An Introduction to Polygonal Numbers, Their Patterns, and Relationship to Pascal s Triangle

Size: px
Start display at page:

Download "An Introduction to Polygonal Numbers, Their Patterns, and Relationship to Pascal s Triangle"

Transcription

1 An Introduction to Polygonal Numbers, Their Patterns, and Relationship to Pascal s Triangle Tyler Albany April, 015 1

2 The ancient Greek mathematician Diophantos was one of the first to study polygonal numbers. A polygonal number can be defined as a sum of equidistant dots used to represent a polygon of a certain size. For example, if you have a square number with rank one it is one, rank two is four because you expand the length and width by one dot each and fill in the outer layer, then rank three would be nine and it continues in this fashion. The rank of a polygonal numbers is the number of dots on a side of the outermost layer of the polygonal number. This holds true for all polygonal numbers. (see figure 1.1) A polygonal number is denoted by P d (n) where d is the number of sides to the corresponding polygon and n is the rank, or order, of the polygonal number. For instance P 5 (4) would be a pentagonal number with rank four. All polygonal numbers with rank one equal one, and all polygonal numbers of rank two are equal to the number of sides on the corresponding polygon. Furthermore, you can find any polygonal number by using the formula P d (n) (d )n +(4 d)n. Note that d, n N, and d 3 since less than three sides would not form a polygon. Throughout this paper I will show some of the various properties of polygonal numbers, such as: the closed formula for a triangular number of rank n, the closed formula to find any polygonal number, that all hexagonal numbers are also triangular numbers, a polygonal number can be prime if and only if it has a rank of two and the number of sides for the polygon is prime, and finally, the relationship between Pascal s triangle and triangular numbers. Triangular numbers are the most basic polygonal numbers. This stems from how triangular numbers are formed. Suppose you have a triangular number of rank n, to get the triangular number of rank n + 1 simply add n + 1 dots. For example, since the first triangular number is one, to get the second you add two, to get the third you add three and so on until you have found your desired triangular number. While this method will always work and it is quick to use for small triangular numbers it would take a very long time to find the 1000 th triangular number. To find the formula for the n th triangular number we will proceed by induction. Definition 1.1: t n n Theorem 1: The n th triangular number is equal to n(n+1), t n n(n+1). Base Case: n 1, t 1 1 1(1+1) Inductive Step: Assume t n n(n+1) By definition 1.1 t n n + (n + 1) n(n + 1) + (n + 1) n(n + 1) + n + n + 3n + (n + 1)(n + ) While knowing the formula to find any triangular number is nice to have what if you wanted to find the 4 th pentagonal number or even the 1357 th octagonal number. There is no feesable way to simply count to find these numbers it would take far too long. In order to find the formula for any polygonal number I will use some properties of finite calculus. Moreover, in order to find the formula

3 for any polygonal number we need to define the formula for the number of dots added to the (n 1) st polygonal number in order to receive the n th polygonal number. Property.1: The difference, similar to a derivative in calculus, of a function f : Z Z is f : Z Z and equals f(n + 1) f(n). Property.11: (cf(n)) c f(n) Property.1: (f(n) + g(n)) f(n) + g(n) Property.: The number of dots added to the (n 1) st polygonal number to get the n th polygonal number is equal to 1 + (d )(n 1). Lemma.3: t n 1 n t n 1 t n t n 1 n(n + 1) n + n n n n(n 1) n n Lemma.4: n 1 n n + 1 n 1 Theorem : The formula to find any polygonal number with d sides and rank n is (d )n +(4 d)n. Let P d (n) be a polygonal number with d sides and rank n. Therefore P d (n) P d (n + 1) P d (n) P d (n+1) P d (n) is simply the polygonal number with d sides and rank n subtracted from the polygonal number with d sides and rank n + 1. The difference between the two will give you the number of dots you add to P d (n) to get P d (n + 1). By definition. we know that to get the (n + 1) st polygonal number we will need to add 1 + (d )n dots. In other words, P d (n+1) P d (n) is equivalent to 1+(d )n. Therefore if we can find the fuction that gives us 1 + (d )n when we take its difference we will find the formula for the n th polygonal 3

