THE GROWING USE OF PROGRAMMABLE LOGIC DEVICES IN MOBILE HANDSETS

Similar documents
VIDEO BRIDGING SOLUTION PROMISES NEW LEVEL OF DESIGN FLEXIBILITY AND INNOVATION

Solving Today s Interface Challenge With Ultra-Low-Density FPGA Bridging Solutions

NEW USE CASES HIGHLIGHT CROSSLINK S BROAD APPLICABILITY

NEW APPROACHES TO HARDWARE ACCELERATION USING ULTRA LOW DENSITY FPGAs

THE INDUSTRY CASE FOR DISTRIBUTED HETEROGENEOUS PROCESSING

ENABLING MOBILE INTERFACE BRIDGING IN ADAS AND INFOTAINMENT APPLICATIONS

SMART Technologies. Introducing bluetooth low energy and ibeacon

Internet of Everything Qualcomm Brings M2M to the World

PPP (PRICE, POWER AND PACKAGE) OPPORTUNITIES FOR INNOVATION IN MOBILE COMPUTING AND IOT

TINY System Ultra-Low Power Sensor Hub for Always-on Context Features

IoT Sensor Connectivity and Processing with Ultra-Low Power, Small Form-Factor FPGAs

Advantages of MIPI Interfaces in IoT Applications

MANAGING IMAGE DATA IN AUTOMOTIVE INFOTAINMENT APPLICATIONS USING LOW COST PLDS

USING LOW COST, NON-VOLATILE PLDs IN SYSTEM APPLICATIONS

4-Port USB Hub - USB USB-A to 3x USB-A and 1x USB-C - Includes Power Adapter

Information, entertainment, safety, and data gathering - all in one

It s Time to Move Your Critical Data to SSDs Introduction

Mobile Influenced Markets Evolution of Camera and Display Uses

MIPI Alliance Overview

TEAM 1073F'S TEXAS INSTRUMENTS ELECTRONIC ONLINE CHALLENGE THE DISASSEMBLY OF A COMPUTER TOWER. HP COMPAQ DC7900 CONVERTIBLE MINITOWER

How to Evaluate a Next Generation Mobile Platform

DesignWare IP for IoT SoC Designs

Accelerating Implementation of Low Power Artificial Intelligence at the Edge

IGLOO AND SNOWBALL. Philippe Garnier Ecosystem program

MIPI Alliance Introduction & MIPI Camera Serial Interface Overview

NXP Smart Washing Machine Solution

Wireless Best Kept Secret For Now

Battery Stack Management Makes another Leap Forward

Samsung emcp. WLI DDP Package. Samsung Multi-Chip Packages can help reduce the time to market for handheld devices BROCHURE

Cross-Domain Development Kit XDK110 Platform for Application Development

Fully-Buffered DIMM Technology Moves Enterprise Platforms to the Next Level

SOLUTION GUIDE. Pushing the Frontiers of Wireless Communications Innovative Wireless Solutions. broadcom.com

SEVEN Networks Open Channel Traffic Optimization

Implementing RapidIO. Travis Scheckel and Sandeep Kumar. Communications Infrastructure Group, Texas Instruments

MXK-F. Highly-scalable aggregation solution for ultra high-capacity fiber access services

The Integrated Smart & Security Platform Powered the Developing of IOT

2011 NASCIO RECOGNITION AWARDS NOMINATION CATEGORY: FAST TRACK SOLUTIONS CALIFORNIA MOBILE DEVELOPMENT PROGRAM STATE OF CALIFORNIA

Join the forward thinkers who rely on Toshiba for wireless connectivity ICs.

ExtremeWireless WiNG NX 9500

Five Ways to Build Flexibility into Industrial Applications with FPGAs

Intel CoFluent Studio in Digital Imaging

WALL PLUG PLUG-IN SWITCH & POWER METERING

Fusing Sensors into Mobile Operating Systems & Innovative Use Cases

Understanding Dual-processors, Hyper-Threading Technology, and Multicore Systems

OPEN COMPUTE PLATFORMS POWER SOFTWARE-DRIVEN PACKET FLOW VISIBILITY, PART 2 EXECUTIVE SUMMARY. Key Takeaways

Wearable Technologies and the IoT. David Lamb Market Development Manager, North Europe STMicroelectronics

MiraVision Picture Quality Enhancement Technology for Displays MediaTek White Paper January 2015

Real estate predictions 2017 What changes lie ahead?

Digital Audio Broadcasting. Xilinx Solutions for DAB Receiver Systems

WHITE PAPER. High-Performance Embedded Applications: The SUMIT Standard

Towards the Consumerization of Smart Sensors

Mobile Communications for the Transport Sector

Connected & Smart Home Research Package

Fast-charge your mobile devices

NAUTIZ X3 POCKET-SIZED POWERHOUSE

WIND RIVER NETWORKING SOLUTIONS

Next Generation Privilege Identity Management

By offering a range of USB port types, you can easily connect a variety of modern and legacy USB devices, both inside and outside your computer.

