BGP Path Exploration Damping (PED)

Similar documents
A Technique for Reducing BGP Update Announcements through Path Exploration Damping

THE INTERNET S inter-domain routing protocol, the

Taming BGP. An incremental approach to improving the dynamic properties of BGP. Geoff Huston. CAIA Seminar 18 August

Preventing the unnecessary propagation of BGP withdraws

BGP Route Flap Damping Algorithms

BGP Route Flap Damping Algorithms

EULER Project Path-Vector Routing Stability Analysis

BGP Route Flap Damping Algorithms

Investigating occurrence of duplicate updates in BGP announcements

Internet Routing Dynamics

Routing in Geoff Huston Chief Scientist, APNIC

Rapid Detection of BGP Anomalies

Measuring BGP. Geoff Huston. CAIA SEMINAR 31 May

The ISP Column An occasional column on things Internet. Damping BGP. BGP Route Flap Damping. June Geoff Huston

Inter-Domain Routing Trends

Performance Evaluation of Border Gateway Protocol with Route Flap Damping and Routing Policies

BGP Routing and BGP Policy. BGP Routing. Agenda. BGP Routing Information Base. L47 - BGP Routing. L47 - BGP Routing

BGP Anomaly Detection. Bahaa Al-Musawi PhD candidate Supervisors: Dr. Philip Branch and Prof. Grenville Armitage.

Routing Geoff Huston Chief Scientist, APNIC. #apricot2017

internet technologies and standards

Routing the Internet in Geoff Huston APNIC March 2007

The Impact of Router Outages on the AS-Level Internet

Implementing path-exploration damping in the Quagga Software Routing Suite Version

Dynamics of Hot-Potato Routing in IP Networks

Stabilizing BGP Routing without Harming Convergence

On the Impact of Filters on Analyzing Prefix Reachability in the Internet. Ravish Khosla, Sonia Fahmy, Y. Charlie Hu Purdue University ICCCN 2009

4-Byte AS Numbers. The view from the Old BGP world. Geoff Huston February 2007 APNIC

BGP in the Internet Best Current Practices

Recommended IOS Releases. BGP in the Internet. Which IOS? Which IOS? 12.2 IOS release images IOS release images is the old mainline train

An Adaptive Policy Management Approach to Resolving BGP Policy Conflicts

BGP Support for Next-Hop Address Tracking

The Internet now-a-days has become indispensable to each and everyone. It is vulnerable to

Internet Routing Protocols Lecture 01 & 02

Finding a Needle in a Haystack: Pinpointing Significant BGP Routing Changes in an IP Network

BGP Support for Next-Hop Address Tracking

Internet Routing Protocols Lecture 03 Inter-domain Routing

Effect of Minimal Route Advertisement Interval Timers on Border Gateway Protocol Convergence

BGP Techniques for ISP. Terutaka Komorizono

Route Flap Damping Exacerbates Internet Routing Convergence

Introduction to BGP. ISP Workshops. Last updated 30 October 2013

Introduction to IP Routing. Geoff Huston

RFC2547 Convergence Characterization and Optimization

CSE/EE 461 Lecture 11. Inter-domain Routing. This Lecture. Structure of the Internet. Focus How do we make routing scale?

Interdomain routing CSCI 466: Networks Keith Vertanen Fall 2011

Link State Routing & Inter-Domain Routing

Securing BGP. Geoff Huston November 2007

CSCI-1680 Network Layer: Inter-domain Routing Rodrigo Fonseca

The Origin of BGP Duplicates

Network Protocols. Routing. TDC375 Autumn 03/04 John Kristoff - DePaul University 1

Bringing Order To BGP: Decreasing Time and Message Complexity

RFC2547 Convergence: Characterization and Optimization

BGP Best Current Practices. ISP/IXP Workshops

Border Gateway Protocol - BGP

More Specific Announcements in BGP. Geoff Huston APNIC

Effect of MRAI Timers and Routing Policies on BGP Convergence Times

CSCI-1680 Network Layer: Inter-domain Routing Rodrigo Fonseca

Stable Internet Route Selection

BGP Best Current Practices. ISP/IXP Workshops

Border Gateway Protocol Complexity and Stability

On the Impact of Route Processing and MRAI Timers on BGP Convergence Times

BGP scalability Eduardo Grampín Universidad Carlos III de Madrid

Examination. ANSWERS IP routning på Internet och andra sammansatta nät, DD2491 IP routing in the Internet and other complex networks, DD2491