4 number. From Lemma.3 and.4 we know t n 1 n, n 1 [(d )t n 1 + n] (d ) t n 1 + n (d )n + 1 We found the formula we were looking for that gives us 1 + (d )n when you take its difference. Now if we work backwords we can find the formula for any polygonal number. P d (n) P d (n + 1) P d (n) (d )[ t n 1 ] + n [(d )t n 1 + n] P d (n) (d )t n 1 + n [ n(n 1) (d ) [ n n (d ) ] + n ] + n (d )n n(d ) + n (d )n + n( + d) (d )n + (4 d)n Now that we know the formula for any polygonal number we can start to see some patterns with these numbers. For instance if we list some of the first triangular numbers: 1, 3, 6, 10, 15, 1, 8 and some of the first hexagonal numbers: 1, 6, 15, 8, 45 you can see that some of these numbers coincide. More importantly you can see that the odd rank triangular numbers listed are also hexagonal numbers. Lemma 3.1: The formula for a hexagonal number of rank k is 4k k We know the formula for any polygonal number is P d (n) (d )n +(4 d)n where d is the number of sides and n is the rank Since we want to find only hexagonal numbers we will set d 6 P 6 (n) (6 )n + (4 6)n 4n n Theorem 3: All triangular numbers with odd rank are also hexagonal numbers. 4

5 Let the hexagonal number with rank k be called h k therefore h k 4k k Because t n (n+1)(n+) and we want only odd n and n 1, let n k 1 (k 1)(k 1 + 1) t n (k 1)(k) 4k k h k Hexagonal numbers also being triangular numbers is not the only pattern that can be found, or in this case not found. A polygonal number can only be prime if and only if it has rank two and it has a prime number of sides. Theorem 4: A polygonal number can be prime iff it is of rank two and the number of sides is prime. There are two cases: Case 1: n and [(d )n + 4 d] P d(n) P d (n) (d )n + (4 d)n n [(d )n + 4 d] By the definiton of a prime number if n is prime then [(d )n + 4 d] is 1, or n is prime. is 1 and [(d )n + 4 d] Suppose n p k P rimes, (d )n + 4 d 1 n p k (d )p k + 4 d 1 d(p k 1) 4p k 3 d 4p k 3 p k + 1 (p k ) + 1 p k d + p k + 1 d N and p k 0 Suppose n 1, (d )n + 4 d p i P rimes n (d ) + 4 d p i 5

6 d d p i d p i Case : n and P d (n) (d )n + (4 d)n [ ] (d )n + 4 d n [ ] (d )n + 4 d P d (n) By the definiton of a prime number if n is prime then (d )n+4 d is 1, or n is 1 and (d )n+4 d is prime. Suppose n p n P rimes, (d )p n + 4 d 1 (d )p n + 4 d d(p n 1) p n d p n p n 1 d d 3 Suppose n 1, d + 4 d p j 1 p j (d )n + (4 d)n (d )n + 4 d 1 p j P rimes Conversely, let d p m Primes and n P pm () (p m ) + (4 p m ) p m p m p m Perhaps the most interesting property of polygonal numbers comes from a seemingly unrelated object. All triangular numbers are included in Pascal s triangle. However, not only are they included they are all in the third diagonal (see figure 5.1). In order to prove that the third diagonal of Pascal s triangle contains all triangular numbers it is important to recall an important property of Pascal s triangle. Property 5.1: Any number in Pascal s triangle can be found using ( ) n k n! k!(n k)! where n is the row and k is the position in the row starting at the leftmost position, and n 0, 0 k n. In other 6

7 words, the first row in Pascal s triangle is row zero and the leftmost position in a given row is also zero. Theorem 5: The third diagonal of Pascal s triangle includes all triangular numbers. Notice that the third diagonal of Pascal s triangle starts in row two and position zero, the next number in the diagonal is in the third row and position one. Therefore by property 5.1 we can define each number in the third diagonal by ( ) k+ k. Let t k be a triangular number of rank k. ( ) k + (k + )! k k!( + k k)! (k + )!!k! 1 (k + )(k + 1)(k) ()(1)! (k)(k 1) ()(1) (k + )(k + 1) t k+1 Here even though we have t k+1 we still have every triangular number because k begins at zero and n begins at one. Furthermore, to find a triangular number we now have three methods: the standard formula for triangular numbers, t n n(n+1), the formula to find any polygonal number P d (n) (d )n +(4 d)n, and the newly found method using Pascal s triangle, ( ) k+ k where k n 1. In conclusion, we can also find a formula for tetrahedral numbers using Pascal s triangle. To visualize a tetrahedral number think of triangular number in dots, then stack each triangular number as levels, so the first level is one, t 1, the next level is three, t, and so on (see figure 6.1). For each triangular number you add the rank goes up by one. If you look at Pascal s triangle you will see that the fourth diagonal includes all tetrahedral numbers. In fact, evry diagonal of Pascal s triangle represents a unique dimension. The first diagonal is all 1 s so it is 0 dimensional, a point, the next is 1 dimensional, a line, and as we saw the third and fourth diagonals are two and three dimensional, respectively. This pattern continues throughout Pascals s triangle. 7

