Gram s relation for cone valuations

Size: px
Start display at page:

Download "Gram s relation for cone valuations"

Transcription

1 Gram s relation for cone valuations Sebastian Manecke Goethe Universität Frankfurt joint work with Spencer Backman and Raman Sanyal July 31, 2018 Gram s relation for cone valuations Sebastian Manecke 1 / 17

2 Gram s relation for cone valuations A fundamental theorem of Euclidean geometry: β 2 γ 1 β 1 γ 5 γ 2 β 3 γ 3 γ 4 β4 β 5 Theorem For a polygon with n vertices, it holds n n n β i nπ + 2π = 0 β i γ i + 2π = 0 i=1 i=1 i=1 Gram s relation for cone valuations Sebastian Manecke 2 / 17

3 Cone angles A cone angle α assigns to each polyhedral cone C in R d a real number, such that Example α is a valuation (α(c C ) = α(c) + α(c ) α(c C ) whenever C C is convex), α is simple (α(c) = 0, whenever dim C < d), α is normalized (α(r d ) = 1). Take ν(c) := vol(c B d ) vol B d and this gives the usual angle. Gram s relation for cone valuations Sebastian Manecke 3 / 17

4 Main Theorem Theorem (1) Let P R d be a polytope and α be a cone angle. For i = 0,..., d 1, let α i (P) := α(â(f, P)), F P, dim F =i where Â(F, P) is the interior cone at F. Then the only linear relation among these numbers is the Gram-relation: d 1 ( 1) i α i (P) = ( 1) d+1. i=0 Gram s relation for cone valuations Sebastian Manecke 4 / 17

5 Interior angles Let F be a face of a polytope P. Define the interior cone Â(F, P) by the following procedure: Â(F, P) = cone(p q) + cone(p q). Move the origin to a point in the relative interior of F. Take the conical hull of P. (Minkowski-) add the dual of the affine hull (to make the cone full dimensional if P is not full-dimensional). F o o o P Gram s relation for cone valuations Sebastian Manecke 5 / 17

6 C 1 D 1 D 2 C 2 P D 5 D 4 C 5 C 3 D 3 C 4 Example α 0 (P) = α(c 1 ) + α(c 2 ) + α(c 3 ) + α(c 4 ) + α(c 5 ) α 1 (P) = α(d 1 ) + α(d 2 ) + α(d 3 ) + α(d 4 ) + α(d 5 ) and α 0 (P) α 1 (P) = 1. If α = ν, we recover the original statement after multiplying with 2π. Gram s relation for cone valuations Sebastian Manecke 6 / 17

7 Exterior angles Similarly, we define exterior cones q A(F, P) by taking the normal cone and adding the orthogonal complement: qa(f, P) := N F P + (N F P). P Gram s relation for cone valuations Sebastian Manecke 7 / 17

8 Exterior angles Theorem (1b) Let P R d be a polytope and α be a cone angle. For i = 0,..., d 1, let qα i (P) := α( A(F q, P)). F P, dim F =i Then the only linear relation among these numbers is: qα 0 (P) = 1. Gram s relation for cone valuations Sebastian Manecke 8 / 17

9 Partial proof of 1b P The normal cones of the vertices of a polytope form the normal fan. This is a complete fan. Thus: α 0 (P) = v vert(p) α( q A(v, P)) = v vert(p) α(n v P) = α(r d ) = 1. Gram s relation for cone valuations Sebastian Manecke 9 / 17

10 Zonotopes To prove, that there is only one linear relation, we need to find a set of polytopes, whose α i s (resp. qα i s) span the single hyperplane defined by the Gram-relation (resp. qα 0 (P) = 1). Definition A zonotope Z is the Minkowski-sum of line segments z 1,..., z n : Z = z z n R d. Example + + = z 1 z 2 z 3 Z Gram s relation for cone valuations Sebastian Manecke 10 / 17

11 Zonotopes II To every zonotope Z with face lattice F(Z) we can associate the lattice of non-empty faces F + (Z) := F(Z) \ { } and the lattice of flats L(Z): L(Z) := ({aff(f q) : F F + (Z), q F }, L 1 L 2 L 1 L 2 ) Example R 2 {x 1 = 0} {0} This gives a map L : F + (Z) L(Z), L(F ) = aff(f q) for some q F. Gram s relation for cone valuations Sebastian Manecke 11 / 17

