CS420: Operating Systems

Similar documents
CS420: Operating Systems

Chapter 1: Introduction

Chapter 1: Introduction. Chapter 1: Introduction

Chapter 1: Introduction. Operating System Concepts 8th Edition,

Chapter 1: Introduction. Operating System Concepts 8 th Edition,

7/20/2008. What Operating Systems Do Computer-System Organization

Chapter 1: Introduction

Chapter 1: Introduction. Operating System Concepts 9 th Edit9on

Chapter 1: Introduction

European University of Lefke. Instructor: Dr. Arif SARI

DM510 Operating Systems. Jacob Aae Mikkelsen

To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization

CS370 Operating Systems

Four Components of a Computer System. Operating System Concepts 7 th Edition, Jan 12, 2005

Lecture 1 Introduction (Chapter 1 of Textbook)

Operating System Services

CS370 Operating Systems

OPERATING SYSTEMS: Lesson 1: Introduction to Operating Systems

Chapter 1: Introduction. Operating System Concepts 9 th Edit9on

Introduction to Operating Systems

Introduction. Chapter Prof. Amr El-Kadi

Introduction to Operating Systems (Part II)

Introduction. TDDI04, K. Arvidsson, IDA, Linköpings universitet Contents. What is an Operating System (OS)?

Course Details. Operating Systems with C/C++ Course Details. What is an Operating System?

CSE Opera+ng System Principles

Operating System Concepts 9 th Edit9on

Operating Systems. Lecture Course in Autumn Term 2015 University of Birmingham. Eike Ritter. September 22, 2015

The Lesson Plan of OS. The syllabus of OS. Access the lesson plan and syllabus at

Chapter 1: Introduction. Operating System Concepts 9 th Edit9on

Dinosaurs? & Dinosaur Wars. CSCI 6730 / 4730 Operating Systems. Questions? Outline & Questions. Poll? Popularity: The OS Market Share

Chapter 2: Operating-System Structures. Operating System Concepts 8 th Edition

Dinosaurs? & Dinosaur Wars. Outline & Questions. Evolution of our Textbook. Poll? Questions?

System Call System Program Linker/Loader with Examples Types of computing Environment

Introduction. Chapter Prof. Amr El-Kadi

Frederick P. Brooks tar dinosaurs tar tar tar pit

Operating Systems. Overview. Dr Alun Moon. Computing, Engineering and Information Sciences. 27th September 2011

Computer-System Architecture (cont.) Symmetrically Constructed Clusters (cont.) Advantages: 1. Greater computational power by running applications

CHAPTER 1 - INTRODUCTION. Jacob Aae Mikk elsen

Chapter 1: Introduction. Operating System Concepts 8th Edition,

Introduction. Operating Systems (Fall/Winter 2018) Yajin Zhou ( Zhejiang University

SRIMAAN COACHING CENTRE-TRB-COMPUTER INSTRUCTORS STUDY MATERIAL CONTACT: III

Lecture 1 - Operating System Overview

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017

OPERATING SYSTEMS Lecture Notes. Prepared by K.Rohini, Assistant Professor, CSE Department, GVPCEW.

Four Components of a Computer System

CS3600 SYSTEMS AND NETWORKS

CPSC 341 OS & Networks. Introduction. Dr. Yingwu Zhu

Operating Systems Spring 2013, Ort Braude College Electrical Engineering Department

Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - II OS Structures. University at Buffalo. OS Design and Implementation

OS Design Approaches. Roadmap. System Calls. Tevfik Koşar. Operating System Design and Implementation. CSE 421/521 - Operating Systems Fall 2013

CSC Operating Systems Spring Lecture - II OS Structures. Tevfik Ko!ar. Louisiana State University. January 17 th, 2007.

Announcements. Operating System Structure. Roadmap. Operating System Structure. Multitasking Example. Tevfik Ko!ar

COURSE OVERVIEW & OPERATING SYSTEMS CONCEPT Operating Systems Design Euiseong Seo

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

OS: An Overview. ICS332 Operating Systems

OPERATING SYSTEMS UNIT - 1

CSC Operating Systems Fall Lecture - II OS Structures. Tevfik Ko!ar. Louisiana State University. August 27 th, 2009.

