AT91 ARM Thumb Microcontrollers. Application Note. Migrating to an AT91SAM9G20-based System from an AT91SAM9260-based System. 1. Scope. 2.

Similar documents
AT91 ARM Thumb-based Microcontroller. Application Note. AT91SAM7X and AT91SAM7XC Microcontroller Series Schematic Check List. 1.

a clock signal and a bi-directional data signal (SCL, SDA)

AVR32752: Using the AVR32 UC3 Static Memory Controller. 32-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR1303: Use and configuration of IR communication module. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

8-megabyte, 4-megabyte, and 2-megabyte 2.7-volt Only DataFlash Cards AT45DCB008D AT45DCB004D AT45DCB002D. Not Recommended for New Design

AT91 ARM Thumb Microcontrollers. Application Note. Using the ECC Controller on AT91SAM9260/9263 and AT91SAM7SE Microcontrollers. 1.

AVR1315: Accessing the XMEGA EEPROM. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AT697E. Application Note. Checking AT697E Code for Occurrence of LDF/FPOPd Instructions Sequence with a dependency on an Odd-Numbered Register

AVR097: Migration between ATmega128 and ATmega1281/ATmega bit Microcontrollers. Application Note. Features. 1 Introduction

8-bit Microcontroller with 2K/4K/8K Bytes In-System Programmable Flash. Appendix A. Preliminary. ATtiny261 ATtiny461 ATtiny861 Automotive

AVR532: Migration from ATmega48/88/168 to ATmega48A/88A/168A. 8-bit Microcontrollers. Application Note. 1 Introduction

AVR32401: AVR32 AP7 Linux Interfacing DataFlash. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR based 125kHz RFID Evaluation Kit (Re)Programming Guide ATA2270-EK1. Overview. Fuse Settings: ISP Programming

AVR32917: picopower Board getting started. 32-bit Microcontrollers. Application Note. Preliminary. Features. 1 Introduction

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATtiny87 ATtiny167 Automotive

AVR1922: Xplain Board Controller Firmware 8-bit Microcontrollers Application Note Features 1 Introduction

AVR1503: Xplain training - XMEGA Programmable Multi Interrupt Controller 8-bit Microcontrollers Application Note Prerequisites

APPLICATION NOTE. Atmel AT03782: Using Low Power Modes in SAM4N Microcontroller. Atmel 32-bit Microcontroller. Features.

AT91 ARM Thumb Microcontrollers. Application Note. AT91 Host Flash Loader. 1. Package Contents. 2. Definition of Terms. 3.

One-channel Toggle-mode Touch Sensor IC with Power Management Functions AT42QT1012. Summary

CAN Microcontrollers. Application Note. Migrating from T89C51CC01 to AT89C51CC03. Feature Comparison

Embedded AVR Microcontroller Including RF Transmitter and Immobilizer LF Functionality for Remote Keyless Entry ATA5795. Summary.

AT91 ARM Thumb-based Microcontrollers. Application Note. AT91SAM9G20 Microcontroller Schematic Check List. 1. Introduction

Interfacing the internal serial EEPROM

AVR1508: Xplain training - XMEGA DAC 8-bit Microcontrollers Application Note Features 1 Introduction

Application Note. Microcontrollers. Using Keil FlashMon Emulator with AT89C51CC01/03 AT89C51CC01/ Summary. 2. Background overview

AVR32 UC3 Software Framework... User Manual

AVR1501: Xplain training XMEGA Timer/Counter 8-bit Microcontrollers Application Note Prerequisites 1 Introduction

AT17F Series. Application Note. Programming Circuits for AT17F Series Configurators with Xilinx FPGAs. 1. Introduction

APPLICATION NOTE. Atmel AT01080: XMEGA E Schematic Checklist. Atmel AVR XMEGA E. Features. Introduction

8-bit Microcontroller. Application Note. AVR320: Software SPI Master

CAN, 80C51, AVR, Microcontroller. Application Note

AT89ISP Programmer Cable Introduction AT89ISP Programmer Cable Parallel Port Settings Application Note AT89ISP Software AT89ISP Cable polarized

AVR1518: XMEGA-A1 Xplained Training - XMEGA Clock System. 8-bit Atmel Microcontrollers. Application Note. Prerequisites.

