S&C Circuit-Switchers Mark VI

Similar documents
Purpose of High Voltage Circuit Switchers

Specif ications. S&C Alduti-Rupter Switches Outdoor Distribution (14.4 kv through 69 kv)

Specifications. S&C Line-Rupters. For Line and Cable Switching. Outdoor Transmission (115 kv through 230 kv) Conditions of Sale

S&C IntelliRupter PulseCloser Fault Interrupter Overhead Source-Transfer Application

3a. IEM Indoor Metal Clad Medium Voltage Switchgear 25KV a. Section INDOOR METAL CLAD MEDIUM VOLTAGE SWTICHGEAR (Std.

Elastimold Molded Vacuum Recloser - MVR

The City of Winnipeg Dry Type Transformers up to 600 V Primary Section Bid Opportunity No Page 1 of 2

ELG4125: System Protection

Medium Voltage Metal-Enclosed Power Capacitor Banks

PLT. Breaker-based transfer switch open, closed or soft transition amps. Specification sheet

Bulletin 1489 Circuit Breakers. Selection Guide

S&C Scada-Mate Switching Systems Outdoor Distribution (14.4 kv through 34.5 kv)

AIR COOLED MODULAR RECTIFIER

S&C IntelliRupter PulseCloser Outdoor Distribution (15.5 kv and 27 kv)

5.1. Motor Protection and Monitoring. Contents. Product Overview. Monitoring Relays. D64R Series Digital Ground Fault Relays...

SmartClose 3-phase, Synchronous Close Vacuum Capacitor Switch

SECTION ENCLOSED SWITCHES AND CIRCUIT BREAKERS

60103 Circuit Breaker

SPECIAL SPECIFICATION 1864 Pole Mounted Cabinet

Metal-enclosed interrupter 5 kv-15 kv usa.siemens.com/siebreak

Fundamentals of Circuit Breaker Maintenance. AVO Training Institute, Inc. 2018

SERIES SD3800 / SD3810 SPECIFICATION

209/219/229 Multi-Pole Circuit Protectors 202 branch circuit applications such as EDP, air conditioners, panel boards

Specif ications. S&C Remote Supervisory Vista Underground Distribution Switchgear Outdoor Distribution (15.5 kv through 38 kv)

Specifications. S&C Loadbuster Disconnect Switches Outdoor Distribution (14.4 kv through 34.5 kv)

Magnetic Circuit Protectors 153. Multi-Pole Circuit Protectors 154. APL/UPL, 205/295 Barriers 155. Configurations 156. Operating Characteristics 158

SECTION SWITCHBOARDS

7000 SERIES Power Switching Solutions. Closed Transition Transfer Switching. Delayed Transition Transfer Switching

TECHNICAL SPECIFICATION FOR MEDIUM VOLTAGE METAL-CLAD SWITCHGEAR (15 KV)

Medium Voltage Metal-Enclosed Harmonic Filter Systems

APL/UPL, 205/295 Series Magnetic Circuit Protectors

Circuit Breaker Sentinel (CBS) for SF 6. power circuit breakers

Switching Control Sentinel (SCS) TM For all ABB independent pole operated circuit breakers

Overvoltage Protection Devices

Our Power & Control line of Business offers solutions that safely distribute power to your home or business. Our product range includes Low/Medium

Specifications. S&C Regulator Bypass Switches Type XL (Sequenced) and Type NL (Nonsequenced) Outdoor Distribution (14.

PFC Mini TM Power Factor Corrected AC-DC Switchers

MFJ-1164B AC Line RFI Filter

Current Limiting Protector

1492-SP Supplementary Protectors

24973 Circuit Breaker MINIATURE CIRCUIT BREAKER, 440VAC, 10A, CIRCUIT BREAKER TYPE: STANDARD

Maximum Reliability & Excellent Value. Features. UL Listed Withstand & Close-On Ratings. Series 300 Power Transfer Switches

SECTION SURGE PROTECTION DEVICES. A. Section includes Surge Protection Devices for low-voltage power, control, and communication equipment.

