGID POLYHEDRA. I. STATICS OF FRAMEWORKS

4. Simplicial Complexes and Simplicial Homology

CHAPTER 5 SYSTEMS OF EQUATIONS. x y

Math 414 Lecture 2 Everyone have a laptop?

MATH 890 HOMEWORK 2 DAVID MEREDITH

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Pick s Theorem and Lattice Point Geometry

Vector Algebra Transformations. Lecture 4

DRAFT: Analysis of Skew Tensegrity Prisms

The angle measure at for example the vertex A is denoted by m A, or m BAC.

Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis 1 Warm-Up to Ponder

arxiv: v1 [cs.cc] 30 Jun 2017

Lecture 9: Linear Programming

A VERTICAL LOOK AT KEY CONCEPTS AND PROCEDURES GEOMETRY

Geometry. Instructional Activities:

Course: Geometry PAP Prosper ISD Course Map Grade Level: Estimated Time Frame 6-7 Block Days. Unit Title

Rubber bands. Chapter Rubber band representation

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

Contents. Preface... VII. Part I Classical Topics Revisited

Lecture 3: Convex sets

Tensegrity frameworks: Static analysis review.

Final Exam 1:15-3:15 pm Thursday, December 13, 2018

Multi-tiling and equidecomposability of polytopes by lattice translates

Geometry Practice Questions Semester 1

Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Computational Geometry: Lecture 5

Geometric Transformations

INFINITESIMALLY RIGID POLYHEDRA. II: MODIFIED SPHERICAL FRAMEWORKS

Lesson 17. Geometry and Algebra of Corner Points

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

On the Generic Rigidity of Bar-Frameworks

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that

2D Object Definition (1/3)

Unit 1, Lesson 1: Moving in the Plane

This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane?

Geometry/Pre AP Geometry Common Core Standards

maximize c, x subject to Ax b,

Merging Globally Rigid Formations of Mobile Autonomous Agents

Classification of All Crescent Configurations on Four and Five Points

Abstract. Introduction

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

This image cannot currently be displayed. Course Catalog. Geometry Glynlyon, Inc.

Mathematics Curriculum

Unit 5: Polygons and Quadrilaterals

Realizing Planar Graphs as Convex Polytopes. Günter Rote Freie Universität Berlin

Instructional Unit CPM Geometry Unit Content Objective Performance Indicator Performance Task State Standards Code:

Translations. Geometric Image Transformations. Two-Dimensional Geometric Transforms. Groups and Composition

Polytopes Course Notes

Virginia Geometry, Semester A

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D.

Curriculum Catalog

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES

Guided Problem Solving

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where

Geometry Geometry Grade Grade Grade

2D/3D Geometric Transformations and Scene Graphs

Make geometric constructions. (Formalize and explain processes)

Directed Graphs, Decompositions, and Spatial Linkages

Understand the concept of volume M.TE Build solids with unit cubes and state their volumes.

Geometry. (F) analyze mathematical relationships to connect and communicate mathematical ideas; and

Straight Line motion with rigid sets

3 Identify shapes as two-dimensional (lying in a plane, flat ) or three-dimensional ( solid ).

61 RIGIDITY AND SCENE ANALYSIS

Lawrence Public Schools Mathematics Curriculum Map, Geometry

Contents COORDINATE METHODS REGRESSION AND CORRELATION

GEOMETRY CCR MATH STANDARDS

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Carnegie Learning High School Math Series: Geometry Indiana Standards Worktext Correlations

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts

Agile Mind Geometry Scope and Sequence, Common Core State Standards for Mathematics

Standards to Topics. Common Core State Standards 2010 Geometry

Common Core Specifications for Geometry

Geometry. Cluster: Experiment with transformations in the plane. G.CO.1 G.CO.2. Common Core Institute

arxiv: v1 [math.co] 25 Sep 2015

Inverse and Implicit functions

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

The Simplex Algorithm

Computer Science 280 Fall 2002 Homework 10 Solutions

GEOMETRY. Changes to the original 2010 COS is in red. If it is red and crossed out, it has been moved to another course.

