Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code

Similar documents
Assesing multileaf collimator effect on the build-up region using Monte Carlo method

Source Model Tuning for a 6 MV Photon Beam used in Radiotherapy

Implementation of the EGSnrc / BEAMnrc Monte Carlo code - Application to medical accelerator SATURNE43

Comparison Study of Monte Carlo Simulations and Measurements of Relative Output Factors of 6 MV Photon Beam

MCNP4C3-BASED SIMULATION OF A MEDICAL LINEAR ACCELERATOR

Megan A. Wood, M.S. Under the direction of Larry DeWerd, Ph.D. University of Wisconsin Medical Radiation Research Center (UWMRRC)

Determination of primary electron beam parameters in a Siemens Primus Linac using Monte Carlo simulation

Development a simple point source model for Elekta SL-25 linear accelerator using MCNP4C Monte Carlo code

Comparison of absorbed dose distribution 10 MV photon beam on water phantom using Monte Carlo method and Analytical Anisotropic Algorithm

Monte Carlo Methods for Accelerator Simulation and Photon Beam Modeling

Monte Carlo modeling of a Novalis TX Varian 6 MV with HD-120 multileaf collimator

Indrin Chetty Henry Ford Hospital Detroit, MI. AAPM Annual Meeting Houston 7:30-8:25 Mon 08/07/28 1/30

An investigation into the use of MMCTP to tune accelerator source parameters and testing its clinical application

Measurement of depth-dose of linear accelerator and simulation by use of Geant4 computer code

87.55.K-, Gh, km, Ca. Agility, analytic model, Elekta, Monaco, Monte Carlo, virtual source

Improvements in Monte Carlo simulation of large electron fields

Implementation of a double Gaussian source model for the BEAMnrc Monte Carlo code and its influence on small fields dose distributions

Monte Carlo evaluation of the dosimetric uncertainty in matched 6 MV Elekta and Varian linear accelerators

Artifact Mitigation in High Energy CT via Monte Carlo Simulation

A Geant4 based treatment plan verification tool: commissioning of the LINAC model and DICOM-RT interface

BRAZILIAN JOURNAL OF RADIATION SCIENCES (2018) 01-14

Radiation Beam Characterization and Dosimetry of Theratron Equinox-80 Telecobalt Machine Using BEAMnrc Monte Carlo Simulation Code

A method for determining multileaf collimator transmission and scatter for dynamic intensity modulated radiotherapy a

Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers

Monte Carlo Simulation for Neptun 10 PC Medical Linear Accelerator and Calculations of Electron Beam Parameters

IMSURE QA SOFTWARE FAST, PRECISE QA SOFTWARE

Evaluation of latent variances in Monte Carlo dose calculations with Varian TrueBeam photon phase-spaces used as a particle source

Suggesting a new design for multileaf collimator leaves based on Monte Carlo simulation of two commercial systems

Use of Monte Carlo modelling in radiotherapy linac design. David Roberts, PhD Senior Physicist Elekta

Tomotherapy Physics. Machine Twinning and Quality Assurance. Emilie Soisson, MS

A SYSTEM OF DOSIMETRIC CALCULATIONS

On compensator design for photon beam intensity-modulated conformal therapy

I Introduction 2. IV Relative dose in electron and photon beams 26 IV.A Dose and kerma per unit incident fluence... 27

The importance of accurate linear accelerator head modelling for IMRT Monte Carlo

Room scatter effects in Total Skin Electron Irradiation: Monte Carlo simulation study

Validation of GEANT4 Monte Carlo Simulation Code for 6 MV Varian Linac Photon Beam

Transitioning from pencil beam to Monte Carlo for electron dose calculations

THE SIMULATION OF THE 4 MV VARIAN LINAC WITH EXPERIMENTAL VALIDATION

FAST, precise. qa software

A virtual photon energy fluence model for Monte Carlo dose calculation

2D DOSE MEASUREMENT USING A FLAT PANEL EPID

Preface. Med. Phys. 35(9), , Mechanical QA. Radiation Survey Mechanical tests Light radiation Table, Collimator, Gantry Jaws.

BEAMDP Users Manual. C.-M. Ma and D.W.O. Rogers Ionizing Radiation Standards National Research Council of Canada, Ottawa

Machine and Physics Data Guide

UNIVERSITY OF CALGARY. Monte Carlo model of the Brainlab Novalis Classic 6 MV linac using the GATE simulation. platform. Jared K.