MG24434 Supplementary Protector SUPPLEMENTARY PROTECTOR, 240VAC, 16A, CIRCUIT BREAKER TYPE: STANDARD

Residual overvoltage relay

1510 MOTOR CONTROLLERS

POWER QUALITY (UNIT-3) ELECTRICAL TRANSIENT:

PGR-6101 MANUAL GROUND-FAULT & INSULATION MONITOR

Ferraz Shawmut TPMOV Principles and Operation

Voltage Dip-Proofing Inverter

PTAD Poletop Motor and Controller for Unitized Overhead Switches

UL 489 DIN rail branch circuit breakers

SACE Emax 2 Specification guide

Each VariSTAR Type AZU arrester must pass the following production tests: 100% Physical Inspection 100% Leakage Current Test 100% RIV Test

JK Series POWER DISTRIBUTION. Solid State Starters Medium Voltage A

CENTERLINE 2500 Motor Control Centers

Conveyor Belt Alignment Switches from IDEM

SECTION PANELBOARDS. A. NECA (National Electrical Contractors Association) -Standard of Installation

Quality assurance Test Facilities for Gapless ZnO Surge Arresters in High Voltage Division of CPRI, Bengaluru

Ethernet Protection A Whole Solution Han Zou, ProTek Devices

S&C 6801M Automatic Switch Operator

UL 489 DIN Rail Miniature Circuit Breakers

Section 4 Ground-Fault Protection Devices

Motor Surge Suppressors and Cable Considerations

Identify and understand the operation of common bus. After this presentation you will be able to: Identify common bus arrangements

Type SDR reclosers plus controllers and type B-2 recloser bypass switch assembly usa.siemens.com/mediumvoltage

FL MC 2000E (SM40) LC

SECTION DISCONNECT SWITCHES

UL 489 DIN Rail Miniature Circuit Breakers

Collector System Design Considerations for Wind Farms. Sean Carr Ernst Camm S&C Electric Co.

ELECTRICAL CONTROL SYSTEM COMPONENTS

MULTI 9 System Catalog UL Recognized C60N Supplementary Protectors

Geomagnetic Induced Current (GIC) Mitigation System Summary for the White Paper

Spending too much to maintain aging switchgear? Circuit breaker solutions from Square D Services.

ENhanced TEChnology. Solid insulated vacuum recloser for power distribution system thru 15kV, 27kV, 38kV. Ver.

I-Line Panelboards. Innovative design, smart bus technology, and simple installation

Magnetic and Hydraulic-Magnetic Circuit Breaker

Model 8020-KHV. Kelvin Keithley Triaxial Connector Card. Description / October 2014 *P * 1

ELSP current-limiting backup fuse

Miniature Circuit Breakers and Supplementary Protectors. Contents

It is the job of the protection system equipment to recognize and remove the fault.

Electrical Demand Specification (Reference SOP: )

TeSys IEC Contactors and Overload Relays

Technical Data Sheet Medium Current Power Surge Filters

the Santon FCS-type switch Disconnect Superior Switch Solutions

ASCO SERIES 300 Manual Transfer Switch Solutions

STATE OF NEW JERSEY BUREAUS OF ITS ENGINEERING AND SAFETY & DATA DEVELOPMENT DEPARTMENT OF TRANSPORTATION TRENTON, NEW JERSEY 08625

MULTI 9 System Catalog UL Recognized NC100H Supplementary Protectors

.2 Section General Commissioning (Cx) Requirements. .3 Section Common Work Requirements - Electrical

PanelFAST. Setting a new standard for immediate product availability with Square D Ready to Install (RTI) Panelboards

Installation Instructions for Eaton Surge Protective Device XXCFXXX10-DIN and XXCFXXX10-DIN2

1.2. Miniature Circuit Breakers and Supplementary Protectors. Contents. WMZ Circuit Breaker. UL 489 DIN Rail Miniature Circuit Breakers

Underground Distribution Switchgear

LPI SG + SS480 Spark Gap Surge Filters

1.2. Loadcenters and Circuit Breakers. Contents. Overview. Type BR Loadcenters and Circuit Breakers. Product Selection Guide.

INSTALLATION PRODUCTS CAA GROUP OCTOBER 2018 Elastimold. Tru-Break switchgear module

Surge Current Generators PG **-****

MINI-PS AC/10-15DC/8

Voltage Dip-Proofing Inverter

PROTECTION RELAYS: INNOVATIONS FOR THE BENEFIT OF THE USER

Transcription:

S&C Circuit-Switchers Mark VI Outdoor Transmission (69 kv through 138 kv)