BGP Enhanced Route Refresh

Introduction to BGP ISP/IXP Workshops

BGP Best Current Practices. Recommended IOS Releases. Which IOS? Which IOS? 12.4 IOS release images IOS release images

Interdomain Routing Reading: Sections K&R EE122: Intro to Communication Networks Fall 2007 (WF 4:00-5:30 in Cory 277)

Detailed Analysis of ISIS Routing Protocol on the Qwest Backbone:

BGP Commands. Network Protocols Command Reference, Part 1 P1R-355

Internet inter-as routing: BGP

Border Gateway Protocol (an introduction) Karst Koymans. Tuesday, March 8, 2016

BGP101. Howard C. Berkowitz. (703)

Happy Packets: Some Initial Results

APNIC elearning: BGP Basics. 30 September :00 PM AEST Brisbane (UTC+10) Revision: 2.0

Quantifying Path Exploration in the Internet

A Measurement Study on the Impact of Routing Events on End-to-End Internet Path Performance

Design and development of the reactive BGP peering in softwaredefined routing exchanges

BGP Best External. Finding Feature Information

Timer Interaction in Route Flap Damping

Implementing DCI VXLAN Layer 3 Gateway

BGP Scaling Techniques

BGP Attributes and Path Selection

Stability metrics and criteria for path-vector routing

BGP Security. Kevin s Attic for Security Research

Inter-domain Routing(BGP) Security [IP Prefix Hijacking] Akmal Khan

BGP. Autonomous system (AS) BGP version 4. Definition (AS Autonomous System)

Toward Understanding the Behavior of BGP During Large-Scale Power Outages

Lab 2 BGP route filtering and advanced features

MPLS Core Networks Николай Милованов/Nikolay Milovanov

FiberstoreOS BGP Configuration

CS 557 BGP Convergence

Lecture 18: Border Gateway Protocol

Inter-Domain Routing: BGP

A Measurement Study of BGP Misconfiguration

Juniper JN Enterprise Routing and Switching Support Professional (JNCSP-ENT)

Lecture 17: Border Gateway Protocol

Implementation of BGP in a Network Simulator

BGP. Border Gateway Protocol A short introduction. Karst Koymans. Informatics Institute University of Amsterdam. (version 18.3, 2018/12/03 13:53:22)

There s something about MRAI

A Longitudinal Study of BGP MOAS Prefixes

Towards root cause analysis of BGP routing dynamics. Matthew Caesar, Lakshmi Subramanian, Randy H. Katz

Transcription:

BGP Path Exploration Damping (PED) Mattia Rossi mrossi@swin.edu.au Centre for Advanced Internet Architectures (CAIA) Swinburne University of Technology Outline Introduction Motivation Path Exploration Damping - PED Experimental results Reduction of update load MRAI and PED convergence time compared Conclusions and future work IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 2

Outline Introduction Motivation Path Exploration Damping - PED Experimental results Reduction of update load MRAI and PED convergence time compared Conclusions and future work IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 3 About this talk Selected for the Applied Networking Research Prize (ANRP) based on a peer-reviewed paper: Paper published in the IEEE Journal on Selected Areas in Communications (JSAC), October 2010 1 A Technique for Reducing BGP Update Announcements through Path Exploration Damping. Geoff Huston, Mattia Rossi, Grenville Armitage Project sponsored by the Cisco University Research Program Fund 1 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5586440 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 4

hat is Path Exploration Damping? Path Exploration Damping PED Algorithm intended to replace MRAI and RFD Methods to reduce update churn and convergence time in BGP BGP is the de-facto standard for inter-domain routing BGP Border Gateway Protocol MRAI Minimum Route Advertisment Interval RFD Route Flap Damping IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 5 PED implementations CAIA Implemented in Quagga Patch available for Quagga 0.99.13 Download at http://caia.swin.edu.au/urp/bgp/tools.html Cisco (by Mohammed Mirza) Implemented in CISCO IOS-XE Experimental Version 15.1 Running on Cisco ASR1002 (2RU) Currently tested at APNIC Pty. Ltd., Australia IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 6

Outline Introduction Motivation Path Exploration Damping - PED Experimental results Reduction of update load MRAI and PED convergence time compared Conclusions and future work IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 7 Simplified BGP speaker design Router 1 Router 2 Adj-RIB-in RIB Adj-RIB-out Decision process Router 3 Router 4 RIB: Routing Information Base Routing Table Adj-RIB-(in,out): Adjacency RIB (in,out) IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 8

Basic BGP dynamics IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 9 Basic BGP dynamics Path: 1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 9