12 Incidence Algebra The incidence algebra I(P) of a poset P = (P, ) is the vector space of all functions h : P P R, such that h(a, c) = 0 whenever a c and with multiplication (g h)(a, c) = g(a, b)h(b, c) for g, h I(P). Example a b c δ P (a, b) = 1 if a = b, δ P (a, b) = 0 otherwise, is the unit of the multiplication. ζ P (a, b) = 1 for a b. ζ P always has an inverse: µ P = ζ 1 P. Gram s relation for cone valuations Sebastian Manecke 12 / 17

13 Example For a cone angle α both α, qα are in I(F + (P)). Let F, F be two non-empty faces. Define α(f, F ) = α(â(f, F )) and qα(f, F ) = α( q A(F, F )). P qa(f, F ) F F Gram s relation for cone valuations Sebastian Manecke 13 / 17

14 Main Theorem II Theorem (2) For any cone angle α and any d-zonotope Z, we have α i (Z) = w co i (L(Z)), qα i (Z) = W co i (L(Z)), where wi co, wi co are the Co-Whitney numbers of first and second kind defined by: wi co = µ L(Z) (M, R d ), M L(Z) i Wi co = ζ L(Z) ({0}, M) = 1. M L(Z) i M L(Z) i Proof of Theorem 1. Find d zonotopes where you can calculate the Co-Whitney numbers easily (uniform matroids). Then do linear algebra to show that the Co-Whitney numbers span the single hyperplane defined by the Gram-relation (resp. qα 0 (P) = 1). Gram s relation for cone valuations Sebastian Manecke 14 / 17

15 How to prove theorem 2? Thus F L 1 (M) qα(f, Z) = 1 and summing over all M with rk M = i gives qα i (Z) = Wi co (L(Z)). Gram s relation for cone valuations Sebastian Manecke 15 / 17

16 How to prove theorem 2? You can prove the other half of Theorem 2 directly using the valuation property and the theory of hyperplane arrangements. It also follows from the fact, that L : F + (Z) L(Z) induces two adjoint maps L and L : F + (Z) L L(Z) I(F + (Z)) L I(L(Z)) I(F + (Z)) L I(L(Z)) You can then show that L ( α) = µ L(Z) and L (qα) = ζ L(Z) for any cone angle α. Gram s relation for cone valuations Sebastian Manecke 16 / 17

17 Thank you for your attention. Questions? Gram s relation for cone valuations Sebastian Manecke 17 / 17

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Beifang Chen September 2, 2015 1 Euler Number There are two rules to follow when one counts the number of objects of finite sets. Given two finite sets A, B, we have (1) Addition Principle

More information

Projection Volumes of Hyperplane Arrangements

Projection Volumes of Hyperplane Arrangements Discrete Comput Geom (2011) 46:417 426 DOI 10.1007/s00454-011-9363-7 Projection Volumes of Hyperplane Arrangements Caroline J. Klivans Ed Swartz Received: 11 February 2010 / Revised: 25 April 2011 / Accepted:

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes

On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes Hans Raj Tiwary hansraj@cs.uni-sb.de FR Informatik Universität des Saarlandes D-66123 Saarbrücken, Germany Tel: +49 681 3023235

More information

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial R. STANLEY, HYPERPLANE ARRANGEMENTS LECTURE Basic definitions, the intersection poset and the characteristic polynomial.. Basic definitions The following notation is used throughout for certain sets of

More information

Geometry. Every Simplicial Polytope with at Most d + 4 Vertices Is a Quotient of a Neighborly Polytope. U. H. Kortenkamp. 1.

Geometry. Every Simplicial Polytope with at Most d + 4 Vertices Is a Quotient of a Neighborly Polytope. U. H. Kortenkamp. 1. Discrete Comput Geom 18:455 462 (1997) Discrete & Computational Geometry 1997 Springer-Verlag New York Inc. Every Simplicial Polytope with at Most d + 4 Vertices Is a Quotient of a Neighborly Polytope

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

Convex Sets. Pontus Giselsson

Convex Sets. Pontus Giselsson Convex Sets Pontus Giselsson 1 Today s lecture convex sets convex, affine, conical hulls closure, interior, relative interior, boundary, relative boundary separating and supporting hyperplane theorems

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

arxiv: v2 [math.co] 24 Aug 2016

arxiv: v2 [math.co] 24 Aug 2016 Slicing and dicing polytopes arxiv:1608.05372v2 [math.co] 24 Aug 2016 Patrik Norén June 23, 2018 Abstract Using tropical convexity Dochtermann, Fink, and Sanyal proved that regular fine mixed subdivisions

More information

The important function we will work with is the omega map ω, which we now describe.