Unit 3: Triangles and Polygons

CORRELATION TO GEORGIA QUALITY CORE CURRICULUM FOR GEOMETRY (GRADES 9-12)

Prentice Hall CME Project Geometry 2009

Shapes & Transformations and Angles & Measurements Spatial Visualization and Reflections a.) b.) c.) d.) a.) b.) c.)

YEC Geometry Scope and Sequence Pacing Guide

Finite Math - J-term Homework. Section Inverse of a Square Matrix

104, 107, 108, 109, 114, 119, , 129, 139, 141, , , , , 180, , , 128 Ch Ch1-36

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

Pearson Mathematics Geometry

Mathematics Standards for High School Geometry

Arizona Academic Standards

8.G Triangle congruence with coordinates

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

Unit Activity Correlations to Common Core State Standards. Geometry. Table of Contents. Geometry 1 Statistics and Probability 8

Transcription:

The basics of rigidity Lectures I and II Session on Granular Matter Institut Henri Poincaré R. Connelly Cornell University Department of Mathematics 1

What determines rigidity? 2

What determines rigidity? The physics of the materials. 3

What determines rigidity? The physics of the materials. The external forces on the structure. 4

What determines rigidity? The physics of the materials. The external forces on the structure. The combinatorics/topology of the structure. 5

What determines rigidity? The physics of the materials. The external forces on the structure. The combinatorics/topology of the structure. THE GEOMETRY OF THE STRUCTURE. 6

What model? 7

What model? My favorite is a tensegrity. Cable Bar Strut 8

The constraints Cables can decrease in length or stay the same length, but NOT increase in length. Bars must stay the same length. Struts can increase in length or stay the same length, but NOT decrease in length. 9

An example: Packings of circles Place a vertex at the center of each circle. Place a strut between the centers of every pair of touching circles, and from the center of a circle to the point on the boundary of the container that holds the circles. The boundary vertices are pinned. 10

What sort of rigidity/stablility? 11

What sort of rigidity/stablility? Two configurations p and q are congruent if every distance between vertices of p is the same for the corresponding distance for corresponding vertices of q. A tensegrity structure with configuration p is rigid if every other configuration q sufficiently close to p satisfying the member (i.e. cable, bar, strut) constraints is congruent to p. 12

Examples of rigid structures Bar frameworks in the plane. Bar frameworks in space. The edges of a convex triangulated polyhedral surface. Tensegrities in the plane, but rigid in space. 13

Examples of rigid structures A square grid of bars with some diagonal bracing. (Bolker, Crapo 1979) 14

Examples of rigid structures A bar framework in the plane with the boundary vertices pinned. Internal bars are deleted with a certain probability p. 15

Examples of rigid structures A cable framework in the plane with the boundary vertices pinned. Internal bars are deleted with a certain probability p. 16

Examples of flexible structures 17

Examples of flexible structures 18

Examples of flexible structures 19

Examples of flexible structures 20

Examples of flexible structures 21

Examples of flexible structures 22

Examples of flexible structures 23

Examples of flexible structures 24

Examples of flexible structures 25

Examples of flexible structures 26

What sort of rigidity/stablility? There are two equivalent concepts of rigidity that are a natural beginning first step. Infinitesimal rigidity, which thinks in terms of infinitesimal displacements, i.e. velocity vectors, and Static rigidity, which thinks in terms of forces and loads on the structure. 27

Infinitesimal Flexes (or Motions) An infinitesimal flex p of a (tensegrity) structure is a vector p i assigned to each vertex p i of the tensegrity such that: (p i - p j )(p i - p j ) 0, when {i, j} is a cable. (p i - p j )(p i - p j ) = 0, when {i, j} is a bar. (p i - p j )(p i - p j ) 0, when {i, j} is a strut. 28