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 7, NUMBER 3, SUMMER 2006

Dynalog data tool for IMRT plan verification

THESIS NEUTRON PRODUCTION AND TRANSPORT AT A MEDICAL LINEAR ACCELERATOR. Submitted by. Amber Allardice

Photon beam dose distributions in 2D

AN ABSTRACT OF THE DISSERTATION OF

Suitability Study of MCNP Monte Carlo Program for Use in Medical Physics

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 1, 2014

2007 Institute of Physics Publishing. Reprinted with permission.

Basic Radiation Oncology Physics

Dose Distributions. Purpose. Isodose distributions. To familiarize the resident with dose distributions and the factors that affect them

Efficient photon treatment planning by the use of Swiss Monte Carlo Plan

Acceptance Testing and Commissioning of Monte Carlo Dose Calculation Systems. Bruce Curran University of Michigan Medical Center Ann Arbor, MI

EXTERNAL PHOTON BEAMS: PHYSICAL ASPECTS

Disclosure. Outline. Acknowledgments. Ping Xia, Ph.D., Page 1. LINAC and MLC QA for IMRT. Received research support from Siemens Medical Solutions

Output factor comparison of Monte Carlo and measurement for Varian TrueBeam 6 MV and 10 MV flattening filter-free stereotactic radiosurgery system

The MSKCC Approach to IMRT. Outline

Dosimetric characteristics of LinaTech DMLC H multi leaf collimator: Monte Carlo simulation and experimental study

Monte Carlo simulation of beam characteristics from small fields based on TrueBeam flattening-filter-free mode

Investigation of photon beam output factors for conformal radiation therapy Monte Carlo simulations and measurements

IMRT and VMAT Patient Specific QA Using 2D and 3D Detector Arrays

CLINICAL ASPECTS OF COMPACT GANTRY DESIGNS

Basics of treatment planning II

Monte Carlo investigation of collapsed versus rotated IMRT plan verification

I. INTRODUCTION. Figure 1. Radiation room model at Dongnai General Hospital

Intensity-modulated radiation therapy dose maps: the matchline effect

Monte Carlo Treatment Planning: Implementation of Clinical Systems

Release Notes for Dosimetry Check with Convolution-Superposition Collapsed Cone Algorithm (CC)

Agility MLC transmission optimization in the Monaco treatment planning system

THE WIRELESS PHANTOM PERFORM ACCURATE PATIENT QA IN LESS TIME THAN EVER!

Application of MCNP Code in Shielding Design for Radioactive Sources

Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning

Comparison of measured and Monte Carlo calculated electron beam central axis depth dose in water

Calibration and quality assurance for rounded leaf-end MLC systems

VALIDATION OF A MONTE CARLO DOSE CALCULATION ALGORITHM FOR CLINICAL ELECTRON BEAMS IN THE PRESENCE OF PHANTOMS WITH COMPLEX HETEROGENEITIES

Verification of dose calculations with a clinical treatment planning system based on a point kernel dose engine

Impact of Multileaf Collimator Configuration Parameters on the Dosimetric Accuracy of 6-Mv Intensity-Modulated Radiation Therapy Treatment Plans

Clinical implementation of photon beam flatness measurements to verify beam quality

Photon Dose Algorithms and Physics Data Modeling in modern RTP

Verification measurements of an emc algorithm using a 2D ion chamber array

Commissioning and verification of the collapsed cone convolution superposition algorithm for SBRT delivery using flattening filter-free beams

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations

Basics of treatment planning II

An Analytic Linear Accelerator Source Model for Monte Carlo Dose Calculations. I. Model Representation and Construction

Michael Speiser, Ph.D.