The important function we will work with is the omega map ω, which we now describe. 20 MARGARET A. READDY 3. Lecture III: Hyperplane arrangements & zonotopes; Inequalities: a first look 3.1. Zonotopes. Recall that a zonotope Z can be described as the Minkowski sum of line segments: Z

More information

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example). 98 CHAPTER 3. PROPERTIES OF CONVEX SETS: A GLIMPSE 3.2 Separation Theorems It seems intuitively rather obvious that if A and B are two nonempty disjoint convex sets in A 2, then there is a line, H, separating

More information

Discriminant Coamoebas in Dimension Three

Discriminant Coamoebas in Dimension Three Discriminant Coamoebas in Dimension Three KIAS Winter School on Mirror Symm......elevinsky A-Philosophy and Beyond, 27 February 2017. Frank Sottile sottile@math.tamu.edu Joint work with Mounir Nisse A-Discriminants

More information

A NEW VIEW ON THE CAYLEY TRICK

A NEW VIEW ON THE CAYLEY TRICK A NEW VIEW ON THE CAYLEY TRICK KONRAD-ZUSE-ZENTRUM FÜR INFORMATIONSTECHNIK (ZIB) TAKUSTR. 7 D-14195 BERLIN GERMANY email: rambau@zib.de joint work with: BIRKETT HUBER, FRANCISCO SANTOS, Mathematical Sciences

More information

Faithful tropicalization of hypertoric varieties

Faithful tropicalization of hypertoric varieties University of Oregon STAGS June 3, 2016 Setup Fix an algebraically closed field K, complete with respect to a non-archimedean valuation ν : K T := R { } (possibly trivial). Let X be a K-variety. An embedding

More information

Cluster algebras and infinite associahedra

Cluster algebras and infinite associahedra Cluster algebras and infinite associahedra Nathan Reading NC State University CombinaTexas 2008 Coxeter groups Associahedra and cluster algebras Sortable elements/cambrian fans Infinite type Much of the

More information

Introduction to Coxeter Groups

Introduction to Coxeter Groups OSU April 25, 2011 http://www.math.ohio-state.edu/ mdavis/ 1 Geometric reflection groups Some history Properties 2 Some history Properties Dihedral groups A dihedral gp is any gp which is generated by

More information

Lecture notes for Topology MMA100

Lecture notes for Topology MMA100 Lecture notes for Topology MMA100 J A S, S-11 1 Simplicial Complexes 1.1 Affine independence A collection of points v 0, v 1,..., v n in some Euclidean space R N are affinely independent if the (affine

More information

Conic Duality. yyye

Conic Duality.  yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #02 1 Conic Duality Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Geometry. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Geometry. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Geometry Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Introduce the elements of geometry - Scalars - Vectors - Points

More information

Lattice-point generating functions for free sums of polytopes

Lattice-point generating functions for free sums of polytopes Lattice-point generating functions for free sums of polytopes Tyrrell B. McAllister 1 Joint work with Matthias Beck 2 and Pallavi Jayawant 3 1 University of Wyoming 2 San Francisco State University 3 Bates

More information

Lecture 3: Convex sets

Lecture 3: Convex sets Lecture 3: Convex sets Rajat Mittal IIT Kanpur We denote the set of real numbers as R. Most of the time we will be working with space R n and its elements will be called vectors. Remember that a subspace

More information

Polar Duality and Farkas Lemma

Polar Duality and Farkas Lemma Lecture 3 Polar Duality and Farkas Lemma October 8th, 2004 Lecturer: Kamal Jain Notes: Daniel Lowd 3.1 Polytope = bounded polyhedron Last lecture, we were attempting to prove the Minkowsky-Weyl Theorem:

More information

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that ( Shelling (Bruggesser-Mani 1971) and Ranking Let be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that. a ranking of vertices

More information

Lattice points in Minkowski sums

Lattice points in Minkowski sums Lattice points in Minkowski sums Christian Haase, Benjamin Nill, Andreas affenholz Institut für Mathematik, Arnimallee 3, 14195 Berlin, Germany {christian.haase,nill,paffenholz}@math.fu-berlin.de Francisco