Trivialities An infinitesimal flex p = (p 1, p 2, p n ) is trivial if it is the derivative at t=0 of smooth family of congruence of the ambient space. In 3-space this means that there are vectors r and T such that, for all i = 1, 2,, n p i = r p i + T. Taking the cross product with r is an infinitesimal rotation, and adding T is an infinitesimal translation. It is easy to check that such a p is always an infinitesimal flex. 29

Infinitesimal rigidity A tensegrity framework is infinitesimally rigid if every infinitesimal flex is trivial. This depends on the ambient dimension. There is always a minimum number of constraints that must be satisfied. An alternative is to pin some of the vertices, so that the only trivial infinitesimal flex is the 0 infinitesimal flex. 30

Examples of infinitesimally rigid structures in the plane. A strut framework in the plane with the boundary vertices pinned. A bar framework in the plane with the boundary vertices pinned. Internal bars are deleted with a certain probability p. A cable framework in the plane with the boundary vertices pinned. Internal bars are deleted with a certain probability p. 31

Examples of infinitesimally rigid structures in space Convex polyhedral surfaces Each face is a triangle (Max Dehn 1916) Each face is triangulated with no new vertices. (A. D. Alexandrov 1958) Each face has cables so that it is infinitesimally rigid in its plane. (Connelly, Whiteley, Roth 1980's) Each face is triangulated with no vertices inside a face. (A. D. Alexandrov 1958) 32

Infinitesimally flexible structures in the plane Mathematical language. Engineering language. A flexible bar framework with an infinitesimal flex. An infinitesimal mechanism that is a "finite" mechanism. p 1 p 2 A rigid bar framework with an infinitesimal flex. An infinitesimal mechanism that is NOT a finite mechanism. p' p' 2 1 p 1 p' 1 The vectors of the infinitesimal flex are in red and attached to the corresponding vertex. If the vector is not shown, it is assumed that it is the 0 vector, and effectively that vertex is pinned. If one end of a bar is pinned, then the vector of the infinitesimal flex at the other end must be perpendicular to the bar. For a bar, in general the projection of the vector at the ends of the bar onto the line of the bar (shown in green above) must be the same length and direction. 33

Infinitesimally flexible structures in space Mathematical language. Engineering language. A flexible bar framework with an infinitesimal flex. An infinitesimal mechanism that is a "finite" mechanism. A rigid bar framework with an infinitesimal flex. An infinitesimal mechanism that is NOT a finite mechanism. Any triangulated polyhedral surface that has a vertex in the relative interior of a face will have an infinitesimal flex as indicated above. 34

Calculating infinitesimal rigidity for bar frameworks When {i, j} is a bar, we have (p i - p j )(p i - p j ) = 0. Think of p as the unknown and solve: R(p)p = 0, where i j R(p) = t (p - p)...... i j (p - p) 0 j i t {i,j} p' = p' i p' j e x nd nd x 1 t ( ) is the transpose taking a column vector to a row vector. 35

Counting Suppose that the bar graph G has e bars and n vertices in dimension d, and that the configuration p= (p 1, p 2, p n ) does not lie in a (d-1)- dimensional hyperplane. Then the space of trivial infinitesimal flexes is d(d+1)/2 dimensional. So if G(p) is infinitesimally rigid in E d, the rank of the rigidity matrix R(p) must be nd-d(d+1)/2, and the number of rows e nd-d(d+1)/2. For the plane d=2, e 2n-3. For space d=3, e 3n-6. 36

Counting for tensegrities If G(p) is a tensegrity framework with n vertices and e members that is infinitesimally rigid in E d, then some constraints are given by inequalities instead of equality constraints. So we need at least one more member. That is e nd-d(d+1)/2 + 1. For the plane d=2, e 2n-2. For space d=3, e 3n-5. 37

Counting for pinned frameworks When the framework has some pinned vertices, the trivial infinitesimal flexes are just p = 0. So for bar frameworks n nonpinned vertices and e members, e nd. For tensegrity frameworks, e nd + 1. 38