Announcements. Computer System Organization. Roadmap. Major OS Components. Processes. Tevfik Ko!ar. CSC Operating Systems Fall 2009

OS Design Approaches. Roadmap. OS Design Approaches. Tevfik Koşar. Operating System Design and Implementation

PG-TRB COMPUTER INSTRUCTOR OPERATING SYSTEMS

Chapter 1 Introduction

HIGH PERFORMANCE COMPUTING: MODELS, METHODS, & MEANS OPERATING SYSTEMS 1

Instruction Cycle. Computer-System Architecture. Computer-System Operation. Common Functions of Interrupts. Chapter 2: Computer-System Structures

Operating System Review

Operating Systemss and Multicore Programming (1DT089)

Module 2: Computer-System Structures. Computer-System Architecture

CS420: Operating Systems. Kernel I/O Subsystem

EECS 3221 Operating System Fundamentals

EECS 3221 Operating System Fundamentals

Chapter 1: Introduction

Module 3: Operating-System Structures

Operating Systems. studykorner.org

Chapter 1: Introduction. Operating System Concepts 9 th Edit9on

Introduction to Computer Systems and Operating Systems

Processes and More. CSCI 315 Operating Systems Design Department of Computer Science

Chapter 13: I/O Systems

Computer-System Structures

CS30002: Operating Systems. Arobinda Gupta Spring 2017

Computer-System Architecture

Computer-System Architecture. Common Functions of Interrupts. Computer-System Operation. Interrupt Handling. Chapter 2: Computer-System Structures

Operating Systems Course 2 nd semester 2016/2017 Chapter 1: Introduction

ELEC 377 Operating Systems. Week 1 Class 2

Part I Overview Chapter 1: Introduction

Overview of Operating Systems

UNIT 2. OPERATING SYSTEM STRUCTURES

Principles of Operating Systems CS 446/646

Chapter 2 Computer-System Structure

Some popular Operating Systems include Linux Operating System, Windows Operating System, VMS, OS/400, AIX, z/os, etc.

EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture)

Chapter 13: I/O Systems

OPERATING SYSTEMS. Subject Code: 10CS53 I.A. Marks : 25 Hours/Week : 04 Exam Hours: 03 Total Hours : 52 Exam Marks: 100 PART A

Chapter 13: I/O Systems

Chapter 13: I/O Systems. Chapter 13: I/O Systems. Objectives. I/O Hardware. A Typical PC Bus Structure. Device I/O Port Locations on PCs (partial)

OS and Computer Architecture. Chapter 3: Operating-System Structures. Common System Components. Process Management

Chapter 12: I/O Systems

Chapter 13: I/O Systems

Chapter 12: I/O Systems. Operating System Concepts Essentials 8 th Edition

CSC Operating Systems Spring Lecture - XIX Storage and I/O - II. Tevfik Koşar. Louisiana State University.

RAID Structure. RAID Levels. RAID (cont) RAID (0 + 1) and (1 + 0) Tevfik Koşar. Hierarchical Storage Management (HSM)

UNIT 1 JAGANNATH UNIVERSITY UNIT 2. Define Operating system and its functions. Explain different types of Operating System

Transcription:

OS Overview James Moscola Department of Engineering & Computer Science York College of Pennsylvania Contents of Introduction slides are courtesy of Silberschatz, Galvin, Gagne

Operating System Structure Multiprogramming needed for efficiency - Single application cannot keep CPU and I/O devices busy at all times - Multiprogramming organizes jobs (code and data) so CPU always has something to execute - A subset of total jobs in system is kept in memory - One job selected and run via job scheduling - When it has to wait (for I/O for example), OS switches to another job 2

Operating System Structure Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing - Response time should be < 1 second - Each user has at least one program executing in memory (a process) - If several jobs ready to run at the same time CPU scheduling is required - If processes don t fit in memory, swapping moves them in and out to run - Virtual memory allows execution of processes not completely in memory 3

Memory Layout for Multiprogrammed System 4

Operating-System Operations Interrupt driven by hardware Software error or request creates exception or trap - Division by zero, request for operating system service Other process problems include infinite loop, processes modifying each other or the operating system - Timer to prevent infinite loop / process hogging resources Set interrupt after specific period Operating system decrements counter When counter zero generate an interrupt Set up before scheduling process to regain control or terminate program that exceeds allotted time 5

Transition from User Mode to Kernel Mode Dual-mode operation allows OS to protect itself and other system components - User mode and kernel mode - Mode bit provided by hardware Provides system ability to distinguish when running user code or kernel code Some instructions designated as privileged, only executable in kernel mode System call changes mode to kernel mode, return from call resets it to user 6

Process Management A process is a program in execution - It is a unit of work within the system - A program is a passive entity, a process is an active entity A process needs resources to accomplish its task - CPU cycles, memory, I/O, files, etc. - Initialization data When process terminates, OS reclaims any reusable resources 7