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Alice through Looking Glass after Looking Glass: The Mathematics of Mirrors and Kaleidoscopes

Alice through Looking Glass after Looking Glass: The Mathematics of Mirrors and Kaleidoscopes Alice through Looking Glass after Looking Glass: The Mathematics of Mirrors and Kaleidoscopes Roe Goodman Rutgers Math Department U Seminar May 1, 2008 The Magic Mirrors of Alice Alice Through Looking

More information

arxiv: v1 [math.co] 28 Nov 2007

arxiv: v1 [math.co] 28 Nov 2007 LATTICE OINTS IN MINKOWSKI SUMS CHRISTIAN HAASE, BENJAMIN NILL, ANDREAS AFFENHOLZ, AND FRANCISCO SANTOS arxiv:0711.4393v1 [math.co] 28 Nov 2007 ABSTRACT. Fakhruddin has proved that for two lattice polygons

More information

Final Exam 1:15-3:15 pm Thursday, December 13, 2018

Final Exam 1:15-3:15 pm Thursday, December 13, 2018 Final Exam 1:15-3:15 pm Thursday, December 13, 2018 Instructions: Answer all questions in the space provided (or attach additional pages as needed). You are permitted to use pencils/pens, one cheat sheet

More information

Geometry. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Geometry. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Geometry CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012. 1 Objectives Introduce

More information

Lecture 2 Convex Sets

Lecture 2 Convex Sets Optimization Theory and Applications Lecture 2 Convex Sets Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2016 2016/9/29 Lecture 2: Convex Sets 1 Outline

More information

When do the Recession Cones of a Polyhedral Complex Form a Fan?

When do the Recession Cones of a Polyhedral Complex Form a Fan? Discrete Comput Geom (2011) 46:789 798 DOI 10.1007/s00454-010-9318-4 When do the Recession Cones of a Polyhedral Complex Form a Fan? José Ignacio Burgos Gil Martín Sombra Received: 3 September 2010 / Revised:

More information

On the Unique-lifting Property

On the Unique-lifting Property On the Unique-lifting Property Gennadiy Averkov 1 and Amitabh Basu 2 1 Institute of Mathematical Optimization, Faculty of Mathematics, University of Magdeburg 2 Department of Applied Mathematics and Statistics,

More information

Orthogonal Ham-Sandwich Theorem in R 3

Orthogonal Ham-Sandwich Theorem in R 3 Orthogonal Ham-Sandwich Theorem in R 3 Downloaded 11/24/17 to 37.44.201.8. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php Abstract The ham-sandwich theorem

More information

Numerical Optimization

Numerical Optimization Convex Sets Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Let x 1, x 2 R n, x 1 x 2. Line and line segment Line passing through x 1 and x 2 : {y

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Reflection groups 4. Mike Davis. May 19, Sao Paulo

Reflection groups 4. Mike Davis. May 19, Sao Paulo Reflection groups 4 Mike Davis Sao Paulo May 19, 2014 https://people.math.osu.edu/davis.12/slides.html 1 2 Exotic fundamental gps Nonsmoothable aspherical manifolds 3 Let (W, S) be a Coxeter system. S

More information

A Course in Convexity

A Course in Convexity A Course in Convexity Alexander Barvinok Graduate Studies in Mathematics Volume 54 American Mathematical Society Providence, Rhode Island Preface vii Chapter I. Convex Sets at Large 1 1. Convex Sets. Main

More information

Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes

Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes Menelaos I. Karavelas joint work with Eleni Tzanaki University of Crete & FO.R.T.H. OrbiCG/ Workshop on Computational

More information

Polytopes Course Notes

Polytopes Course Notes Polytopes Course Notes Carl W. Lee Department of Mathematics University of Kentucky Lexington, KY 40506 lee@ms.uky.edu Fall 2013 i Contents 1 Polytopes 1 1.1 Convex Combinations and V-Polytopes.....................

More information

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Jean-Baptiste Hiriart-Urruty Claude Lemarechal Fundamentals of Convex

More information

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes.