The rigidity map For a graph G, the rigidity map f: E nd -> E e is the function that assigns to each configuration p of n vertices in d-space, the squared lengths of edges of G, f(p)=(..., p i - p j 2,...), where e is the number of edges of G. The rigidity matrix R(p) = df is the differential of f. Basic general theorem: If a (bar) framework is infinitesimally rigid in E d, then it is rigid in E d. Proof: Apply the inverse function theorem to f. // We have seen examples where the converse of this theorem is false. 39

An application to mechanisms Suppose that an infinitesimally rigid bar framework in the plane has e bars, n vertices, and e = 2n -3. If you remove one bar, then it becomes a mechanism, by applying the inverse function theorem. n = 7, 2n - 3 = 11 = e, and replacing a bar by a cable creates a flexible framework. 40

Forces A force F=(F 1, F 2,, F n ) is a row vector F i assigned to each vertex i of a configuration p=(p 1, p 2, p n ). F is called an equilibrium force if as a vector in E nd, it is orthogonal to the linear subspace of trivial infinitesimal flexes. In physics this means that F has no linear or angular momentum. In E 3 it satisfies the following equations: S i F i = 0, S i F i x p i = 0. 41

Example of equilibrium forces For 3 forces at applied at 3 points, the angular momentum condition implies that the line extending the 3 vectors must go through a point. The linear momentum condition implies is just that the vector sum is 0. Note that in dimension 3 the equilibrium condition is 6 linear equations. In dimension 2 it is 3 linear equations. 42

Stresses A stress defined for a tensegrity framework is a scalar w ij =w ji assigned to each member {i,j} (=cable, bar, strut). We write w=(,w ij, ) as a single row vector. We say w is proper when w ij 0 for {i,j} a cable, w ij 0 for {i,j} a strut. The stress for a bar can be either sign. (These should be properly called stress coefficients. A stress is normally a force, but for brevity we stay with calling these simply stresses.) 43

Resolution of forces Suppose a force F=(F 1, F 2,, F n ) is assigned to a configuration p=(p 1, p 2, p n ) in E d. (F is often called a load as well.) For a given tensegrity graph G, we say that a (proper) stress w=(,w ij, ) resolves F, if the following equilibrium equation holds at every vertex i. F i + S j w ij (p j -p i ) = 0. Note that if F is resolved by the stress w, then F is necessarily an equilibrium force. 44

An example of a resolution A force diagram demonstrating the equilibrium condition at one vertex. Each segment, except the force F, represents w (p - p ). i ij j i 45

Static rigidity A tensegrity framework G(p) is called statically rigid if every equilibrium force F can be resolved by a proper stress w. In terms of the rigidity matrix this says that for every equilibrium force F there is a proper stress w, such that F + wr(p) = 0. Theorem: A tensegrity framework G(p) is statically rigid if and only if it is infinitesimally rigid. 46

Comments When the configuration p=(p 1, p 2, p n ) in E d does not lie in a hyperplane, a bar framework is statically and infinitesimally rigid if and only if the rank of the rigidity matrix R(p) is nd-d(d+1)/2. If a statically rigid tensegrity framework has at least one cable or strut, it requires at least ndd(d+1)/2+1 members altogether. Thus there must be at least 2n-2 members in the plane and 3n-5 members in 3-space. 47

More Comments If a stress w resolves the 0 force, i.e. wr(p) = 0, it is called a self stress or an equilibrium stress. When there is exactly one solution to the equilibrium equations F + wr(p) = 0, the framework is called statically determinant, otherwise it is called statically indeterminant. 48

Convex surfaces with all faces triangles Consider a bar framework G(p) composed of all the vertices and edges of a convex polytope P with all faces triangles. Let n be the number of vertices, e the number of edges (i.e. bars), and f the number of faces of P. Then n - e + f = 2 (Euler s formula) 2e = 3f (All faces triangles). This implies that e = 3n - 6. 49

Convex surfaces with all faces triangles Recall that a bar framework G(p) is infinitesimally rigid in E 3 if and only if the rank of the rigidity matrix R(p) is 3n-6, the number of rows of R(p) in this case. This means that this G(p) is infinitesimally rigid in E 3 if and only if the only self stress for G(p) is 0. This is the case: Theorem (M. Dehn 1916): The bar framework G(p) composed of all the vertices and edges of a convex polytope P with all faces triangles is statically rigid in E 3. 50