Basic BGP dynamics Path: 2,1 Path: 1 Path: 2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 9 Basic BGP dynamics Path: *2,1 3,2,1 Path: 1 Path: 2,1 Path: 3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 9

Basic BGP dynamics Path: *2,1 3,2,1 4,3,2,1 Path: 1 Path: 2,1 Path: 3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 9 Path Exploration Path: *2,1 3,2,1 4,3,2,1 Path: 2,1 Path: 3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 10

Path Exploration Path: *3,2,1 4,3,2,1 Path: 3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 10 Path Exploration Path: *4,3,2,1 A A: 5,3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 10

Path Exploration A A: 5,3,2,1 A: 5,4,3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 10 Path Exploration A: 5,3,2,1 A: 5,4,3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 10

hat is Path Exploration? An update sequence lengthening the AS-path gradually until stability is reached IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 11 MRAI and RFD Need to decrease BGP chattiness and Path Exploration Minimum Route Advertisment Interval MRAI (RFC 1771) Apply 30s (default) delay on announcements Router 1 Router 2 Adj-RIB-in RIB Adj-RIB-out Decision process MRAI Timer MRAI Timer Router 3 Router 4 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 12

Minimum Route Advertisment Interval MRAI IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 13 Minimum Route Advertisment Interval MRAI aiting 30s Path: 1 30 sec. IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 13

Minimum Route Advertisment Interval MRAI Path: 2,1 30 sec. aiting 60s Path: 1 Path: 2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 13 Minimum Route Advertisment Interval MRAI Path: *2,1 3,2,1 Delay 0-90s Path: 1 30 sec. Path: 2,1 Path: 3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 13

Minimum Route Advertisment Interval MRAI Path: *2,1 3,2,1 4,3,2,1 Delay 0-90s Path: 1 30 sec. Path: 2,1 Path: 3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 13 Minimum Route Advertisment Interval MRAI Path: *2,1 3,2,1 4,3,2,1 Path: 2,1 Path: 3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 14

Minimum Route Advertisment Interval MRAI Path: *3,2,1 4,3,2,1 Path: 3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 14 Minimum Route Advertisment Interval MRAI Path: *4,3,2,1 Update delayed IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 14

Minimum Route Advertisment Interval MRAI Update delayed IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 14 Minimum Route Advertisment Interval MRAI IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 14

Minimum Route Advertisment Interval MRAI Path: *4,3,2,1 Update delayed IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 14 Minimum Route Advertisment Interval MRAI A A: 5,4,3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 14

Minimum Route Advertisment Interval MRAI A: 5,4,3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 14 MRAI and RFD Need to decrease BGP chattiness and Path Exploration Minimum Route Advertisment Interval MRAI (RFC 1771) Apply 30s (default) delay on announcements MRAI on withdrawals (RATE) allowed per RFC 4271 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 15

MRAI on withdrawals RATE Path: *2,1 3,1 4,3,1 Path: *1 Path: *3,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 16 MRAI on withdrawals RATE Path: *2,1 3,1 4,3,1 30 sec. Path: *1 Path: *3,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 16

MRAI on withdrawals RATE Path: *2,1 3,1 4,3,1 Data loss! Black hole!! Path: *1 Path: *3,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 16 MRAI and RFD Need to decrease BGP chattiness and Path Exploration Minimum Route Advertisment Interval MRAI (RFC 1771) Apply 30s (default) delay on announcements MRAI on withdrawals (RATE) allowed per RFC 4271 Route Flap Damping RFD (RFC 2439) Flapping = sequence of announcements and withdrawals Suppress flapping prefixes for 1 hour (or more) IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 17

Route Flap Damping RFD Router 1 Flapping prefix! Router 2 Adj-RIB-in RIB Adj-RIB-out RFD RFD Decision process Router 3 Router 4 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 18 Route Flap Damping RFD Path: *3,2,1 Path: 3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 19

Route Flap Damping RFD A A: 5,3,2,1 Path: 3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 19 Route Flap Damping RFD Path: *4,3,2,1 A: 5,3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 19

Route Flap Damping RFD A A: 5,3,2,1 A: 5,4,3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 19 Route Flap Damping RFD A: 5,3,2,1 A: 5,4,3,2,1 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 19

Route Flap Damping RFD Path: *2,1 3,2,1 4,3,2,1 RFD suppresses 1.0.0.0/8 for 1 hour Path: 1 Path: 2,1 Path: 3,2,1 here is my data? IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 19 hat are the problems? MRAI exhibits unpredictable behavior RATE creates black holes RFD penalizes prefix owners even if the misbehavior happened further upstream e want something better! IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 20