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes. POLYTOPES MARGARET A. READDY 1. Lecture I: Introduction to Polytopes and Face Enumeration Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Restricted-Orientation Convexity in Higher-Dimensional Spaces

Restricted-Orientation Convexity in Higher-Dimensional Spaces Restricted-Orientation Convexity in Higher-Dimensional Spaces ABSTRACT Eugene Fink Derick Wood University of Waterloo, Waterloo, Ont, Canada N2L3G1 {efink, dwood}@violetwaterlooedu A restricted-oriented

More information

WHEN DO THE RECESSION CONES OF A POLYHEDRAL COMPLEX FORM A FAN?

WHEN DO THE RECESSION CONES OF A POLYHEDRAL COMPLEX FORM A FAN? WHEN DO THE RECESSION CONES OF A POLYHEDRAL COMPLEX FORM A FAN? JOSÉ IGNACIO BURGOS GIL AND MARTÍN SOMBRA Abstract. We study the problem of when the collection of the recession cones of a polyhedral complex

More information

Division of the Humanities and Social Sciences. Convex Analysis and Economic Theory Winter Separation theorems

Division of the Humanities and Social Sciences. Convex Analysis and Economic Theory Winter Separation theorems Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 8: Separation theorems 8.1 Hyperplanes and half spaces Recall that a hyperplane in

More information

TORIC VARIETIES JOAQUÍN MORAGA

TORIC VARIETIES JOAQUÍN MORAGA TORIC VARIETIES Abstract. This is a very short introduction to some concepts around toric varieties, some of the subsections are intended for more experienced algebraic geometers. To see a lot of exercises

More information

Discriminantal Arrangements, Fiber Polytopes and Formality

Discriminantal Arrangements, Fiber Polytopes and Formality Journal of Algebraic Combinatorics, 6 (1997), 229 246 c 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Discriminantal Arrangements, Fiber Polytopes and Formality MARGARET M.

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Two-graphs revisited. Peter J. Cameron University of St Andrews Modern Trends in Algebraic Graph Theory Villanova, June 2014

Two-graphs revisited. Peter J. Cameron University of St Andrews Modern Trends in Algebraic Graph Theory Villanova, June 2014 Two-graphs revisited Peter J. Cameron University of St Andrews Modern Trends in Algebraic Graph Theory Villanova, June 2014 History The icosahedron has six diagonals, any two making the same angle (arccos(1/

More information

Multi-tiling and equidecomposability of polytopes by lattice translates

Multi-tiling and equidecomposability of polytopes by lattice translates Multi-tiling and equidecomposability of polytopes by lattice translates Bochen Liu Bar-Ilan University, Israel Joint work with Nir Lev 1 / 19 Multi-tiling Let A R d be a polytope and denote χ A as its

More information

A brief survey of A-resultants, A-discriminants, and A-determinants

A brief survey of A-resultants, A-discriminants, and A-determinants A brief survey of A-resultants, A-discriminants, and A-determinants Madeline Brandt, Aaron Brookner, Christopher Eur November 27, 2017 Abstract We give a minimalistic guide to understanding a central result

More information

Triangulations of hyperbolic 3-manifolds admitting strict angle structures

Triangulations of hyperbolic 3-manifolds admitting strict angle structures Triangulations of hyperbolic 3-manifolds admitting strict angle structures Craig D. Hodgson, J. Hyam Rubinstein and Henry Segerman segerman@unimelb.edu.au University of Melbourne January 4 th 2012 Ideal

More information

arxiv: v1 [math.gr] 19 Dec 2018

arxiv: v1 [math.gr] 19 Dec 2018 GROWTH SERIES OF CAT(0) CUBICAL COMPLEXES arxiv:1812.07755v1 [math.gr] 19 Dec 2018 BORIS OKUN AND RICHARD SCOTT Abstract. Let X be a CAT(0) cubical complex. The growth series of X at x is G x (t) = y V

More information

CONVEX GEOMETRY OF COXETER-INVARIANT POLYHEDRA

CONVEX GEOMETRY OF COXETER-INVARIANT POLYHEDRA CONVEX GEOMETRY OF COXETER-INVARIANT POLYHEDRA NICHOLAS MCCARTHY, DAVID OGILVIE, NAHUM ZOBIN, AND VERONICA ZOBIN Abstract. We study the facial structure of convex polyhedra invariant under the natural

More information

Polyhedral Computation and their Applications. Jesús A. De Loera Univ. of California, Davis

Polyhedral Computation and their Applications. Jesús A. De Loera Univ. of California, Davis Polyhedral Computation and their Applications Jesús A. De Loera Univ. of California, Davis 1 1 Introduction It is indeniable that convex polyhedral geometry is an important tool of modern mathematics.