CBCT Equivalent Source Generation Using HVL and Beam Profile Measurements. Johnny Little PSM - Medical Physics Graduate Student University of Arizona

Evaluation of 3D Gamma index calculation implemented in two commercial dosimetry systems

Computational modelling and analysis: IOP Medical Physics Group

Shielding factors for traditional safety glasses

Volumetric Modulated Arc Therapy - Clinical Implementation. Outline. Acknowledgement. History of VMAT. IMAT Basics of IMAT

Acknowledgments. Ping Xia, Ph.D., UCSF. Pam Akazawa, CMD, UCSF. Cynthia Chuang, Ph.D., UCSF

A DOSIMETRIC MODEL FOR SMALL-FIELD ELECTRON RADIATION THERAPY A CREATIVE PROJECT (3 SEMESTER HOURS) SUBMITTED TO THE GRADUATE SCHOOL

Dosimetric impact of the 160 MLC on head and neck IMRT treatments

VALIDATION OF IN-HOUSE DOSE CALCULATION SOFTWARE FOR SUPERFICIAL X-RAY THERAPY. A Thesis. Presented to the. Faculty of. San Diego State University

UNCOMPROMISING QUALITY

Transcription:

American Journal of Biomedical Engineering 216, 6(4): 124-131 DOI: 1.5923/j.ajbe.21664.3 Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code Ankit Kajaria 1,*, Neeraj Sharma 1, Shiru Sharma 1, Satyajit Pradhan 2, Abhijit Mandal 2, Lalit. M. Aggarwal 2 1 School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, UP, India 2 Department of Radiotherapy and Radiation Medicine, Institute of Medical Science (BHU) Varanasi UP, India Abstract In this study, the BEAMnrc Monte Carlo code is used to investigate the characteristics of radiation transported through multileaf collimators (MLC) for 6 MV photon beam produced by Varian linear accelerator. We have used Monte Carlo simulation model to calculate radiation leakage as a function of field size for Varian 12-leaf MLC by accurate modelling of the complex geometry of MLC. We also calculated the effect of MLC on percentage depth dose characteristics, photon spectra and photon average energy distributions. A significant increase in MLC leakage with increase in field size has been observed in our study. Photon spectra and photon average energy distributions are found to be substantially modified by MLC as it removes lower-energy photons resulting in increase of PDDs for MLC blocked fields in comparison to the jaw define open fields. In our study, we have also calculated surface dose and electron fluence spectra for MLC and jaw define fields. Clear increments in surface dose and electron fluence spectra for MLC define fields have been observed. These results suggest that use of MLC to define treatment field increases surface dose. Keywords Monte Carlo simulation, Multileaf collimator 1. Introduction The planning aspects of intensity modulated radiation therapy (IMRT) treatment delivery rely on the use of multileaf collimators (MLC) to produce desired intensity pattern. The dose distributions for a given complex intensity pattern are very sensitive to detailed structure of MLC. To treat the desire section of a treatment field rest portion is blocked by MLC in an IMRT treatment. In these blocked segments significant portion of dose can be delivered due to radiation leakage from MLC. The contribution of MLC leakage to a point in an IMRT field can be calculated by the static field leakage multiplied by the product of the number of monitor units delivered for the IMRT field and the fraction of time the point is blocked by the MLC. In dynamic IMRT treatment large numbers of monitor units are used due to which the MLC leakage can exceed above 1% of the maximum in field dose [1]. Previously in a Monte Carlo (MC) study an increase in MLC leakage with increase in field size was reported by Kim et al. [2]. These radiation leakages from MLC must be consider in dose calculation to avoid dosimetric errors. The Monte Carlo methods have been used extensively to estimate accurate dose distributions for * Corresponding author: akajaria.rs.bme12@itbhu.ac.in (Ankit Kajaria) Published online at http://journal.sapub.org/ajbe Copyright 216 Scientific & Academic Publishing. All Rights Reserved clinical beams. Several studies have been conducted using these methods for analyzing influence of linac head components on beam characteristics [3-5]. Studies describing the beam hardening effect of flattening filter on photon energy spectra, absorbed dose and beam profiles have also been published [6]. Therefore Monte Carlo simulation model can be used to accurately calculate the effect of MLC on dose distributions for a typical modern accelerator such as Varian Clinic 6 unique performance. Our study reports on variation of radiation leakage from MLC as a function of field size for 12- leaf Varian Millennium TM Multileaf Collimator. We also calculated the effect of MLC on percentage depth dose characteristics, photon spectra and photon average energy distributions. The effect of using MLC to define treatment field on surface dose and electron fluence spectra have also being evaluated in our study. 2. Material and Methods Simulation model of Varian Clinic 6 unique performance was developed using Monte Carlo code system BEAMnrc [7, 8] in our study. To derive the best estimates for the mean energy and full width at half maximum (FWHM) of the electron beam incident on the target, Monte Carlo simulations for monoenergetic beams ranging from 5.5 to 6.2 MeV with FWHM varied from.15 to.25 cm were performed to find the best match with percentage depth dose