Mark VI Circuit-Switcher with Pre-insertion Inductors... the most reliable way to switch and protect substation capacitor banks Capacitor banks are a vital source of voltage support during peak periods, when the demand for electricity is high. Capacitor bank switching and protection requires a dependable switch one that s able to function reliably several times a day, year after year. Such a switch should require little maintenance beyond routine inspections. A capacitor switch must also be able to provide transient control to ensure high-quality power to customers. For many industrial customers, transient conditions at the substation capacitor-bank bus can cause nuisance tripping of adjustable-speed drives within their facility. Transient overvoltages can also cause wear on substation insulation, degrade control wiring, and cause extra operating duty for surge arresters. S&C s Mark V Circuit-Switcher has been the best choice for capacitor bank switching and protection... its robust design and repeatable, consistent performance has given it an industry-wide reputation for excellence. S&C has again advanced the state of circuitswitcher technology with the Mark VI Circuit- Switcher. Mark VI provides the same dependable performance you ve come to expect from S&C... but with added features and benefits to meet today s demanding system and operational requirements. Mark VI Circuit-Switcher Features: provides tripping simultaneity of less than ¹ ₄ cycle. eliminates the hassle of field-filling with SF 6 gas. Interrupters provide full dielectric ratings when open. Mark VI uses the same robust high-speed disconnect as Mark V Circuit- Switcher and the heavy-duty Mark VI CS-1A Switch Operator. 2

Mark VI Circuit-Switcher switch and protect single and back-to-back capacitor banks... locally The Mark VI Circuit-Switcher, with its 31.5-kA fault interrupting capability and 3-cycle interrupting time, can protect against faults on the capacitor bank bus, as well as bolted faults across a series group of capacitors. There is no need for a circuit breaker... either locally or downstream to interrupt fault current. Add S&C s pre-insertion inductors and the Mark VI Circuit-Switcher can switch, provide fault protection, and mitigate transient overvoltages... all with one device. Mark VI Circuit-Switcher for Single Shunt Capacitor Banks In single shunt capacitor-bank applications, like the one shown in Figure 1, Mark VI Circuit-Switcher offers an economical solution for switching and protection. Current transformers can be mounted directly on the Mark VI mounting pedestals. Add preinsertion inductors and Mark VI becomes an effective and economical means to combine switching, protection at full available fault current, and transient overvoltage control in one device. Mark VI Circuit-Switcher for Back-to- Back Shunt Capacitor Banks Mark VI Circuit-Switcher can also be used in backto-back applications on both banks, as shown in Figure 2. In the past, a device with higher protective interrupting capability might have been required for such applications: Figure 3 illustrates a circuit breaker applied upstream of the circuit-switchers to provide full-fault-current protection. With its 31.5 ka interrupting performance, Mark VI Circuit-Switcher allows a single type of device to switch and protect both banks eliminating the breaker. The Mark VI eliminates the timing and adjustment problems inherent to using controlled-closing circuit breakers for transient control, as well as the extra cost and maintenance associated with these special-purpose breakers. Adding pre-insertion inductors to the Mark VI Circuit-Switcher provides transient control without the need for a complicated operating scheme as is required for a controlled-closing breaker. C/S Circuit breaker C/S C/S C/S C/S Figure 1. Single shunt capacitor bank. Figure 2. Back-to-back shunt capacitor banks. Figure 3. Back-to-back shunt capacitor banks with upstream circuit breaker. 3

A Design Built on Tradition Enhanced by Innovation Mark VI Circuit-Switcher combines the robust vertical-break disconnect of the Mark V Circuit- Switcher with the innovative new interrupting technology of the Trans-Rupter II Transformer Protector providing 31.5-kA fault-interrupting ratings and increased installation flexibility. Integral Disconnect The integral disconnect is factory-assembled saving valuable installation time. The circuit-making and isolating disconnect, powered by the Mark VI CS-1A Switch Operator, is capable of opening and closing without hesitation under ³ ₄-inch ice formation. The disconnect features aluminum blades with silver-inlaid, hot-tin-dipped (except over silver inlay), high-conductivity cast-copper tongue contacts. The jaw contacts are of multi-finger, spring-loaded, silverinlaid, hard-drawn-copper reverse-loop construction to grip firmly against the tongue contact. The built-in blade-wiping action ensures a clean current-carrying surface and low-resistance current path all arcing Interrupter Quick connect control cable associated with switching is confined to the faultclosing contacts. The disconnect blade is positively toggled in the fully-closed position. The rigid galvanized steel bases simplify installation on steel structures or S&C Mounting Pedestals. Enhanced 31.5-kA Interrupters The SF 6 -gas-filled, single-gap, puffer-type interrupters are factory-filled to 75 PSIG, tested and permanently sealed. Field-filling is never needed, eliminating the risk of contaminating the interrupting medium and the need for gas-handling equipment saving installation time. The interrupters use lightweight, shatterproof, composite-polymer silicone insulation providing outstanding performance, even in contaminated environments. Each interrupter has its own permanently sealed stored-energy trip mechanism and charging motor. After the Circuit-Switcher has been called upon to trip and the disconnect has opened to establish a visible air gap, the charging motors close and charge the interrupters for coordinated operation. Each interrupter includes a built-in limit switch that prevents overcharging the trip mechanism, and ensures that the interrupter is either open or closed. Local indication of interrupter state closed or open is provided at the base of each interrupter and the interrupter position can also be monitored by SCADA Systems. Each interrupter also includes a temperature-compensated SF 6 gas-pressure gauge, with two gas-indicator levels. A remote gas-density indicator, which provides indication of the two alarms, is optionally available. Disconnect blade assembly Trip mechanism (sealed inside interrupter) A wide variety of options are available: Interrupter pole-unit quick-connect control cable plug-style connector replaces butt-splice electrical connection at interrupter junction box Complete quick-connect control cable plugstyle connector replaces conduit between the interrupter, interrupter charging motor, and Mark VI CS-1A Switch Operator Grounding switch grounds jaw-contact terminal pads of Circuit-Switcher. Includes manual operating handle Remote gas-density indicator for remote indication of two-level low-gas-density alarms. Charging motor (closes interrupter) One pole-unit of 69-kV Mark VI Circuit-Switcher. 4