Trusted Platform Module AT97SC3203S. SMBus Two-Wire Interface. Summary

AVR32901: EVKLCD100/EVKLCD101 Hardware User's Guide. 32-bit Microcontrollers. Application Note. Features. 1 Introduction

Rad Hard FPGA. AT40KEL-DK Design Kit Content. Description. Kit Content. Reference Material. Support

AT89C51CC03 UART Bootloader

AT91 ARM Thumb-based Microcontrollers. Application Note. AT91SAM9260 Microcontroller Schematic Check List. 1. Introduction

ATA2270-EK1. User Guide

AVR515: Migrating from ATmega48/88/168 and ATmega48P/88P/168P/328P to ATtiny48/88. 8-bit Microcontrollers. Application Note. Features.

512K (64K x 8) 3-volt Only Flash Memory AT29LV512

ATDH2200E Programming Kit... User Guide

SAM Boot Assistant (SAM-BA)... User Guide

APPLICATION NOTE. Atmel AVR1638: XMEGA RTC Calibration. 8-bit Atmel Microcontrollers. Features. Introduction

APPLICATION NOTE. AT11008: Migration from ATxmega16D4/32D4 Revision E to Revision I. Atmel AVR XMEGA. Introduction. Features

AT91 ARM Thumb Microcontrollers. Application Note. AT91M55800A Clock Switching Considerations using Advanced Power Management Controller.

Hardware Prerequisites Atmel Xplained Pro Evaluation Kit Atmel WINC1500 extension USB Micro Cable (TypeA / MicroB)

APPLICATION NOTE. Atmel AT03304: SAM D20 I 2 C Slave Bootloader SAM D20. Description. Features

4-megabit (512K x 8) 5-volt Only 256-byte Sector Flash Memory AT29C040A

64K (8K x 8) High Speed Parallel EEPROM with Page Write and Software Data Protection AT28HC64BF

2-megabit (256K x 8) Single 2.7-volt Battery-Voltage Flash Memory AT29BV020

2-megabit (256K x 8) 5-volt Only Flash Memory AT29C020

Atmel AVR32847: Migration from/to the UC3L0 64/32/16 from/to the UC3L0 256/ bit Atmel Microcontrollers. Application Note.

8-bit RISC Microcontroller. Application Note. AVR151: Setup And Use of The SPI

1-megabit (128K x 8) 3-volt Only Flash Memory AT29LV010A

USER GUIDE EDBG. Description

APPLICATION NOTE. Atmel AVR536: Migration from ATmega644 to ATmega644A. 8-bit Atmel Microcontrollers. Introduction

EDBG. Description. Programmers and Debuggers USER GUIDE

1-megabit (128K x 8) Paged Parallel EEPROM AT28C010

Power Management and Analog Companions (PMAAC) Application Note. AT73C240 Power-On and Power-Off Sequences. 1. Scope. 2. Operating Conditions

AVR ONE!... Quick-start Guide. EVK Windows 32103C AVR ONE! 02/10

APPLICATION NOTE. Atmel AVR057: Internal RC Oscillator Calibration for ATtiny4/5/9/10/20/40. 8-bit Atmel Microcontrollers. Features.

Atmel QT600 Quick Start Guide Touch Solutions

APPLICATION NOTE. Atmel AT02260: Driving AT42QT1085. Atmel QTouch. Features. Description

AVR32015: AVR32 Studio getting started. 32-bit Microcontrollers. Application Note. Features. 1 Introduction

AT91 ARM Thumb Microcontrollers. Application Note. AT91RM9200 Microcontroller Schematic Check List. 1. Introduction

APPLICATION NOTE. AT07216: SAM G55 Schematic Checklist. Atmel SMART SAM G55. Introduction

Atmel AVR1619: XMEGA-B1 Xplained Demonstration. 8-bit Atmel Microcontrollers. Application Note. Features. 1 Introduction

APPLICATION NOTE. Atmel AT03160: Migrating Bootloader from ATxmega128A1 to other Atmel XMEGA Devices. Atmel AVR XMEGA. Features.