Chapter 5. Introduction ARM Cortex series

Touch brilliance the world s first 3LCD, touch-enabled interactive projector. Epson EB-595Wi Interactive WXGA 3LCD Projector

Revolutionary Customer Engagement

5-Port USB 3.1 (10Gbps) Combo Card - 1x USB-C, 2x USB-A + 2x IDC (5Gbps) - PCIe

Module Introduction. CONTENT: - 8 pages - 1 question. LEARNING TIME: - 15 minutes

New York Analyst Day. November 13, 2008

ECE 486/586. Computer Architecture. Lecture # 2

EFFICIENT TRAINING FOR MACHINE LEARNING MODELS ON EMBEDDED AND/OR LOW-POWER DEVICES

10-Port USB 3.0 Hub with Charge and Sync Ports - 2 x 1.5A Ports

Ken Foust Intel, Corp. Evolving MIPI I3C SM for New Usages and Industries

BT121 Bluetooth Smart Ready Module. July 2016

Quick Start Guide. STM32 ODE Function Pack for connecting 6LoWPAN IoT Nodes to smartphone through a BLE interface (FP-NET-6LPBLE1)

NFC Identity and Access Control

NX 9500 INTEGRATED SERVICES PLATFORM SERIES FOR THE PRIVATE CLOUD

Surface Go for Education

Designing for Low Power with Programmable System Solutions Dr. Yankin Tanurhan, Vice President, System Solutions and Advanced Applications

Digital Infrastructure The Prerequisite for Modern Economic Development

MEMS motion sensors. June

Embedded Software: Its Growing Influence on the Hardware world

Candidates will also develop competence in using a variety of mobile systems.

HEXIWEAR COMPLETE IOT DEVELOPMENT SOLUTION

Putting people first: Future-ready meetings and teamwork. Next-generation meeting solutions

BT121 Bluetooth Smart Ready Module. May 2015

Raspberry Pi - I/O Interfaces

Capturing data. Integrating efficiency. Enabling digitization. Handheld Computer CT50 -Ex for Ex-Hazardous Areas

10-Port Industrial USB 3.0 Hub - ESD and Surge Protection. StarTech ID: ST1030USBM

GRAVITECH GROUP

2010: TRANSITION & TRANSFORMATION

Video Surveillance Linear Architecture

Risk Factors. Rev. 4/19/11

FLEXIBLE WIRELESS TEST SOLUTIONS for the Lab BROCHURE

High Availability Architectures for Ethernet in Manufacturing

LOW-COST FPGA CONFIGURATION VIA INDUSTRY-STANDARD SPI SERIAL FLASH & LatticeECP/EC FPGAs

Candidates will also be given the opportunity to develop practical skills using mobile systems.

Enterprise. Ronald HW Spithout President

Cisco Wireless Video Surveillance: Improving Operations and Security

AC : INFRARED COMMUNICATIONS FOR CONTROLLING A ROBOT

4-20 ma Transmitter vs. Machine Saver s VTBNet

CAUTION. isavi User Guide. Hot Surface Do Not Touch. Allow to cool before handling

Cypress PSoC 6 Microcontrollers

THE RTOS AS THE ENGINE POWERING THE INTERNET OF THINGS

IMPROVES. Initial Investment is Low Compared to SoC Performance and Cost Benefits

Transcription:

THE GROWING USE OF PROGRAMMABLE LOGIC DEVICES IN MOBILE HANDSETS June 2012 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com 1 The Growing Use of Programmable Logic Devices in Mobile Handsets

Introduction The pace of innovation in the mobile handset industry has never been higher, with users continuing to demand more from these devices. Smart phones, tablets and other battery-powered devices have evolved beyond communication devices and now offer personal assistance by unifying always connected features such as navigation, email, phone, Internet access and camera. Choosing between the two leading smartphone operating systems, smartphone designers depend on their physical hardware to differentiate their products and position them against competitive products. This is an area where programmable logic devices add direct value by providing mobile handset system architects a way to quickly innovate and add new functionality to their products. Below are some examples of why and how low cost, low power programmable logic devices are successfully adding value to mobile handset design. Asynchronous Product Development Cycles within the Handset Industry Readers of this white paper may not be surprised to learn that the product design life cycles of mobile handset and chipset vendors are fundamentally different. It is fairly common to see new phone models being introduced every other month, while chipset vendors release newer versions of their chipsets in a much slower product cycle cadence. While there are solid and obvious reasons for this, the challenge faced by handheld system architects is also real; i.e. keeping up with product innovation cycles that are faster than what the chipset vendors are capable of supporting. A good example of this is the recent announcement of the MIPI battery interface (BIF) standard. The MIPI Battery Interface (BIF) Standard The use of dual-core and quad-core processors, along with the marketing imperative to create a compelling user experience, increases power consumption that has direct downstream effects on power delivery, battery life and longevity. Striking a balance 2 The Growing Use of Programmable Logic Devices in Mobile Handsets