More information

Parallelohedra and the Voronoi Conjecture

Parallelohedra and the Voronoi Conjecture Alexey Garber Bielefeld University November 28, 2012 Parallelohedra Denition Convex d-dimensional polytope P is called a parallelohedron if R d can be (face-to-face) tiled into parallel copies of P. Parallelohedra

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

As we come to each Math Notes box, you need to copy it onto paper in your Math Notes Section of your binder. As we come to each Learning Log Entry,

As we come to each Math Notes box, you need to copy it onto paper in your Math Notes Section of your binder. As we come to each Learning Log Entry, Chapter 1: Math Notes Page/Problem # Lesson 1.1.1 Lines of Symmetry 6 Lesson 1.1.2 The Investigative Process 11 Lesson 1.1.3 The Perimeter and Area of a Figure 16 Lesson 1.1.4 Solving Linear Equations

More information

Combinatorial constructions of hyperbolic and Einstein four-manifolds

Combinatorial constructions of hyperbolic and Einstein four-manifolds Combinatorial constructions of hyperbolic and Einstein four-manifolds Bruno Martelli (joint with Alexander Kolpakov) February 28, 2014 Bruno Martelli Constructions of hyperbolic four-manifolds February

More information

L-CONVEX-CONCAVE SETS IN REAL PROJECTIVE SPACE AND L-DUALITY

L-CONVEX-CONCAVE SETS IN REAL PROJECTIVE SPACE AND L-DUALITY MOSCOW MATHEMATICAL JOURNAL Volume 3, Number 3, July September 2003, Pages 1013 1037 L-CONVEX-CONCAVE SETS IN REAL PROJECTIVE SPACE AND L-DUALITY A. KHOVANSKII AND D. NOVIKOV Dedicated to Vladimir Igorevich

More information

LECTURE 10 LECTURE OUTLINE

LECTURE 10 LECTURE OUTLINE We now introduce a new concept with important theoretical and algorithmic implications: polyhedral convexity, extreme points, and related issues. LECTURE 1 LECTURE OUTLINE Polar cones and polar cone theorem

More information

Vertex-Maximal Lattice Polytopes Contained in 2-Simplices

Vertex-Maximal Lattice Polytopes Contained in 2-Simplices Vertex-Maximal Lattice Polytopes Contained in 2-Simplices Christoph Pegel Institut für Algebra, Zahlentheorie und Diskrete Mathematik Leibniz Universität Hannover November 14, 2018 joint with Jan Philipp

More information

Automorphism Groups of Cyclic Polytopes

Automorphism Groups of Cyclic Polytopes 8 Automorphism Groups of Cyclic Polytopes (Volker Kaibel and Arnold Waßmer ) It is probably well-known to most polytope theorists that the combinatorial automorphism group of a cyclic d-polytope with n

More information

A result on flip-graph connectivity

A result on flip-graph connectivity Lionel Pournin 1 A result on flip-graph connectivity June 21, 2011 Abstract. A polyhedral subdivision of a d-dimensional point configuration A is k-regular if it is projected from the boundary complex

More information

Applied Integer Programming

Applied Integer Programming Applied Integer Programming D.S. Chen; R.G. Batson; Y. Dang Fahimeh 8.2 8.7 April 21, 2015 Context 8.2. Convex sets 8.3. Describing a bounded polyhedron 8.4. Describing unbounded polyhedron 8.5. Faces,

More information

Tilings of Parallelograms with Similar Right Triangles

Tilings of Parallelograms with Similar Right Triangles Discrete Comput Geom (2013) 50:469 473 DOI 10.1007/s00454-013-9522-0 Tilings of Parallelograms with Similar Right Triangles Zhanjun Su Chan Yin Xiaobing Ma Ying Li Received: 1 October 2012 / Revised: 29

More information

arxiv: v1 [math.co] 12 Dec 2017

arxiv: v1 [math.co] 12 Dec 2017 arxiv:1712.04381v1 [math.co] 12 Dec 2017 Semi-reflexive polytopes Tiago Royer Abstract The Ehrhart function L P(t) of a polytope P is usually defined only for integer dilation arguments t. By allowing