AT89STK-10 Starter Kit... Hardware User Guide

Ethernet1 Xplained Pro

AVR134: Real Time Clock (RTC) Using the Asynchronous Timer. Features. Introduction. AVR 8-bit Microcontrollers APPLICATION NOTE

Atmel LF-RFID Kit Comparison Chart. Application Note. Atmel LF-RFID Kit Comparison Chart. 1. Description

Section 5 SERCOM. Tasks SPI. In this section you will learn:

APPLICATION NOTE. AT03324: Atmel REB212BSMA-EK Quick Start Guide. Atmel MCU Wireless. Introduction

AT89STK-09 Starter Kit for AT83C26... User Guide

2-wire Serial EEPROM Smart Card Modules AT24C32SC AT24C64SC

AT73C246-EK1 Evaluation Kit... User Guide

APPLICATION NOTE. Atmel AVR3009: Driving QTouch Device with I 2 C Interface. Atmel QTouch. Introduction

STK521. User Guide B AVR 01/12

OLED display with pixels resolution Ambient light sensor CPU load Analog filter Quadrature Encoder with push button Digital I/O

AT60142H/HT. Rad-Hard 512Kx8 Very Low Power CMOS SRAM ERRATA-SHEET. Active Errata List. Errata History. Abbreviations. 1.

Microcontroller in a Harsh Environment. Application Note. Microcontroller in a Harsh Environment. 1. Introduction

MARC4. Application Note. Hints and Tips for Hard- and Software Developments with MARC4 Microcontrollers

APPLICATION NOTE. AT03498: Low Power Modes in SAM3 Family. Atmel AT91 ARM Cortex Microcontrollers. Introduction

Rad Hard 16 MegaBit 3.3V SRAM Multi- Chip Module AT68166H

a Serial Peripheral Interace (SPI). Embedded RISC Microcontroller Core Peripheral

AVR42772: Data Logger Demo Application on XMEGA A1U Xplained Pro. Introduction. Features. AVR XMEGA Microcontrollers APPLICATION NOTE

AVR42789: Writing to Flash on the New tinyavr Platform Using Assembly

AVR4018: Inertial Two (ATAVRSBIN2) Hardware User's Guide. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

8051 Microcontrollers. Application Note. Migration from AT89C5131 & AT89C5131A-L to AT89C5131A-M

TSC695. Application Note. Annulled Cycle Management on the TSC695. References

64K (8K x 8) Battery-Voltage Parallel EEPROM with Page Write and Software Data Protection AT28BV64B

USER GUIDE. Wireless Production Test Reference Protocol Specification Document. Atmel MCU Wireless. Description

ARM7TDMI - based Microcontroller AT91RM3400. Errata Sheet

32Kbytes on-chip SRAM. Viterbi decoding and CRC PRIME compliant 128-bit AES encryption Channel sensing and collision pre-detection

AVR501: Replacing ATtiny15 with ATtiny25. 8-bit Microcontrollers. Application Note PRELIMINARY. Features. 1 Introduction

2-wire Serial EEPROM AT24C512. Preliminary. 2-Wire Serial EEPROM 512K (65,536 x 8) Features. Description. Pin Configurations.

Atmel AVR1924: XMEGA-A1 Xplained Hardware User's Guide. 8-bit Atmel Microcontrollers. Application Note. Preliminary. Features.

Transcription:

Migrating to an AT91SAM9G20-based System from an AT91SAM9260-based System 1. Scope This application note specifies the migration from the AT91SAM9260 to the AT91SAM9G20 microcontroller and describes the differences between them. These variances lie in the Features, Package, Power Supplies, Clock Characteristics, Bus Matrix and Errata. In this document all shaded cells concern AT91SAM9G20. 2. Features The following list shows the features of the AT91SAM9G20 that differ from the AT91SAM9260. ARM926EJ-S ARM Thumb Processor with: 32-KByte Data Cache, 32-KByte Instruction Cache CPU Frequency 400 MHz Additional Embedded Memories One 64-KByte internal ROM, Single-cycle Access at Maximum Matrix Speed Two 16-KByte internal SRAM, Single-cycle Access at Maximum Matrix Speed ROM Boot from DataFlash, NAND Flash, Serial Flash, SD Memory Card and EEPROM Ethernet MAC The RX FIFO and TX FIFO Sizes are Increased to 32 Words Hardware ECC Controller Enhancement PDC Channel on TWI controller Selectable Drive to Control the I/Os Slew Rate on EBI Signals PIO Controllers All the I/O Lines are Schmitt Trigger Inputs. Required Power Supplies 0.9V to 1.1V for VDDBU, VDDCORE, VDDPLL 1.65 to 3.6V for VDDOSC 1.65V to 3.6V for VDDIOP (Peripheral I/Os) 3.0V to 3.6V for VDDUSB 3.0V to 3.6V VDDANA (Analog-to-digital Converter) Other than those mentioned here, the features for the two microprocessors are the same. AT91 ARM Thumb Microcontrollers Application Note 3. Package The AT91SAM9G20 is available in a 217-ball LFBGA package 15 x 15 mm (0.8 mm ball pitch). The SAM9G20 and the SAM9260 are pin-to-pin compatible, only power supply pins differ.

4. Power Supplies 4.1 Power Supply Range All the power supplies differ except VDDIOM and VDDANA. Table 4-1. Power supply domain Power Supplies AT91SAM9260 AT91SAM9G20 Range (V) What is powered Range (V) What is powered VDDCORE 1.65-1.95 Core 0.9-1.1 Core VDDBU 1.65-1.95 Backup 0.9-1.1 Backup VDDPLL 1.65-1.95 PLL and Oscillator 0.9-1.1 PLL VDDOSC (1) N/A N/A 1.65-3.6 Oscillator VDDANA 3.0-3.6 Analog 3.0-3.6 Analog VDDIOP0 3.0-3.6 Peripherals and USB transceivers N/A N/A VDDIOP1 1.65-3.6 N/A N/A VDDIOP - - 1.65-3.6 All peripherals VDDUSB (2) - - 3.0-3.6 USB transceivers VDDIOM 1.65-1.95 or 3.0-3.6 Memories 1.65-1.95 or 3.0-3.6 Memories Notes: 1. The ball (L4) used for VDDOSC on the AT91SAM9G20 is a VDDIOP0 on AT91SAM9260. The VDDOSC power supply pin draws small current, but it is noise sensitive. Care must be taken in VDDOSC power supply routing, decoupling and also on bypass capacitors. Figure 4-1. VDDOSC Power Supply 1.65 to 3.6V Decoupling Filter 10µF 0.1µF VDDOSC 2. On the AT91SAM9260, the USB transceiver is powered by VDDIOP0. VDDUSB is only available on AT91SAM9G20 because VDDIOP could be 1.8V. 2 Application Note

Application Note 4.2 Power Supply Constraints at Startup The AT91SAM9G20 board design must comply with the power-up and power-down sequence guidelines below to guarantee reliable operation of the device. Any deviation from these sequences may lead to the following situations: Excessive current consumption during the power-up phase which, in worse case, can result in irreversible damage to the device. Prevent the device from booting. 4.2.1 Power-up Sequence Table 4-2. Power-on-Reset Characteristics Symbol Parameters Conditions Min Typ Max Units V th+ Threshold Voltage Rising 0.5 0.70 0.89 V V th- Threshold Voltage Falling 0.4 0.60 0.85 V T RES Reset Time 30 70 130 µs VDDCORE and VDDBU are controlled by internal POR (Power-on-Reset) to guarantee that these power sources reach their target values prior to the release of POR. VDDIOM and VDDIOP must NOT be powered until VDDCORE has reached a level superior to V th+. VDDIOM and VDDIOP must be >= to 0.7V within (T RES + T3) after VDDCORE has reached V th+. VDDIOM and VDDIOP must reach V OH (2.6V) within (T RES + T3 + T4) after VDDCORE has reached V th+ T RES is a POR characteristic T3 = 3 x T SLCK T4 = 16 x T SLCK The T SLCK min (22 µs) is obtained for the maximum frequency of the internal RC oscillator (44 khz). T RES = 30 µs T3 = 66 µs T4 = 352 µs 3