Outline Introduction Motivation Path Exploration Damping - PED Experimental results Reduction of update load MRAI and PED convergence time compared Conclusions and future work IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 21 PED algorithm Delay BGP announcements if the announced AS path is longer than the previously known AS path IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 22

PED algorithm illustrated Router 1 Router 2 Adj-RIB-in RIB Adj-RIB-out Decision process PEDI Timer PEDI Timer Router 3 Router 4 PEDI: Path Exploration Damping Interval IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 23 PED algorithm illustrated Router 1 Router 2 Adj-RIB-in RIB Adj-RIB-out Decision process per-peer setting per-prefix application per-peer setting per-prefix application Router 3 Router 4 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 23

PED algorithm illustrated Router 1 A: 1.0.0.0/8 first announcement / previously withdrawn Router 2 Adj-RIB-in RIB Adj-RIB-out Decision process announce new best path no delay Router 3 Router 4 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 23 PED algorithm illustrated Router 1 update Router 2 Adj-RIB-in RIB Adj-RIB-out Decision process longer path! queue update, start PEDI timer Router 3 Router 4 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 23

PED algorithm illustrated Router 1 update Router 2 Adj-RIB-in RIB Adj-RIB-out Decision process shorter path! send update, delete PEDI timer Router 3 Router 4 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 23 PED algorithm illustrated Router 1 update Router 2 Adj-RIB-in RIB Adj-RIB-out Decision process withdrawal! send update, delete PEDI timer Router 3 Router 4 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 23

Outline Introduction Motivation Path Exploration Damping - PED Experimental results Reduction of update load MRAI and PED convergence time compared Conclusions and future work IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 24 PED Data analysis Experiments using 24 hours of real BGP updates Two datasets: 1. APNIC Pty. Ltd., Australia (2 peers) 2. University of Oregon Routeviews, US (5 peers) AS 293 AS 11537 AS 3727 AS 4777 AS 4608 AS 2914 AS 48285 AS 6447 Routeviews APNIC AS 131702 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 25

PED Data analysis Replayed using the Quagga-Accelerator PED Collector BGP cloud Router 1 Router 2 Quagga Accelerator IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 26 Outline Introduction Motivation Path Exploration Damping - PED Experimental results Reduction of update load MRAI and PED convergence time compared Conclusions and future work IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 27

5 s ec PEDI 0 s ec MRAI 75 s ec PEDI 70 s ec PEDI 65 s ec PEDI 60 s ec PEDI 55 s ec PEDI 50 s ec PEDI 45 s ec PEDI 40 s ec PEDI 35 s ec PEDI 30 s ec PEDI 25 s ec PEDI 20 s ec PEDI 15 s ec PEDI 10 s ec PEDI 30 s ec MRAI Reduction of update load APNIC num ber of m es s ages 160k 140k 120k 100k 80k 60k 40k 20k 20% 29% BGP update m es s ages Pr efix announcem ents Pr efix withdr awals 0 70 s ec PEDI 65 s ec PEDI 60 s ec PEDI 55 s ec PEDI 50 s ec PEDI 45 s ec PEDI 40 s ec PEDI 35 s ec PEDI 30 s ec PEDI 0 s ec MRAI 30 s ec MRAI IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 28 Reduction of update load Routeviews num ber of m es s ages 150k 100k 50k 18% BGP update m es s ages Pr efix announcem ents Pr efix withdr awals 32% 0 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 29

Outline Introduction Motivation Path Exploration Damping - PED Experimental results Reduction of update load MRAI and PED convergence time compared Conclusions and future work IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 30 Convergence time approximation Control Plane convergence (Optimality) Data plane convergence Forwarding path (Reachability) Convergence measured from a single point of view (Optimality) Router 2 Convergence defined as a route being stable for 5 minutes 240s 30s 30s 30s 120s 5min Time to converge IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 31

Optimality approximation APNIC data 800 700 600 Upper and lower quartile Mean Median 500 s econds 400 200 150 100 50 0 70s PEDI 65s PEDI 60s PEDI 55s PEDI 50s PEDI 45s PEDI 40s PEDI 35s PEDI 30s PEDI 0s MRAI 30s MRAI IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 32 Optimality approximation Routeviews data seconds 800 700 600 500 400 250 200 Upper and lower quartile Mean Median 150 100 50 0 70 sec PDI 65 sec PDI 60 sec PDI 55 sec PDI 50 sec PDI 45 sec PDI 40 sec PDI 35 sec PDI 30 sec PDI 25 sec PDI 20 sec PDI 15 sec PDI 10 sec PDI 5 sec PDI 0 sec MRAI 30 sec MRAI IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 33