American Journal of Biomedical Engineering 216, 6(4): 124-131 125 (PDD) and profiles measurements. A monoenergetic source with kinetic energy of the beam 5.7 MeV and FWHM for the X and Y directions of.2 cm was found to give best agreement with measured data. Geometry and materials used to build the Monte Carlo simulation model of the linear accelerator were based on machine specifications as provided by the manufacturer Varian Medical Systems. The linac was structured in the following order: a target slab of tungsten and copper, primary collimator (tungsten), flattening filter, ion chamber, mirror, jaws (tungsten) and finally the option for 12- leaf Varian Millennium TM Multileaf Collimator. To model the geometry of 12-leaf Varian Millennium TM Multileaf Collimator special geometry package of BEAMnrc was used. The 12-leaf MLC consists of two banks of 6 leaves each. The 4 central leaves produce a.5 cm resolution at 1 cm source to surface distance (SSD) and the 2 outer leaves produce a 1. cm resolution at 1 cm SSD. All details of the leaf design were included in the Monte Carlo geometry, including the tongue-and-groove used to reduce radiation leakage through interfaces between adjacent leaves and the complex rounded leaf tip. All materials used in the Monte Carlo (MC) simulation were extracted from the 7 ICRU PEGS4 (pre-processor for Electron Gamma Shower) cross section data available in BEAMnrc, and met the specifications for the linac as provided by the manufacturer. Different stages of simulation and component module used to model various component of 6 MV photon beam produced by Varian Linac using principal features of BEAMnrc-DOSXYZnrc code [9, 1] are shown in figure 1. In the simulation of the full accelerator unit we have split the calculation into three steps in order to save time. In the first step, which takes the most computing time, 1.5 1 8 initial histories are initiated and a monoenergetic electron beam source of kinetic energy of 5.7 MeV with FWHM for the X and Y directions of.2 cm was incident on the target. The primary collimator, flattening filter and ion chamber are included in this step. The output of this step is a phase space file at plain one as show in figure 1, having information of energy, position, direction, charge and history variable for every particle exiting downstream from the end of ion chamber. Since the source and primary collimator have fixed openings, it is possible to use this phase space data for the simulation of different field sizes. This large set of particles produced in first step is used repeatedly as the input to the next step of simulation. The second step of the calculation simulates the passage of the particles through the mirror; adjustable collimators, MLC and air slab to a plane at SSD 1 cm from target. We simulate different openings of jaw as well as MLC to get field sizes from 5 5 to 2 2 cm 2 at an SSD equal to 1 cm. For the latter case in MLC define field sizes the projected jaw setting was 5 cm larger than that of MLC. In addition for MLC leakage calculations, MLC leaves were configured to fully block the open field produced by the jaw with the leaves of MLC were positioned asymmetrically with respect to the central axis. The output of this step is a phase space file at plain two as show in figure 1, having information of energy, position, direction, charge and history variable for every particle reaching the plain at SSD 1 cm from target. The data analysis program BEAMDP [11] was used to analyze the phase space data files to extract the various types of spectra of all particles reaching the plane at SSD 1 cm. The effect of MLC on photon beam characteristics was determined by calculating and comparing the photon spectra on central axis and average energy distributions at 1 cm SSD for a jaw-defined open field and the same field blocked by the MLC for various field sizes. Photon interactions within the MLC can generate secondary electrons that can contribute dose to a patient. To determine the relative dose contributions from these secondary electrons, electron spectra for MLC define and jaw define field size were also calculated in our study. In the third step of simulation, the phase space files for field sizes of 5 5 to 2 2 cm 2 at an SSD of 1 cm which were obtain at end of second step are reused by the DOSXYZnrc code as an input for dose calculations in a water phantom as shown in figure 1. We transport the particles through a water phantom of dimension 3 3 3 cm 3 with voxels size of.25.25.25 cm 3. A comprehensive set of measured dosimetric data for 6 MV photon beams where acquired using a three-dimensional (3D) phantom, Blue phontom 2 IBA Dosimetry GmbH and OmniPro-Accept 7 data acquisition software. All the measurements were performed with a Scanditronix/ Wellhofer compact ionization chamber CC13, in the water phantom. In order to validate our simulation model depth-dose curves for 6MV photon beam for field size 5 5 to 2 2 cm 2 were calculated in an on axis cylinder of radius 1 cm using Monte Carlo simulation and compare with measured data. The calculated central axis depth-dose curves were normalized to unity at the depth, d max, of the maximum dose deposition, D max. Both results measured and calculated, could then be compared with respect to the relative value of the maximum dose D max and the corresponding depth d max. Figure 2 show the comparison between the calculated depth-dose distributions and measurements for 1 1 cm 2 field size studied in this work. The comparison shows that the calculated and measured data agree within 1% of local relative dose, and 1 mm in depth at all depths and field sizes which are summarized in table 1. This simulation model was thereafter used to calculate percentage depth dose curves (PDDs) for MLC blocked field which were compared with PDDs of jaw define open field to illustrate the effect of MLC on depth dose characteristics. In addition the surface dose were evaluated and compared for jaw and MLC define fields in our study.