Figure 4-2. V VDDCORE and V VDDIO Constraints at Power-up VDD (V) VDDIOtyp Voh VDDIO VDDIO > VOH VDDCOREtyp 0.7V Vth+ VDDCORE <--------------------- T1---------------------> <--Tres -> <T3> <------------ T4-----------> t Core Supply POR output SLCK 4.2.2 Power-Down Sequence Switch-off the VDDIOM and VDDIOP power supply prior to or at the same time as VDDCORE. No power-up or power-down restrictions apply to VDDBU, VDDPLL, VDDANA and VDDUSB. 5. Clock Characteristics 5.1 On Chip RC Oscillator Table 5-1. RC characteristics RC Characteristics AT91SAM9260 AT91SAM9G20 Startup time 240 µs 150 µs 5.2 Boot ROM Crystal Frequency Support 5.2.1 With Internal RC Oscillator The following crystal descriptions only give acceptable USB clock frequency accuracy for the Boot ROM on the AT91SAM9G20. Table 5-2. Reduced Crystal Table (MHz) OSCSEL = 0 3.0 8.0 18.432 Other Boot on DBGU Yes Yes Yes Yes Boot on USB Yes Yes Yes No 4 Application Note

Application Note.. Table 5-3. Reduced Crystal Table (MHz) OSCSEL = 0 and Main Oscillator is Bypassed 3.0 8.0 20.0 50.0 Other Boot on DBGU Yes Yes Yes Yes Yes Boot on USB Yes Yes Yes Yes No 5.2.2 With External 32768 Hz Crystal The following crystal descriptions only give acceptable USB clock frequency accuracy for Boot ROM on the AT91SAM9G20. Table 5-4. Large Crystal Table (MHz) OSCSEL = 1 3.0 3.6864 3.84 4.0 4.9152 5.24288 6.0 6.144 6.4 6.5536 7.3728 8.0 9.8304 10.0 11.05920 12.0 12.288 14.31818 14.7456 16.0 16.367667 17.734470 18.432 20.0 5.3 PLLA. Table 5-5. Large Crystal Table (MHz) OSCSEL = 1 and Main Oscillator is Bypassed 3.0 3.6864 3.84 4.0 4.9152 5.24288 6.0 6.144 6.4 6.5536 7.3728 8.0 9.8304 10.0 11.05920 12.0 12.288 14.31818 14.7456 16.0 16.367667 17.734470 18.432 20.0 24.0 24.576 25.0 28.224 32.0 33.0 40.0 48.0 50.0. Table 5-6. PLLA Characteristics PLLA Characteristics AT91SAM9260 AT91SAM9G20 Range 80-240 MHz 400-800 MHz MULA 1-1047 1-254 DIVA 1-255 1-255 Entry frequency 1-32 MHz 2-32 MHz Embedded PLL Filter No Yes The PLLRCA pin on the AT91SAM9260 is replaced by an NC (not connected) pin on the AT91SAM9G20. The filter for the PLLA is embedded in this new device. Do not connect this pin. 5

Table 5-7. AT91SAM9260 PLLA Frequency Regarding ICPPLLA and OUTA PLL frequency range (MHz) ICPPLLA OUTA 190-240 1 1 0 80-200 1 0 0. Table 5-8. AT91SAM9G20 PLLA Frequency Regarding ICPPLLA and OUTA PLL frequency range (MHz) ICPPLLA OUTA 745-800 0 0 0 695-750 0 0 1 645-700 0 1 0 595-650 0 1 1 545-600 1 0 0 495-550 1 0 1 445-500 1 1 0 400-450 1 1 1 5.4 PLLB Table 5-9. PLLB Characteristics PLLB Characteristics AT91SAM9260 AT91SAM9G20 Range 70-130 MHz 30-100 MHz MULB 1-1047 1-62 DIVB 1-255 1-255 OUTB 01 00 Entry frequency 1-5 MHz 2-32 MHz Embedded PLL Filter Yes Yes 5.5 Processor/Master Clock A new field (PDIV) has been added to program the processor speed. Table 5-10. Processor/Master Clock Characteristics AT91SAM9260 AT91SAM9G20 Processor Max frequency 180 MHz 400 MHz Bus Max frequency 90 MHz 133 MHz 6 Application Note