8 References [1] Elliot Forhan, Polygonal Numbers and Finite Calculus, 007, 13/11/013 [] Polygonal Number. Wikipedia. Wikimedia Foundation, 13/11/013. [3] Pascals Triangle. All You Ever wanted to Know and More. 15/11/013 8

Review Interior Angle Sum New: Exterior Angle Sum

Review Interior Angle Sum New: Exterior Angle Sum Review Interior Angle Sum New: Exterior Angle Sum QUIZ: Prove that the diagonal connecting the vertex angles of a kite cut the kite into two congruent triangles. 1 Interior Angle Sum Formula: Some Problems

More information

Special Lines and Constructions of Regular Polygons

Special Lines and Constructions of Regular Polygons Special Lines and Constructions of Regular Polygons A regular polygon with a center A is made up of congruent isosceles triangles with a principal angle A. The red line in the regular pentagon below is

More information

Unit 3: Triangles and Polygons

Unit 3: Triangles and Polygons Unit 3: Triangles and Polygons Background for Standard G.CO.9: Prove theorems about triangles. Objective: By the end of class, I should Example 1: Trapezoid on the coordinate plane below has the following

More information

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix.

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. Row echelon form A matrix is said to be in the row echelon form if the leading entries shift to the

More information

Bulgarian Math Olympiads with a Challenge Twist

Bulgarian Math Olympiads with a Challenge Twist Bulgarian Math Olympiads with a Challenge Twist by Zvezdelina Stankova Berkeley Math Circle Beginners Group September 0, 03 Tasks throughout this session. Harder versions of problems from last time appear

More information

Inductive Reasoning: Observing Patterns to make generalizations is induction.

Inductive Reasoning: Observing Patterns to make generalizations is induction. Inductive Reasoning Inductive Reasoning: Observing Patterns to make generalizations is induction. Geometry.1 Example: Every crow I have seen is black, therefore I generalize that all crows are black. Inferences

More information

February Regional Geometry Team: Question #1

February Regional Geometry Team: Question #1 February Regional Geometry Team: Question #1 A = area of an equilateral triangle with a side length of 4. B = area of a square with a side length of 3. C = area of a regular hexagon with a side length

More information

10.1 Prisms and Pyramids

10.1 Prisms and Pyramids AreasandVolumesofprismsandpyramids20052006.nb 0. Prisms and Pyramids We have already learned to calculate the areas of plane figures. In this chapter we will be calculating the surface areas and volumes

More information

Click the mouse button or press the Space Bar to display the answers.

Click the mouse button or press the Space Bar to display the answers. Click the mouse button or press the Space Bar to display the answers. 9-4 Objectives You will learn to: Identify regular tessellations. Vocabulary Tessellation Regular Tessellation Uniform Semi-Regular

More information

Week 9: Planar and non-planar graphs. 7 and 9 November, 2018

Week 9: Planar and non-planar graphs. 7 and 9 November, 2018 (1/27) MA284 : Discrete Mathematics Week 9: Planar and non-planar graphs http://www.maths.nuigalway.ie/ niall/ma284/ 7 and 9 November, 2018 1 Planar graphs and Euler s formula 2 Non-planar graphs K 5 K

More information

Unit 7: 3D Figures 10.1 & D formulas & Area of Regular Polygon

Unit 7: 3D Figures 10.1 & D formulas & Area of Regular Polygon Unit 7: 3D Figures 10.1 & 10.2 2D formulas & Area of Regular Polygon NAME Name the polygon with the given number of sides: 3-sided: 4-sided: 5-sided: 6-sided: 7-sided: 8-sided: 9-sided: 10-sided: Find

More information

Answers Investigation 4

Answers Investigation 4 Answers Applications 1 4. Patterns 2 and 4 can fold to form closed boxes. Patterns 1 and 3 cannot fold to form closed boxes. 10. Sketch of box and possible net: 5. a. Figures 1 and 2 can be folded to form