More information

ORIE 6300 Mathematical Programming I September 2, Lecture 3

ORIE 6300 Mathematical Programming I September 2, Lecture 3 ORIE 6300 Mathematical Programming I September 2, 2014 Lecturer: David P. Williamson Lecture 3 Scribe: Divya Singhvi Last time we discussed how to take dual of an LP in two different ways. Today we will

More information

Lecture 1 Discrete Geometric Structures

Lecture 1 Discrete Geometric Structures Lecture 1 Discrete Geometric Structures Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

Computing Tropical Resultants. A. Jensen and J. Yu. REPORT No. 44, 2010/2011, spring ISSN X ISRN IML-R /11- -SE+spring

Computing Tropical Resultants. A. Jensen and J. Yu. REPORT No. 44, 2010/2011, spring ISSN X ISRN IML-R /11- -SE+spring Computing Tropical Resultants A. Jensen and J. Yu REPORT No. 44, 2010/2011, spring ISSN 1103-467X ISRN IML-R- -44-10/11- -SE+spring COMPUTING TROPICAL RESULTANTS arxiv:1109.2368v2 [math.ag] 24 Mar 2013

More information

Geometric bistellar flips: the setting, the context and a construction

Geometric bistellar flips: the setting, the context and a construction Geometric bistellar flips: the setting, the context and a construction Francisco Santos Abstract. We give a self-contained introduction to the theory of secondary polytopes and geometric bistellar flips

More information

Hyperbolic Geometry on the Figure-Eight Knot Complement

Hyperbolic Geometry on the Figure-Eight Knot Complement Hyperbolic Geometry on the Figure-Eight Knot Complement Alex Gutierrez Arizona State University December 10, 2012 Hyperbolic Space Hyperbolic Space Hyperbolic space H n is the unique complete simply-connected

More information

2 Geometry Solutions

2 Geometry Solutions 2 Geometry Solutions jacques@ucsd.edu Here is give problems and solutions in increasing order of difficulty. 2.1 Easier problems Problem 1. What is the minimum number of hyperplanar slices to make a d-dimensional

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

CS452/552; EE465/505. Geometry Transformations

CS452/552; EE465/505. Geometry Transformations CS452/552; EE465/505 Geometry Transformations 1-26-15 Outline! Geometry: scalars, points & vectors! Transformations Read: Angel, Chapter 4 (study cube.html/cube.js example) Appendix B: Spaces (vector,

More information

Algebraic Geometry of Segmentation and Tracking

Algebraic Geometry of Segmentation and Tracking Ma191b Winter 2017 Geometry of Neuroscience Geometry of lines in 3-space and Segmentation and Tracking This lecture is based on the papers: Reference: Marco Pellegrini, Ray shooting and lines in space.

More information

Discrete Volume Computations. for Polyhedra

Discrete Volume Computations. for Polyhedra Digital Discrete Volume Computations y for Polyhedra 20 Matthias Beck San Francisco State University math.sfsu.edu/beck DGCI 2016 5 x z 2 Science is what we understand well enough to explain to a computer,

More information

Toric Varieties and Lattice Polytopes

Toric Varieties and Lattice Polytopes Toric Varieties and Lattice Polytopes Ursula Whitcher April 1, 006 1 Introduction We will show how to construct spaces called toric varieties from lattice polytopes. Toric fibrations correspond to slices

More information

Polygon Angle-Sum Theorem:

Polygon Angle-Sum Theorem: Name Must pass Mastery Check by: [PACKET 5.1: POLYGON -SUM THEOREM] 1 Write your questions here! We all know that the sum of the angles of a triangle equal 180. What about a quadrilateral? A pentagon?

More information

Optimality certificates for convex minimization and Helly numbers

Optimality certificates for convex minimization and Helly numbers Optimality certificates for convex minimization and Helly numbers Amitabh Basu Michele Conforti Gérard Cornuéjols Robert Weismantel Stefan Weltge October 20, 2016 Abstract We consider the problem of minimizing

More information

CAT(0)-spaces. Münster, June 22, 2004

CAT(0)-spaces. Münster, June 22, 2004 CAT(0)-spaces Münster, June 22, 2004 CAT(0)-space is a term invented by Gromov. Also, called Hadamard space. Roughly, a space which is nonpositively curved and simply connected. C = Comparison or Cartan

More information

Polyhedra inscribed in a hyperboloid & AdS geometry. anti-de Sitter geometry.