Static rigidity for Tensegrities When G(p) does not consist just of bars, the determination of static and infinitesimal rigidity is a linear programming feasibility problem: Solve: (p i - p j )(p i - p j ) 0, when {i, j} is a cable. (p i - p j )(p i - p j ) = 0, when {i, j} is a bar. (p i - p j )(p i - p j ) 0, when {i, j} is a strut. For p = (p 1, p 2, p n ) non-trivial. 51

Static rigidity for Tensegrities There is a useful insight to understand tensegrity frameworks in terms bar frameworks: Theorem (B. Roth-W. Whiteley 1981): A tensegrity framework G(p) is infinitesimally rigid in E d if and only if G 0 (p) is infinitesimally rigid, where G 0 replaces every member with a bar, and G(p) has a proper self stress w, where w ij is not 0 for all cables and struts {i,j}. 52

Proof of the Roth-Whiteley Thm. Suppose that a tensegrity framework G(p) is statically rigid (in E d ), and {i,j} is a cable. Let F(i,j)=(0, p j -p i, 0,0, p i -p j, 0 ) be the equilibrium force obtained by applying p j -p i at p i, and p i -p j at p j. Then there is a proper stress w(i,j) resolving F(i,j). But adding 1 to the stress w ij in F(i,j) creates a self stress for G(p) that is non-zero for the member {i,j}. Doing this for all the cables, similarly for the struts, and adding these self stresses all together creates a self stress for G(p) that is nonzero for all the cables and struts. 53

Proof of the Roth-Whiteley Thm. Suppose that w=(,w ij, ) is a proper self stress that is non-zero for all cables and struts, and that the underlying bar framework G 0 (p) is infinitesimally rigid in E d. Let p = (p 1, p 2, p n ) be an infinitesimal flex of G(p). Then wr(p) = 0, by the equilibrium condition. Furthermore, wr(p)p = S i<j w ij (p i -p j )(p i -p j ) < 0 unless (p i -p j )(p i -p j )=0 for each {i,j} a cable or strut. So p is an infinitesimal flex of G 0 (p), the underlying bar framework, and so must be trivial. 54

More Comments If a framework is such that it is statically rigid and statically determinant then it is called isostatic. Any convex triangulated polyhedral surface in 3- space is isostatic as a bar framework. If any tensegrity framework has a strut or a cable, then it must NOT be isostatic by the Roth- Whiteley theorem. For example, if G has a cable or strut, and F is any equilibrium force, F can be resolved with a proper stress that is 0 on some cable or strut. 55

An application As a strut tensegrity framework, this is statically rigid. Replacing all the struts by bars results in a statically rigid bar framework. The grey vertices are pinned. Assigning a stress of -1 on all the members is an equilibrium self stress. There is no need for equilibrium at the pinned vertices. 56

A Handy Tool Suppose you have an infinitesimally rigid bar framework in the plane with two distinct vertices p 1 and p 2. Attach another vertex p 3 with two bars to p 1 and p 2 so that p 3 is not on the line connecting p 1 and p 2. Then the new bar framework is infinitesimally rigid. Statically rigid Also statically rigid 57

Another application The Kagome lattice 58

Another application The associated strut framework is infinitesimally rigid because... 59

Another application The bar framework can be constructed from the outside in... 60

Another application The bar framework can be constructed from the outside in... 61

Another application The bar framework can be constructed from the outside in... 62

Another application The bar framework can be constructed from the outside in... 63

Another application The bar framework can be constructed from the outside in... 64

Another application The bar framework can be constructed from the outside in... 65

Another application The bar framework can be constructed from the outside in... 66

Another application The bar framework can be constructed from the outside in... 67

Another application This bar framework is infinitesimally rigid in the plane. 68

Another application When the purple members are inserted, the strut framework has a stress where all stresses are -1. 69