More information

arxiv: v1 [math.co] 20 Aug 2012

arxiv: v1 [math.co] 20 Aug 2012 ENUMERATING TRIANGULATIONS BY PARALLEL DIAGONALS Alon Regev Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois regev@math.niu.edu arxiv:108.91v1 [math.co] 0 Aug 01 1 Introduction

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Year 10 Topic Practice Papers: Polygons Polygons 1 Grade 4 Look at the shapes below A B C Shape A, B and C are polygons Write down the mathematical name for each of the polygons

More information

6.7 Regular Polygons

6.7 Regular Polygons 6.7 Regular Polygons Dec 13 3:08 PM 1 Recall, what is a polygon? A union of segments in the same plane such that each segment intersects two others, one at each of its endpoints Dec 13 3:13 PM 2 Define

More information

Catalan Numbers. Table 1: Balanced Parentheses

Catalan Numbers. Table 1: Balanced Parentheses Catalan Numbers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 00 We begin with a set of problems that will be shown to be completely equivalent. The solution to each problem

More information

A C E. Answers Investigation 4. Applications. b. Possible answers:

A C E. Answers Investigation 4. Applications. b. Possible answers: Answers Applications 4. Patterns and 4 can fold to form closed boxes. Patterns and cannot fold to form closed boxes. 5. a. Figures and can be folded to form a closed box. Pattern C cannot. b. Figure :

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

THE PRINCIPLE OF INDUCTION. MARK FLANAGAN School of Electrical, Electronic and Communications Engineering University College Dublin

THE PRINCIPLE OF INDUCTION. MARK FLANAGAN School of Electrical, Electronic and Communications Engineering University College Dublin THE PRINCIPLE OF INDUCTION MARK FLANAGAN School of Electrical, Electronic and Communications Engineering University College Dublin The Principle of Induction: Let a be an integer, and let P(n) be a statement

More information

Polygons. Discuss with a partner what a POLYGON is. Write down the key qualities a POLYGON has. Share with the class what a polygon is?

Polygons. Discuss with a partner what a POLYGON is. Write down the key qualities a POLYGON has. Share with the class what a polygon is? Polygons Use a ruler to draw 3 different POLYGONS Discuss with a partner what a POLYGON is Write down the key qualities a POLYGON has Share with the class what a polygon is? *Can you find the area of each

More information

Math Circles: Pigeons and Rams(ey)

Math Circles: Pigeons and Rams(ey) Math Circles: Pigeons and Rams(ey) M. Victor Wickerhauser Sunday, October 2nd, 2016 The Pigeonhole Principle is an accepted fact about finite sets, stating that if a collection of N sets (think pigeonholes

More information

Week 9: Planar and non-planar graphs. 1st and 3rd of November, 2017

Week 9: Planar and non-planar graphs. 1st and 3rd of November, 2017 (1/26) MA284 : Discrete Mathematics Week 9: Planar and non-planar graphs http://www.maths.nuigalway.ie/~niall/ma284/ 1st and 3rd of November, 2017 1 Recall... planar graphs and Euler s formula 2 Non-planar

More information

CK-12 Geometry: Similar Polygons

CK-12 Geometry: Similar Polygons CK-12 Geometry: Similar Polygons Learning Objectives Recognize similar polygons. Identify corresponding angles and sides of similar polygons from a similarity statement. Calculate and apply scale factors.

More information

Counting the number of spanning tree. Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University

Counting the number of spanning tree. Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University Counting the number of spanning tree Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University 目录 Contents 1 Complete Graph 2 Proof of the Lemma 3 Arbitrary Graph 4 Proof

More information

Angles, Polygons, Circles

Angles, Polygons, Circles Page 1 of 5 Part One Last week we learned about the angle properties of circles and used them to solve a simple puzzle. This week brings a new puzzle that will make us use our algebra a bit more. But first,

More information

Patterning and Algebra 2010/2011 Circle 1 Problem 6. Polygons: How Many Degrees per Vertex? (For pairs or groups of students) B 5.