among optimal power delivery, battery capacity, chemistry, safety and form factor is a significant design challenge. The communication protocol established by MIPI-BIF provides a method for system designers to read parameters on demand to optimize power consumption during device use and to optimize battery charging. It also provides a method to authenticate batteries for systems that need to ensure user safety. Although the MIPI standard has already been announced, chipset vendors will still need time to adopt this standard in their products. However, handset designers may want to take advantage of MIPI-BIF much sooner. Programmable logic devices are perfectly suited in such situations, because they enable mobile system architects to adopt new standards using existing chipset or application processors. In fact, soon after MIPI released the BIF standard, Lattice Semiconductor announced its support for the standard and that it is engaged with key customers on implementing it. Figure 1 illustrates the use of a low cost, low power FPGA to create a bridge between an existing application processor and the recently released MIPI-BIF standard. Communication over the BIF battery communication line (BCL) is enabled using the low power FPGA. On the application processor side, I 2 C, because it is commonly available, is a natural choice to connect the host application processor to the FPGA. A simple protocol is defined on top of the I 2 C standard to communicate between the host and the FPGA. If needed, the host interface can be easily customized using the FPGA solution. In addition, further customization of the BIF interface / protocol can also be achieved when using an FPGA. Furthermore, the FPGA offers the flexibility for customers to even integrate other functions within the same low power FPGA device. By using a low power FPGA as a companion chip to the application processor, handset manufacturers can enable cutting edge features / standards into their products on demand to create clear product differentiation. 3 The Growing Use of Programmable Logic Devices in Mobile Handsets

Figure 1 - Using a Low Power FPGA to Implement New Standards Loss of Flexibility Due To Unsupported Standards by Chipset Vendors Although system-on-a-chip and holistic integration are the mantras of most chipset manufacturers, chipsets are often designed to meet broad market needs and therefore may not support certain standards. This denies handset system architects valuable flexibility. Also, as new standards are adopted by chipset manufacturers, they often completely drop older ones from their portfolio. This again takes away valuable flexibility from both the system architect and the component procurement teams of handset manufacturers. Often in such cases, system architects may want to use the latest chipset solutions based on their merits, while the procurement team may wish to continue using certain older standards, even if not supported by the latest chipsets, to provide supply flexibility. Here again FPGAs provide considerable value. Figure 2 illustrates how a low cost, low power FPGA can be used to regain design flexibility by providing an easy way to bridge between two different standards. Figure 2 shows how a terrestrial TV broadcast tuner chip with a custom interface can be used with an applications processor that does not support that interface. Figure 2 shows the host interface through the SPI bus that is commonly available in application processors. Here again, communication to the application processor can be customized as needed when using a FPGA. 4 The Growing Use of Programmable Logic Devices in Mobile Handsets

Figure 2 - Low power FPGA Used as an Interface Bridge Sensor Management The number of sensors included in smartphones has grown dramatically. High-end smartphones include several sensors like gyroscope, multiple cameras, touch, accelerometers, magnetometers, ambient light sensor and GPS, among others. In the future, phones are expected to be even more aware of their surroundings (sensing altitude, temperature, humidity, etc.) while providing more value-added features such as the monitoring of human vital signs. The proliferation of sensors has a profound impact on the user experience. For example, most smartphone users can confirm that the use of GPS navigation has a direct and noticeable impact on battery life. In addition, some smartphone operating systems mandate the frequency of polling from certain critical sensors, such as touch. Touch sensors may need to be polled at frequencies of several hundred KHz to ensure a compelling user experience. In architectures where the application processors are connected to sensors directly, sensors need to be actively managed by the application processors, which have a direct impact on power consumption. Figure 3 illustrates an implementation of a low power FPGA used as a companion chip to the application processor to manage sensors in a mobile platform. Independent I 2 C masters may be used to manage different sensors to ensure the right throughput is achieved from each sensor. Sensors, such as touch, that require higher throughput may be interfaced to the FPGA using an independent I 2 C bus, if required. The smart sensor hub may be designed with intelligence to aggregate interrupts generated from 5 The Growing Use of Programmable Logic Devices in Mobile Handsets

different sensors and, based on pre-defined conditions, to interrupt the application processor. This design approach would enable the application processor to go into a standby state for longer periods of time and thereby reduce power consumption, or would free the application processor to perform other important tasks. Figure 3 - Using an FPGA as a Smart Sensor Hub Conclusion The mobile handset market is extremely competitive, with many handset models offered by multiple manufacturers. The product development cadence of handset manufacturers is different from those of chipsets or application processors. In some cases, this creates a bottleneck for handset manufacturers to enable cutting edge features in their products on demand. In addition, product differentiation has become a key challenge that is magnified because handsets using the same operating system appear to deliver a similar user experience to consumers. Therefore, handset manufacturers use hardware features to differentiate their products. Handset system architects are constantly trying to strike a balance among new feature inclusion, reducing power consumption and keeping cost in check. In such a dynamic environment, low cost, low power FPGAs, such as the ice40 devices offered by Lattice Semiconductor, are a perfect choice to help handset architects design new features to differentiate their products. ### 6 The Growing Use of Programmable Logic Devices in Mobile Handsets