126 Ankit Kajaria et al.: Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code Ion chamber Primary collimator Target Flattening filter Phase space plane 1 Mirror Jaw Y1 Jaw Y2 Jaw X1 JawX2 Phase space plane 2 Water phantom Figure 1. 6 MV Varian Linac simulation model separated into three parts: (a) Treatment head fixed and variable opening part representing first, (b) second step of simulation modelled using component module of BEAMnrc code and (c) Dose Calculation inside water phantom using DOSXYZnrc code in third step 12 1 8 Relative dose 6 4 1X1-Measured 1X1-MC 2 5 1 15 2 25 3 35 Z/cm Figure 2. A comparison of measured and calculated depth doses curves of the 6MV photon beam for field size of 1 1 cm 2

American Journal of Biomedical Engineering 216, 6(4): 124-131 127 Table 1. Comparison of calculated and measured central-axis depth-dose profiles at various field sizes Field size A (cm 2 ) Location of maximum dose d max (simulated) d max (measured) Relative dose difference (ΔD max ) 5 5 1.5 1.56.2 1 1 1.5 1.52.17 15 15 1.48 1.5.13 2 2 1.38 1.4.1 3. Results MLC linkage: MLC leakage is an important parameter needed for the commissioning of a treatment-planning system. We have calculated the MLC leakage as a function of field size in our study and are presented in table 2. MLC leakage represents the dose on the central beam axis with MLC blocked fields normalized by the dose of jaw define open fields of the same field size at 1.5 cm depth for SSD 1 cm. Jaw defined open field taken as the MLC leaves, are withdrawn underneath the jaws so that to not intercept the beam, where the field size is defined by the treatment jaws only. MLC blocked fields define a field in which the MLC leaves are configured to fully block the open field produced by the jaw. To ensure that the jaws blocked the rounded tips of the leaves completely in MLC blocked fields, the leaves of MLC were positioned asymmetrically with respect to the central axis and their projected offset at 8. cm of isocenter. Table 2. Calculated MLC leakage for 6 MV photon beam for different field sizes. (Calculation were made at 1.5 cm depth and SSD 1 cm) Field size A (cm 2 ) MLC linkage 5 5 1.2 1 1 1.4 15 15 1.57 2 2 1.72 12 12 1 1 8 8 Relative dose 6 4 mlc blocked field open field Relative dose 6 4 mlc blocked field open field 2 2 5 1 15 2 25 3 35 Z/cm 5 1 15 2 25 3 35 Z/cm (a) (b) Figure 3. Comparison of relative depth dose curves calculated for MLC blocked and jaw define open fields for 6MV photon beams for field sizes: (a) 1 1 cm 2 (b) 2 2 cm 2 Table 3. Comparison of relative depth doses for MLC blocked and jaw define Open fields at two reference depths for different field sizes. A denotes the field size; D 1 and D 2 denotes relative depth dose at 1 and 2 cm depth Relative depth doses Field size A (cm 2 ) MLC blocked fields D 1 D 2 jaw define open fields MLC blocked fields jaw define open fields 5 5 68. 61.87 39.8 33.14 1 1 69.8 66.67 41.15 37.32 15 15 7.12 66.83 42.6 39.2 2 2 73.1 67.57 47.23 41.6