Patterning and Algebra 2010/2011 Circle 1 Problem 6. Polygons: How Many Degrees per Vertex? (For pairs or groups of students) B 5. Patterning and lgebra 2010/2011 ircle 1 Problem 6 Problem Polygons: How Many egrees per Vertex? (For pairs or groups of students) a) elow are several triangles. For each triangle, measure the angles at

More information

Pythagorean Triples. Chapter 2. Exercises

Pythagorean Triples. Chapter 2. Exercises Chapter Pythagorean Triples Exercises.1. (a) We showed that in any primitive Pythagorean triple (a, b, c), either a or b is even. Use the same sort of argument to show that either a or b must be a multiple

More information

Perimeter Magic Polygons

Perimeter Magic Polygons Perimeter Magic Polygons In, Terrel Trotter, Jr., then a math teacher in Urbana Illinois, published an article called Magic Triangles of Order n. In, he published a follow up article called Perimeter Magic

More information

What is a tessellation???? Give an example... Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =?

What is a tessellation???? Give an example... Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =? Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =? 36 74 0 78 0 154 o 44 48 54 o y x 154 o 78 0 12 74 0 9 1. 8 ft 2. 21m 3. 21 ft 4. 30cm 5. 6mm 6. 16 in 7. yes 9 = 7

More information

Lemma (x, y, z) is a Pythagorean triple iff (y, x, z) is a Pythagorean triple.

Lemma (x, y, z) is a Pythagorean triple iff (y, x, z) is a Pythagorean triple. Chapter Pythagorean Triples.1 Introduction. The Pythagorean triples have been known since the time of Euclid and can be found in the third century work Arithmetica by Diophantus [9]. An ancient Babylonian

More information

Cambridge Essentials Mathematics Core 9 GM1.1 Answers. 1 a

Cambridge Essentials Mathematics Core 9 GM1.1 Answers. 1 a GM1.1 Answers 1 a b 2 Shape Name Regular Irregular Convex Concave A Decagon B Octagon C Pentagon D Quadrilateral E Heptagon F Hexagon G Quadrilateral H Triangle I Triangle J Hexagon Original Material Cambridge

More information

Math Summer 2012

Math Summer 2012 Math 481 - Summer 2012 Final Exam You have one hour and fifty minutes to complete this exam. You are not allowed to use any electronic device. Be sure to give reasonable justification to all your answers.

More information

The transition: Each student passes half his store of candies to the right. students with an odd number of candies eat one.

The transition: Each student passes half his store of candies to the right. students with an odd number of candies eat one. Kate s problem: The students are distributed around a circular table The teacher distributes candies to all the students, so that each student has an even number of candies The transition: Each student

More information

On the Minimum Number of Convex Quadrilaterals in Point Sets of Given Numbers of Points

On the Minimum Number of Convex Quadrilaterals in Point Sets of Given Numbers of Points On the Minimum Number of Convex Quadrilaterals in Point Sets of Given Numbers of Points Hu Yuzhong Chen Luping Zhu Hui Ling Xiaofeng (Supervisor) Abstract Consider the following problem. Given n, k N,

More information

Academic Vocabulary CONTENT BUILDER FOR THE PLC MATH GRADE 3

Academic Vocabulary CONTENT BUILDER FOR THE PLC MATH GRADE 3 Academic Vocabulary CONTENT BUILDER FOR THE PLC MATH GRADE 3 STANDARD 3.2(A) compose and decompose numbers up to 100,000 as a sum of so many ten thousands, so many thousands, so many hundreds, so many

More information

2.4 Angle Properties in Polygons.notebook. October 27, 2013 ENTRANCE SLIP

2.4 Angle Properties in Polygons.notebook. October 27, 2013 ENTRANCE SLIP ENTRANCE SLIP If you are given one interior angle and one exterior angle of a triangle, can you always determine the other interior angles of the triangle? Explain, using diagrams. 1 2.4 Angle Properties

More information

6 Polygons and. Quadrilaterals CHAPTER. Chapter Outline.

6 Polygons and. Quadrilaterals CHAPTER. Chapter Outline. www.ck12.org CHAPTER 6 Polygons and Quadrilaterals Chapter Outline 6.1 ANGLES IN POLYGONS 6.2 PROPERTIES OF PARALLELOGRAMS 6.3 PROVING QUADRILATERALS ARE PARALLELOGRAMS 6.4 RECTANGLES, RHOMBUSES AND SQUARES

More information

Graph Algorithms. Chromatic Polynomials. Graph Algorithms

Graph Algorithms. Chromatic Polynomials. Graph Algorithms Graph Algorithms Chromatic Polynomials Graph Algorithms Chromatic Polynomials Definition G a simple labelled graph with n vertices and m edges. k a positive integer. P G (k) number of different ways of

More information

Polygons. Discuss with a partner what a POLYGON is. Write down the key qualities a POLYGON has. Share with the class what a polygon is?