Mark VI Type CS-1A Switch Operator The operator s heavy-duty motor enables high-speed, high-torque closing and opening of the disconnect providing close interphase simultaneity and long life of closing contacts, and avoiding excessive switching transients due to prolonged or unstable pre-strike arcing. All interrupter and relay wiring connections are made within the operator enclosure. The operator includes external trip and close pushbuttons, and a decoupling mechanism that allows decoupling and locking of the disconnect-blade power train in the open position. A non-resettable operation counter and mechanical position indicator are also included. The Mark VI CS-1A Switch Operator includes eight-pole auxiliary adjustable switch contacts, coupled to the motor. The Mark VI CS-1A Switch Operator features sturdy welded-aluminum enclosure construction, with baffled louvers that allow air circulation while keeping out rain. It has a gasketed, flanged door design with cam-action latch for easy opening... and a clear, safetyplate glass window that allows visual inspection of the decoupling mechanism, mechanical position indicator, and the operation counter without opening the door. The Mark VI CS-1A Switch Operator can be padlocked for safety. Available options include: Space heater thermostat, Long-lasting LED position-indicating lamps, Manual trip device, and Duplex receptacle and conveniencelight lamp holder. An assortment of auxiliary contacts are available to suit any control scheme or SCADA requirements. Open-closed position indicators Open-closed push buttons Optional duplex receptacle and convenience light lampholder Optional key interlock Interior of Mark VI CS-1A Switch Operator. Optional position indicating lamps Disconnect operating handle External decoupling handle Optional manual trip device S&C Mounting Pedestals Make Installation Easy S&C Mounting Pedestals include all necessary interphase wiring and conduit, for a simplifying installation. They re available in heights of 96, 120, or 144 inches, with phase spacings of 51 or 84 inches at 69 kv, and 84, 96, or 102 inches at 115 kv and 138 kv. 138-kV Mark VI Circuit-Switcher on S&C Mounting Pedestals. 5