128 Ankit Kajaria et al.: Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code Percentage depth-dose characteristics Percentage depth-dose characteristics were calculated in our study for both MLC blocked and jaw define open fields for different field sizes. It can be seen from figure 3 that MLC blocked beam show slightly higher PDDs values in comparison to the jaw defined open beam for all field sizes. Difference in the PDDs between the two cases is evident at deeper depths and is increased with depth for all field sizes. This difference is validated by calculating the two parameters which are reported in table 3, namely, the relative dose at a depth of 1 and 2 cm (D 1, D 2 ). Our results are in good agreement with the results reported by Kim et al. [2] in which they coated an increase in PDDs for MLC blocked field in comparison to open field. 4. Analysis of Spectra The analysis has been made in four parts: (i) Photon fluences spectra Figure 4 shows central axis photon spectra as a function of energy (number of photons per MeV per incident electron on the target) for both MLC blocked and jaw define open fields for 2 2 cm 2 field size. Photon originated in target passes through the collimating system on their way to the scoring plain at an SSD 1 cm. Scoring plain is an annular region around the central axis with radius < r < 2.25 cm. The range of possible energy of photon is divided into interval (bin) of.25 MeV. The number of photon within each energy bin crossing the scoring plain is being recorded separately for both MLC blocked and jaw define open fields. In figure 4 for comparison, the fluence plots are normalized in such a way that total area under each curve equals one. The precision of calculated central-axis photon spectra is high and uncertainty in each.25 MeV wide bin is usually between 1 to 5%, except for the high-energy end of the spectra. It was observed from figure 4 that for MLC blocked field the fluence of photon were having more high energy photons in comparison to the jaw define open field. Our results are in agreement with the results reported by Kim et al. [2] in which they coated an harder photon spectra for MLC blocked field in comparison to open field..6 Fluence / MeV / incident particle.5.4.3.2 open field MLC blocked field.1 1 2 3 4 5 6 Energy (MeV) Figure 4. Photon fluences per initial electron on the target, at the top of the water phantom as a function of energy (MeV) for field size 2 2 cm 2

American Journal of Biomedical Engineering 216, 6(4): 124-131 129 (ii) Average energy distribution Photon average energy distribution as a function of off axis distance for field size 2 2 cm 2 at 1 cm SSD was calculated in our study for both MLC blocked and jaw define open fields. Considerable differences in average energy distribution for the two cases were observed which are presented in figure 5. It was observed from above distribution that mean photon energy for mlc blocked beam have a value 2.5 MeV at central axis which decrease to 1.56 MeV for jaw define open fields. This decrease in mean energy demonstrated the beam hardening effect produced by the MLC for photon beam. (iii) Electron fluence spectra Increase in electron fluence can causes the risk of placing ion chamber used for the measurement outside the range of its reliable operation. Also, it is a major component of elevated skin dose delivered to patient. Figure 6 shows the calculated electron fluence spectra as a function of off axis distance for 2 2 cm 2 field size at 1 cm SSD for both MLC and jaw define fields. In our study, it is found that the fluence of electron reaching the phantom surface increases for MLC define fields in comparison to jaw define fields. It was observed from above fluence spectra that the fluence at the centre for MLC define field is 1.23 times greater than its value for jaw define field. (iv) Surface Dose Surface dose has been calculated for different field sizes for both MLC and jaw define fields and is presented in table 4. The PDD of first scoring voxels with.25 cm thickness from the top of water phantom surface is taken as a measure of surface dose. There are differences in doses of build up region between MLC and jaw defines fields. Surface dose is affected significantly by contaminant electrons reaching the phantom surface and due to higher fluence of electron for MLC define beam and the surface dose is found to be higher in comparison to jaw defined fields. Table 4. Surface doses for MLC and jaw define fields for different field sizes Field size Surface dose for jaw define field Surface dose for MLC define field 5 5 47.8 49.43 1 1 49.4 52.32 15 15 53.2 57.39 2 2 55.19 62.88 MLC blocked field 2.5 open field Mean energy (MeV) 2 1.5 1.5 5 1 15 R (cm) Figure 5. Photon average energy distribution of the MLC blocked and jaw define open fields as a function of off axis distance for field size of 2 2 cm 2 and SSD of 1 cm