Polygons. Discuss with a partner what a POLYGON is. Write down the key qualities a POLYGON has. Share with the class what a polygon is? Polygons Use a ruler to draw 3 different POLYGONS Discuss with a partner what a POLYGON is Write down the key qualities a POLYGON has Share with the class what a polygon is? *Can you find the area of each

More information

Contents. Lines, angles and polygons: Parallel lines and angles. Triangles. Quadrilaterals. Angles in polygons. Congruence.

Contents. Lines, angles and polygons: Parallel lines and angles. Triangles. Quadrilaterals. Angles in polygons. Congruence. Colegio Herma. Maths Bilingual Departament Isabel Martos Martínez. 2015 Contents Lines, angles and polygons: Parallel lines and angles Triangles Quadrilaterals Angles in polygons Congruence Similarity

More information

CHAPTER TWO. . Therefore the oblong number n(n + 1) is double the triangular number T n. , and the summands are the triangular numbers T n 1 and T n.

CHAPTER TWO. . Therefore the oblong number n(n + 1) is double the triangular number T n. , and the summands are the triangular numbers T n 1 and T n. CHAPTER TWO 1. Since AB BC; since the two angles at B are equal; and since the angles at A and C are both right angles, it follows by the angle-side-angle theorem that EBC is congruent to SBA and therefore

More information

Discrete Structures. Fall Homework3

Discrete Structures. Fall Homework3 Discrete Structures Fall 2015 Homework3 Chapter 5 1. Section 5.1 page 329 Problems: 3,5,7,9,11,15 3. Let P(n) be the statement that 1 2 + 2 2 + +n 2 = n(n + 1)(2n + 1)/6 for the positive integer n. a)

More information

A C E. Applications. Applications Connections Extensions

A C E. Applications. Applications Connections Extensions A C E Applications Connections Extensions Applications 1. Suppose that the polygons below were drawn on centimeter grid paper. How many 1-centimeter cubes (some cut in pieces) would it take to cover each

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 208 https://www-m0.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for

More information

Ma/CS 6b Class 9: Euler s Formula

Ma/CS 6b Class 9: Euler s Formula Ma/CS 6b Class 9: Euler s Formula By Adam Sheffer Recall: Plane Graphs A plane graph is a drawing of a graph in the plane such that the edges are noncrossing curves. 1 Recall: Planar Graphs The drawing

More information

Figurate numbers - Figurierte Zahlen

Figurate numbers - Figurierte Zahlen FigurateNumbers.nb Figurate numbers - Figurierte Zahlen Prof. Dr. J. Ziegenbalg Institut fuer Mathematik und Informatik Paedagogische Hochschule Karlsruhe electronic mail : homepage : ziegenbalgüph - karlsruhe.de

More information

Mathematics Background

Mathematics Background Finding Area and Distance Students work in this Unit develops a fundamentally important relationship connecting geometry and algebra: the Pythagorean Theorem. The presentation of ideas in the Unit reflects

More information

The radius for a regular polygon is the same as the radius of the circumscribed circle.

The radius for a regular polygon is the same as the radius of the circumscribed circle. Perimeter and Area The perimeter and area of geometric shapes are basic properties that we need to know. The more complex a shape is, the more complex the process can be in finding its perimeter and area.

More information

c 2011 BRITTANY NICOLE MOTT ALL RIGHTS RESERVED

c 2011 BRITTANY NICOLE MOTT ALL RIGHTS RESERVED c 2011 BRITTANY NICOLE MOTT ALL RIGHTS RESERVED ANALYSIS OF THE GENERALIZED CATALAN ORBITS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements

More information

What is dimension? An investigation by Laura Escobar. Math Explorer s Club

What is dimension? An investigation by Laura Escobar. Math Explorer s Club What is dimension? An investigation by Laura Escobar Math Explorer s Club The goal of this activity is to introduce you to the notion of dimension. The movie Flatland is also a great way to learn about

More information

Boardworks Ltd KS3 Mathematics. S1 Lines and Angles

Boardworks Ltd KS3 Mathematics. S1 Lines and Angles 1 KS3 Mathematics S1 Lines and Angles 2 Contents S1 Lines and angles S1.1 Labelling lines and angles S1.2 Parallel and perpendicular lines S1.3 Calculating angles S1.4 Angles in polygons 3 Lines In Mathematics,