Pre-insertion Inductors... Reliable Transient Control Mark VI Circuit-Switchers are available with optional pre-insertion inductors for use in shunt capacitor-bank switching and protection applications. Pre-insertion inductors offer excellent performance compared to controlled-closing schemes and pre-insertion resistors for: and thus induced transient voltage disturbances in substation low-voltage control circuits, which can cause spurious signals, insulation puncture, and component damage. a phenomenon which can lead to decreased transformer life, or even transformer failure, because of the high voltage-stress concentrations which are imposed across the transformer windings. Such overvoltages can cause nuisance operation of surge arresters. Transient control has become increasingly important as utility customers require higher levels of power quality for sensitive process-related equipment, such as adjustable-speed drives. Transient control is also important for minimizing the stresses that surges cause on utility system equipment. Pre-insertion inductors are especially suited for limiting transient overvoltages which, through voltage magnification, can result in nuisance tripping of adjustable-speed drives and other sensitive electronic devices. Voltage magnification can occur where powerfactor correction capacitors and/or voltage control capacitors are applied on the utility distribution system or on a utility customer s low-voltage bus, and is caused by a near-resonant condition between the switched capacitor bus and the capacitances at lower voltage. Pre-insertion inductors offer distinct advantages over circuit breakers using a controlled-closing relay scheme. Controlled-closing breakers are set to close each phase at voltage zero adding significant mechanical complexity and extra cost. When commissioning a controlled-closing breaker, the installer must perform many switching operations to train the adaptive control relay system all the while putting transients on the system. And controlled-closing breakers must be periodically inspected to verify that the control system is indeed closing each phase at zero voltage and hasn t drifted... if most breakers don t close within 1.5 ms of the zero setting, damaging transients can still appear on the system. Circuit-breakers equipped with pre-insertion resistors operate similarly to Circuit-Switchers with pre-insertion inductors but are mechanically complex and prone to overheating. The resistor and main contacts of the breaker must be synchronized. Synchronization is usually achieved by connecting the resistor contact rod to the breaker main-contact control rod; this arrangement requires periodic adjustment of the contacts. Pre-insertion resistors also tend to have a much-shorter electrical life. Pre-insertion inductors, with their lower resistance and hollow core, offer greater durability and heatdissipating capability than resistors... providing longer operating life and enhanced reliability. More information on S&C Pre-insertion Inductors can be found in S&C Data Bulletin 711-95, S&C Circuit- Switchers Mark V: Pre-insertion Inductor Application Guide, 34.5 kv through 230 kv. Pre-insertion inductor core Stationary arcing contact Moving arcing rod Uncontrolled back-to-back bank inrush current Jaw contact Back-to-back bank inrush current with pre-insertion inductor Inrush current during switching of back-to-back capacitor bank, with and without pre-insertion inductors. 6 Each pre-insertion inductor is comprised of two or more close-coupled layers of stainless-steel or aluminum conductor, wound along with a resin-impregnated filament-fiberglass roving, to form a hollow glassreinforced tube. An integral counter-wound stainlesssteel damping winding limits voltage across the Circuit- Switcher during opening. A layer of roving separates the layers of conductor; other layers of roving add mechanical strength and stability. The outer roving is finished with silicone-alkyd paint for all-weather durability.

MARK VI CIRCUIT-SWITCHER 50/60-HZ RATINGS kv Amperes, RMS Nom. Max BIL Cont. 4-Hour Peak Withstand 1-Sec. Fault Closing, Duty-Cycle, Two-Time1 69 72.5 350 420 630 81 900 31 500 30 000 115 123 550 420 630 81 900 31 500 30 000 138 145 650 420 630 81 900 31 500 30 000 1 For complete information, refer to S&C Specification Bulletin 712-31. MARK VI CIRCUIT-SWITCHER INTERRUPTING RATINGS Class Application Qualifications Maximum Amperes, Interrupting, RMS, Symmetrical Load Dropping1 630 3-Time 31 500f Transformer Switching and Protection Duty-Cycle Fault Interrupting23 Secondary Faults4 Internal faults see both primary and secondary faults, above 5-Time 18 900 10-Time 9 450 30-Time 3 150 69 kv 4 200 115 kv and 138 kv 2 600 Capacitor-Bank Switching and Protection Bank Current Switching Grounded capacitor banks applied on solidly grounded systems only, through 138 kv 420 Ungrounded capacitor banks applied through 138 kv 420 Fault Interrupting23f 31 500 1 Mark VI Circuit-Switchers can close, carry, and interrupt the magnetizing current of the protected transformer. 2 Rating is based on transient-recovery voltage parameters defined in the following tables of IEC Standard 60056, Edition 4.0: 1987: For Circuit-Switchers rated 69 kv: Tables IIa, XVa, and XVIa. For Circuit-Switchers rated 115 kv and 138 kv: Tables IIc, XVc, XVIc, and XVII. 3 The interrupting ratings shown are applicable for the following dutycycles: O or CO. 4 Mark VI Circuit-Switchers are suitable for transformer-primary applications where the inherent secondary-fault current the secondary-side fault current as reflected on the primary side of the transformer, assuming an infinite (zero-impedence) source does not exceed this value for a fault external to the transformer. The inherent secondary-fault current may be calculated as follows: 57.8P I = (%Z)E where I = Inherent secondary-fault current, amperes P = Transformer self-cooled three-phase rating, kva E = Primary-side phase-to-phase voltage, kv %Z = Percent transformer primary-to-secondary impedance, referred to transformer self-cooled three-phase kva rating f Mark VI Circuit-Switchers cannot be applied on systems with shortcircuit currents in excess of this value. 7

Printed in U.S.A. Descriptive Bulletin 712-30 October 11, 2010 Offices Worldwide f www.sandc.com