Process Management (Cont.) Single-threaded process has one program counter specifying location of next instruction to execute - Process executes instructions sequentially, one at a time, until completion Multi-threaded process has one program counter per thread Typical system has many processes running concurrently on 1 (or more) CPUs - Some user processes running, some operating system processes running - Get concurrency by multiplexing the CPUs among the processes / threads The CPU rapidly switches between multiple processes 8

Process Management Activities The operating system is responsible for the following activities in connection with process management: - Creating and deleting both user and system processes - Suspending and resuming processes - Providing mechanisms for process synchronization - Providing mechanisms for process communication - Providing mechanisms for deadlock handling 9

Memory Management All data is read from and stored into memory when processing - Data must be in memory before it can be read by CPU All instructions must be in memory in order to execute Memory management determines what is in memory and when - Optimizing CPU utilization and computer response to users Memory management activities - Keeping track of which parts of memory are currently being used and by whom - Deciding which processes (or parts thereof) and data to move into and out of memory - Allocating and deallocating memory space as needed 10

Storage Management OS provides uniform, logical view of information storage - Abstracts physical properties to logical storage unit - file - Each medium is controlled by device driver (i.e., disk drive, tape drive) Varying properties include access speed, capacity, data-transfer rate, access method (sequential or random) 11

Storage Management File-System management - Files usually organized into directories - Access control on most systems to determine who can access what - OS activities include Creating and deleting files and directories Primitives to manipulate files and directories Mapping files onto secondary storage Backup files onto stable (non-volatile) storage media 12

Mass-Storage Management Usually disks are used to store data that does not fit in main memory or data that must be kept for a long period of time Entire speed of computer operation hinges on disk subsystem and its algorithms OS activities - Free-space management - Storage allocation - Disk scheduling Some storage need not be fast - Tertiary storage includes optical storage, magnetic tape - Still must be managed by OS or applications 13

Performance of Various Levels of Storage Movement between levels of storage hierarchy can be explicit or implicit 14

Migration of Integer A from Disk to Register Multitasking environments must be careful to use most recent value, no matter where it is stored in the storage hierarchy Multiprocessor environment must provide cache coherency in hardware such that all CPUs have the most recent value in their cache Distributed environment situation even more complex - Several copies of a datum can exist 15

I/O Subsystem One purpose of OS is to hide peculiarities of hardware devices from the user I/O subsystem responsible for - Memory management of I/O including buffering (storing data temporarily while it is being transferred), caching (storing parts of data in faster storage for performance), spooling (the overlapping of output of one job with input of other jobs) - General device-driver interface - Drivers for specific hardware devices 16

Protection and Security Protection any mechanism for controlling access of processes or users to resources defined by the OS Security defense of the system against internal and external attacks - Huge range, including denial-of-service, worms, viruses, identity theft, theft of service Systems generally first distinguish among users, to determine who can do what - User identities (user IDs, security IDs) include name and associated number, one per user - User ID then associated with all files, processes of that user to determine access control - Group identifier (group ID) allows set of users to be defined and controls managed, then also associated with each process, file - Privilege escalation allows user to change to effective ID with more rights 17

Computing Environments Traditional computer - Blurring over time - Office environment PCs connected to a network, terminals attached to mainframe or minicomputers providing batch and timesharing Now portals allowing networked and remote systems access to same resources - Home networks Used to be single system, then modems Now contain firewalls, and networked systems 18

Computing Environments (Cont.) Client-Server Computing - Dumb terminals supplanted by smart PCs - Many systems now servers, responding to requests generated by clients - Compute-server provides an interface to client to request services (i.e., database) - File-server provides interface for clients to store and retrieve files 19

Distributed Computing Collection of separate, possibly heterogeneous, systems networked together - Network is a communications path - Local Area Network (LAN) - Wide Area Network (WAN) - Metropolitan Area Network (MAN) Network Operating System provides features between systems across network - Communication scheme allows systems to exchange messages - Illusion of a single system 20

Peer-to-Peer Computing Another model of distributed system P2P does not distinguish clients and servers - Instead all nodes are considered peers - May each act as client, server or both - Node must join P2P network Registers its service with central lookup service on network, or Broadcast request for service and respond to requests for service via discovery protocol 21

Web-Based Computing Web has become ubiquitous PCs most prevalent devices More devices becoming networked to allow web access New category of devices to manage web traffic among similar servers: load balancers Use of operating systems like Windows, client-side, have evolved into Linux and versions of Windows, which can be clients and servers 22