More information

Academic Vocabulary CONTENT BUILDER FOR THE PLC MATH GRADE 2

Academic Vocabulary CONTENT BUILDER FOR THE PLC MATH GRADE 2 Academic Vocabulary CONTENT BUILDER FOR THE PLC MATH GRADE 2 : academic vocabulary directly taken from the standard STANDARD 2.2(B) use standard, word, and expanded forms to represent numbers up to 1,200

More information

Geometry Ch 7 Quadrilaterals January 06, 2016

Geometry Ch 7 Quadrilaterals January 06, 2016 Theorem 17: Equal corresponding angles mean that lines are parallel. Corollary 1: Equal alternate interior angles mean that lines are parallel. Corollary 2: Supplementary interior angles on the same side

More information

5 Graphs

5 Graphs 5 Graphs jacques@ucsd.edu Some of the putnam problems are to do with graphs. They do not assume more than a basic familiarity with the definitions and terminology of graph theory. 5.1 Basic definitions

More information

Lesson 7.1. Angles of Polygons

Lesson 7.1. Angles of Polygons Lesson 7.1 Angles of Polygons Essential Question: How can I find the sum of the measures of the interior angles of a polygon? Polygon A plane figure made of three or more segments (sides). Each side intersects

More information

Lecture 1: An Introduction to Graph Theory

Lecture 1: An Introduction to Graph Theory Introduction to Graph Theory Instructor: Padraic Bartlett Lecture 1: An Introduction to Graph Theory Week 1 Mathcamp 2011 Mathematicians like to use graphs to describe lots of different things. Groups,

More information

4-8 Notes. Warm-Up. Discovering the Rule for Finding the Total Degrees in Polygons. Triangles

4-8 Notes. Warm-Up. Discovering the Rule for Finding the Total Degrees in Polygons. Triangles Date: Learning Goals: How do you find the measure of the sum of interior and exterior angles in a polygon? How do you find the measures of the angles in a regular polygon? Warm-Up 1. What is similar about

More information

Angles of Polygons. Essential Question What is the sum of the measures of the interior angles of a polygon?

Angles of Polygons. Essential Question What is the sum of the measures of the interior angles of a polygon? 7.1 Angles of Polygons Essential Question What is the sum of the measures of the interior angles of a polygon? The Sum of the Angle Measures of a Polygon Work with a partner. Use dynamic geometry software.

More information

Geometric Constructions

Geometric Constructions HISTORY OF MATHEMATICS Spring 2005 Geometric Constructions Notes, activities, assignment; #3 in a series. Note: I m not giving a specific due date for this somewhat vague assignment. The idea is that it

More information

Nested Loops. Chapter 11

Nested Loops. Chapter 11 B B Chapter 11 Nested Loops Any structured statement can be nested in any other structured statement. In the same way that an IF statement can be nested inside another IF, a loop statement can be nested

More information

14. How many sides does a regular polygon have, if the measure of an interior angle is 60?

14. How many sides does a regular polygon have, if the measure of an interior angle is 60? State whether the figure is a polygon; if it is a polygon, state whether the polygon is convex or concave. HINT: No curves, no gaps, and no overlaps! 1. 2. 3. 4. Find the indicated measures of the polygon.

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES HONORS GEOMETRY. 3 rd Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES HONORS GEOMETRY. 3 rd Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES HONORS GEOMETRY 3 rd Nine Weeks, 2016-2017 1 OVERVIEW Geometry Content Review Notes are designed by the High School Mathematics Steering Committee as a resource

More information

AN INNOVATIVE ANALYSIS TO DEVELOP NEW THEOREMS ON IRREGULAR POLYGON

AN INNOVATIVE ANALYSIS TO DEVELOP NEW THEOREMS ON IRREGULAR POLYGON International Journal of Physics and Mathematical Sciences ISSN: 77-111 (Online) 013 Vol. 3 (1) January-March, pp.73-81/kalaimaran AN INNOVATIVE ANALYSIS TO DEVELOP NEW THEOREMS ON IRREGULAR POLYGON *Kalaimaran

More information

SPERNER S LEMMA, BROUWER S FIXED-POINT THEOREM, AND THE SUBDIVISION OF SQUARES INTO TRIANGLES

SPERNER S LEMMA, BROUWER S FIXED-POINT THEOREM, AND THE SUBDIVISION OF SQUARES INTO TRIANGLES SPERNER S LEMMA, BROUWER S FIXED-POINT THEOREM, AND THE SUBDIVISION OF SQUARES INTO TRIANGLES AKHIL MATHEW Abstract These are notes from a talk I gave for high-schoolers at the Harvard- MIT Mathematics