Application Note Table 5-10. Master clock divider MDIV 1, 2, 4 1, 2, 4, 6 Processor clock div. PDIV N/A 1, 2 Current consumption on VDDCORE in Active Mode Processor/Master Clock 130 ma @ 180 / 90 MHz 50 ma @ 400 / 133 MHz 5.6 SDRAM Clock Table 5-11. SDRAM clocks Characteristics AT91SAM9260 AT91SAM9G20 SDCK Max frequency @ 1.8V (load = 30pF) 100 MHz 133 MHz SDCK Max frequency @ 3.3V (load = 50pF) 100 MHz 133 MHz The rising and falling times of the EBI signals can be adapted using the selectable drive function located in the EBI_CSA register. 7

6. Bus Matrix Masters. Table 6-1. List of Bus Matrix Masters Master AT91SAM9260 AT91SAM9G20 Master 0 ARM926 Instruction ARM926 Instruction Master 1 ARM926 Data ARM926 Data Master 2 PDC PDC Master 3 USB Host DMA ISI Controller Master 4 ISI Controller Ethernet MAC Master 5 Ethernet MAC USB Host DMA 7. ECC Controller Table 7-1. ECC Controller Connections Device AT91SAM9260 AT91SAM9G20 ECC Connection 1 ECC per page 1 ECC per page 1 ECC per 256 bytes of data 1 ECC per 512 bytes of data 8. I/O Considerations Adaptation serial resistors of 27 or 33 ohms are needed on each data line and address line to limit the following: Current flowing (in order to prevent simultaneous switching noise). Falling and rising slope (reflection problems and spectral spreading). Trace ringing according to the intrinsic trace characteristics. 8 Application Note

Application Note 9. Errata The following list gives the AT91SAM9260 errata and its status, corrected or not, in the AT91SAM9G20. For a detailed description of the errata, please refer to the errata section in the AT91SAM9260 datasheet. Errata Section Errata Description Status Analog-to-digital Converter (ADC) All errata are fixed except Sleep Mode: Sleep Mode Boot ROM NAND Flash Boot does not work correctly Problem with RTT EMAC TX underrun may occur in some cases MCI Busy signal of R1b responses is not taken in account SDIO interrupt does not work for slot different from A Data Timeout Error Flag Data Write Operation and number of bytes Flag Reset is not correct in half duplex mode Oscillators On-chip RC startup time Bad sampling of OSCSEL SDRAM Controller All SDRAMC Errata Serial Peripheral Interface (SPI) Bad Serial Clock Generation on second chip_select when SCBR = 1, CPOL = 1 and NCPHA = 0 Baudrate set to 1 Serial Synchronous Controller (SSC) Unexpected RK clock cycle when RK outputs a clock during data transfer Incorrect first RK clock cycle when RK outputs a clock during data transfer Transmitter Limitations in Slave Mode Periodic Transmission Limitations in Master Mode Static Memory Controller (SMC) High Drive Strength System Controller Possible event loss when reading RTT_SR Two-wire Interface (TWI) Switch from slave to master mode RXRDY Flag is not reset when a Software reset is performed 9

Errata Section Errata Description Status USB Host Port (UHP) Non-ISO IN transfers ISO OUT transfers Remote Wakeup event Universal Synchronous Asynchronous Receiver Transmitter (USART) TXD signal is floating in Modem and Hardware Handshaking mode DCD is Active High instead of Low RXBRK flag error in Asynchronous Mode CTS signal in Hardware Handshake RTS not expected behavior Two characters sent if CTS rises during emission 10 Application Note

Application Note Revision History Doc. Rev Comments Change Request Ref. 6415A First issue 11

Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en- Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Product Contact Web Site www.atmel.com www.atmel.com/at91sam Technical Support AT91SAM Support Atmel techincal support Sales Contacts www.atmel.com/contacts/ Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL S TERMS AND CONDI- TIONS OF SALE LOCATED ON ATMEL S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN- TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. 2008 Atmel Corporation. All rights reserved. Atmel, Atmel logo and combinations there of, DataFlash and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM, Thumb, the ARMPowered logo and others are registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.