Polyhedra inscribed in a hyperboloid & AdS geometry. anti-de Sitter geometry. Polyhedra inscribed in a hyperboloid and anti-de Sitter geometry. Jeffrey Danciger 1 Sara Maloni 2 Jean-Marc Schlenker 3 1 University of Texas at Austin 2 Brown University 3 University of Luxembourg AMS

More information

C O M P U T E R G R A P H I C S. Computer Graphics. Three-Dimensional Graphics I. Guoying Zhao 1 / 52

C O M P U T E R G R A P H I C S. Computer Graphics. Three-Dimensional Graphics I. Guoying Zhao 1 / 52 Computer Graphics Three-Dimensional Graphics I Guoying Zhao 1 / 52 Geometry Guoying Zhao 2 / 52 Objectives Introduce the elements of geometry Scalars Vectors Points Develop mathematical operations among

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

Matroidal Subdivisions, Dressians and Tropical Grassmannians

Matroidal Subdivisions, Dressians and Tropical Grassmannians Matroidal Subdivisions, Dressians and Tropical Grassmannians Benjamin Schröter Technische Universität Berlin Berlin, November 17, 2017 Overview 1. Introduction to tropical linear spaces 2. Matroids from

More information

Angle Structures and Hyperbolic Structures

Angle Structures and Hyperbolic Structures Angle Structures and Hyperbolic Structures Craig Hodgson University of Melbourne Throughout this talk: M = compact, orientable 3-manifold with M = incompressible tori, M. Theorem (Thurston): M irreducible,

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

Geodesic and curvature of piecewise flat Finsler surfaces

Geodesic and curvature of piecewise flat Finsler surfaces Geodesic and curvature of piecewise flat Finsler surfaces Ming Xu Capital Normal University (based on a joint work with S. Deng) in Southwest Jiaotong University, Emei, July 2018 Outline 1 Background Definition

More information

Boundary Curves of Incompressible Surfaces

Boundary Curves of Incompressible Surfaces Boundary Curves of Incompressible Surfaces Allen Hatcher This is a Tex version, made in 2004, of a paper that appeared in Pac. J. Math. 99 (1982), 373-377, with some revisions in the exposition. Let M

More information

Algorithms for the Construction of Digital Convex Fuzzy Hulls

Algorithms for the Construction of Digital Convex Fuzzy Hulls lgorithms for the Construction of Digital Convex Fuzzy Hulls Nebojša M. Ralević Faculty of Engineering, University of Novi Sad Trg Dositeja Obradovića 6, 000 Novi Sad, Serbia nralevic@uns.ns.ac.yu Lidija

More information

Cyclotomic Polytopes and Growth Series of Cyclotomic Lattices. Matthias Beck & Serkan Hoşten San Francisco State University

Cyclotomic Polytopes and Growth Series of Cyclotomic Lattices. Matthias Beck & Serkan Hoşten San Francisco State University Cyclotomic Polytopes and Growth Series of Cyclotomic Lattices Matthias Beck & Serkan Hoşten San Francisco State University math.sfsu.edu/beck Math Research Letters Growth Series of Lattices L R d lattice

More information

Polyhedral Voronoi Diagrams of Polyhedra in Three Dimensions

Polyhedral Voronoi Diagrams of Polyhedra in Three Dimensions Polyhedral Voronoi Diagrams of Polyhedra in Three Dimensions Vladlen Koltun Micha Sharir April 21, 2003 Abstract We show that the complexity of the Voronoi diagram of a collection of disjoint polyhedra

More information

Convex Hulls in Three Dimensions. Polyhedra

Convex Hulls in Three Dimensions. Polyhedra Convex Hulls in Three Dimensions Polyhedra Polyhedron 1.A polyhedron is the generalization of a 2- D polygon to 3-D A finite number of flat polygonal faces The boundary or surface of a polyhedron - Zero-dimensional

More information

Open problems in convex optimisation

Open problems in convex optimisation Open problems in convex optimisation 26 30 June 2017 AMSI Optimise Vera Roshchina RMIT University and Federation University Australia Perceptron algorithm and its complexity Find an x R n such that a T

More information

Euler Polytopes and Convex Matroid Optimization

Euler Polytopes and Convex Matroid Optimization Euler Polytopes and Convex Matroid Optimization Antoine Deza a, George Manoussakis b, and Shmuel Onn c a McMaster University, Hamilton, Ontario, Canada b Université de Paris Sud, Orsay, France c Technion

More information