13 Ankit Kajaria et al.: Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code 8 x 1-8 Fluence / MeV / incident particle 7 6 5 4 3 MLC define field JAW define field 2 1 5 1 15 R (cm) Figure 6. Electron fluences per initial electron on target, at the top of the water phantom as a Function of off axis distance for 2 2 cm 2 field size calculated for both MLC and Jaw define field 5. Discussion Our study showed an agreement in MC calculated and measured depth-dose data within 1% of local dose, and 1 mm in depth at all depths and field size which give satisfactory validation of our simulation model for 6 MV photon beam. Thereafter we used this simulation model to calculate MLC leakage as a function of field size. It was observed that the calculated MLC leakage value increases with increase in field size. Our results are in agreement with the results reported by Kim et al. [2] in which they reported an increase in MLC leakage value with increase in field size. The calculated PDDs for MLC blocked field showed slightly higher values in comparison to the jaw define open beam for all field sizes. Differences in the PDDs between the two cases were found to increase with depth for all field sizes. In our study we calculated average energy distribution of photon as a function of off axis distance and central axis photon fluence spectra as a function of energy for both MLC blocked and jaw define open fields for 2 2 cm 2 field size. Significant increase in average energy on central axis was observed for MLC blocked field in comparison to jaw define open field. This increment in average energy is due to the removal of low energy photons by MLC which also affects the on axis photon spectra as for MLC blocked field it contains more high energy photons in comparison to the jaw define open field. In our study we calculated surface dose for both MLC and jaw define fields. Clear increment in surface dose for MLC define fields was observed. These results were further verified with the calculation of electron fluence spectra as a function of off axis distance for 2 2 cm 2 field size at 1 cm SSD for both MLC and jaw define fields. Considerable increase in electron fluence was observed for MLC define fields in comparison to jaw define fields. The possible explanation for this increment is that the use of MLC to define treatment field increases the photon interactions within the MLC which causes generation of secondary electrons. These low energy electrons contribute to surface dose. 6. Conclusions A Monte Carlo simulation model of 6 MV photon beam from Varian Clinic 6 unique performance accelerator has been developed and benchmarked against measurements. We have performed Monte Carlo simulations to study the properties of radiation transport through multileaf collimators. The results of our study showed that MLC leakage increases with increase in field size. The MLC substantially modified the photon energy spectrum by removing lower-energy photons resulting in rise of PDDs of

American Journal of Biomedical Engineering 216, 6(4): 124-131 131 MLC blocked fields in comparison to the jaw define open fields for all field sizes. The use of MLC to define treatment field increases surface dose due to increases in electrons. REFERENCES [1] Mohan, R., Arnfield, M., Tong, S., Wu, Q., & Siebers, J. (2). The impact of fluctuations in intensity patterns on the number of monitor units and the quality and accuracy of intensity modulated radiotherapy. Medical physics, 27(6), 1226-1237. [2] Kim, J. O., Siebers, J. V., Keall, P. J., Arnfield, M. R., & Mohan, R. (21). A Monte Carlo study of radiation transport through multileaf collimators. Medical physics, 28(12), 2497-256. [3] Verhaegen, F., & Seuntjens, J. (23). Monte Carlo modelling of external radiotherapy photon beams. Physics in medicine and biology, 48(21), R17. [4] Sheikh-Bagheri, D., & Rogers, D. W. O. (22). Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code. Medical physics, 29(3), 391-42. [5] Mesbahi, A., Reilly, A. J., & Thwaites, D. I. (26). Development and commissioning of a Monte Carlo photon beam model for Varian Clinac 21EX linear accelerator. Applied radiation and isotopes, 64(6), 656-662. [6] Lee, P. C. (1997). Monte Carlo simulations of the differential beam hardening effect of a flattening filter on a therapeutic x-ray beam. Medical physics, 24(9), 1485-1489. [7] Rogers, D. W. O., Faddegon, B. A., Ding, G. X., Ma, C. M., We, J., & Mackie, T. R. (1995). BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Medical physics, 22(5), 53-524. [8] Rogers, D. W. O., Walters, B., & Kawrakow, I. (21). BEAMnrc users manual. NRC Report PIRS, 59. [9] Kawrakow, I., & Walters, B. R. B. (26). Efficient photon beam dose calculations using DOSXYZnrc with BEAMnrc. Medical physics, 33(8), 346-356. [1] Walters, B., Kawrakow, I., & Rogers, D. W. O. (25). DOSXYZnrc users manual. NRC Report PIRS, 794. [11] Ma, C. M., & Rogers, D. W. O. (1995). BEAMDP users manual. NRC Report PIRS-59 (D).