Detailed convergence time analysis Investigate Reachability vs. Optimality Analysis of a whole BGP system Impact on convergence of 4 events causing instability: Link failure along the path alternative path exists Link recovery Prefix withdrawal Prefix announcement IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 34 Detailed convergence time analysis Experimental analysis over 20 testruns Simple example topology ASes are single BGP speakers Example: 30s MRAI on all ASes and 35s PEDI on all ASes AS 6 0 1 2 3 Prefix Origin: 1.0.0.0/8 0 1 2 IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 35

Optimality Announcement of initial route Stable System: * 1 * 2,1 *3,2,1 *4,3,2,1 6,13,12,11,10,1 *13,12,11,10,1 5,4,3,2,1 AS 6 Data to * 1 *10,1 *11,10,1 22,21,20,10,1 0 1 2 3 Prefix Origin: 1.0.0.0/8 0 1 2 *12,11,10,1 *10,1 *20,10,1 *21,20,10,1 12,11,10,1 Announcement of initial route at AS 6 : PED: 0 seconds MRAI: 60-120 seconds IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 36 Reachability Link failure Link failure between 0 and 1 : * 1 * 2,1 *3,2,1 *4,3,2,1 6,13,12,11,10,1 *13,12,11,10,1 5,4,3,2,1 AS 6 Data to * 1 *12,22,21,20,10,1 *22,21,20,10,1 0 1 2 3 Prefix Origin: 1.0.0.0/8 0 1 2 *12,11,10,1 *10,1 *20,10,1 *21,20,10,1 Reachability achieved (1 ) PED: 0 seconds MRAI: 0-4 or 29-30 seconds IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 37

Optimality Link failure Link failure between 0 and 1 : * 1 * 2,1 *3,2,1 *4,3,2,1 *5,4,3,2,1 13,12,22,21,20,10,1 AS 6 Data to * 1 *12,22,21,20,10,1 *22,21,20,10,1 0 1 2 3 Prefix Origin: 1.0.0.0/8 0 1 2 *12,22,21,20,10,1 *10,1 *20,10,1 *21,20,10,1 Optimality achieved: PED: 66 seconds (+-jitter) MRAI: 2-58 seconds IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 38 Optimality Link recovery Link recovery between 0 and 1 : * 1 * 2,1 *3,2,1 *4,3,2,1 6,13,12,11,10,1 *13,12,11,10,1 5,4,3,2,1 AS 6 Data to * 1 *10,1 *11,10,1 22,21,20,10,1 0 1 2 3 Prefix Origin: 1.0.0.0/8 0 1 2 *12,11,10,1 *10,1 *20,10,1 *21,20,10,1 12,11,10,1 Optimality achieved: PED: 0 seconds MRAI: 31-33 and 55-60 seconds IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 39

Optimality/Reachability Prefix withdrawn Prefix withdrawal at AS 6 0 1 2 3 Prefix Origin: 1.0.0.0/8 0 1 2 Optimality achieved (route withdrawn on every AS): PED: 0 seconds MRAI: 0 seconds IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 40 Optimality/Reachability Prefix (re)-announced Prefix announcement at * 1 * 2,1 *3,2,1 *4,3,2,1 6,13,12,11,10,1 *13,12,11,10,1 5,4,3,2,1 AS 6 Data to * 1 *10,1 *11,10,1 22,21,20,10,1 0 1 2 3 Prefix Origin: 1.0.0.0/8 0 1 2 *12,11,10,1 *10,1 *20,10,1 *21,20,10,1 12,11,10,1 Optimality achieved (same as initial announcement): PED: 0 seconds MRAI: 32-34, 58-60, 76-90 seconds IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 41

Outline Introduction Motivation Path Exploration Damping - PED Experimental results Reduction of update load MRAI and PED convergence time compared Conclusions and future work IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 42 Conclusions In this talk: PED decreases update load PED converges to Reachability as fast or faster than MRAI PED converges to Optimality slower than MRAI in one case In the paper: PED interacts well with MRAI PED can be deployed incrementally A single PED speaker is beneficial to the BGP system 35s PEDI is a safe defaulte value in the MRAI dominated Internet In the future: Dynamic PEDI per prefix More heuristics IETF-81 http://www.caia.swin.edu.au mrossi@swin.edu.au 28 July, 2011 43