More information

First we need a more precise, rigorous definition:

First we need a more precise, rigorous definition: Lesson 21 Lesson 20, page 1 of 8 Glencoe Geometry Chapter 10.1 Polygons & Area We have been working with special types of polygons throughout the year. Rectangles, Squares, Trapezoids, and, yes, Triangles

More information

3.D. The Platonic solids

3.D. The Platonic solids 3.D. The Platonic solids The purpose of this addendum to the course notes is to provide more information about regular solid figures, which played an important role in Greek mathematics and philosophy.

More information

Pebble Sets in Convex Polygons

Pebble Sets in Convex Polygons 2 1 Pebble Sets in Convex Polygons Kevin Iga, Randall Maddox June 15, 2005 Abstract Lukács and András posed the problem of showing the existence of a set of n 2 points in the interior of a convex n-gon

More information

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y. 2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

More information

3. The sides of a rectangle are in ratio fo 3:5 and the rectangle s area is 135m2. Find the dimensions of the rectangle.

3. The sides of a rectangle are in ratio fo 3:5 and the rectangle s area is 135m2. Find the dimensions of the rectangle. Geometry B Honors Chapter Practice Test 1. Find the area of a square whose diagonal is. 7. Find the area of the triangle. 60 o 12 2. Each rectangle garden below has an area of 0. 8. Find the area of the

More information

Measurement 1 PYTHAGOREAN THEOREM. The area of the square on the hypotenuse of a right triangle is equal to the sum of the areas of

Measurement 1 PYTHAGOREAN THEOREM. The area of the square on the hypotenuse of a right triangle is equal to the sum of the areas of Measurement 1 PYTHAGOREAN THEOREM Remember the Pythagorean Theorem: The area of the square on the hypotenuse of a right triangle is equal to the sum of the areas of the squares on the other two sides.

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

Surface Area of Circular Solids - Lesson 12-3

Surface Area of Circular Solids - Lesson 12-3 Surface Area of Circular Solids - Lesson 12-3 Today we talked about the surface area of circular solids. We started by defining spheres, hemispheres, cylinders, and cones: Baroody Page 1 of 10 Baroody

More information

6.001 Notes: Section 4.1

6.001 Notes: Section 4.1 6.001 Notes: Section 4.1 Slide 4.1.1 In this lecture, we are going to take a careful look at the kinds of procedures we can build. We will first go back to look very carefully at the substitution model,

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.3 Direct Proof and Counterexample III: Divisibility Copyright Cengage Learning. All rights

More information

Unit I: Euler's Formula (and applications).

Unit I: Euler's Formula (and applications). Unit I: Euler's Formula (and applications). We define a roadmap to be a nonempty finite collection of possibly curvedlil1e segments in a piane, each with exactly two endpoints, such that if any pair of

More information

Geometry Reasons for Proofs Chapter 1

Geometry Reasons for Proofs Chapter 1 Geometry Reasons for Proofs Chapter 1 Lesson 1.1 Defined Terms: Undefined Terms: Point: Line: Plane: Space: Postulate 1: Postulate : terms that are explained using undefined and/or other defined terms

More information

I. Recursive Descriptions A phrase like to get the next term you add 2, which tells how to obtain

I. Recursive Descriptions A phrase like to get the next term you add 2, which tells how to obtain Mathematics 45 Describing Patterns in s Mathematics has been characterized as the science of patterns. From an early age students see patterns in mathematics, including counting by twos, threes, etc.,

More information

MathZoom, Summer, 2014

MathZoom, Summer, 2014 A one-dimensional bug starts at the origin and each minute moves either left or right exactly one unit. Suppose it makes there moves with equal likelihood. That is the probability of a move to the left

More information

Contents. Lines, angles and polygons: Parallel lines and angles. Triangles. Quadrilaterals. Angles in polygons. Congruence.

Contents. Lines, angles and polygons: Parallel lines and angles. Triangles. Quadrilaterals. Angles in polygons. Congruence. Colegio Herma. Maths Bilingual Departament Isabel Martos Martínez. 2015 Contents Lines, angles and polygons: Parallel lines and angles Triangles Quadrilaterals Angles in polygons Congruence Similarity

More information

( ) A calculator may be used on the exam. The formulas below will be provided in the examination booklet.

( ) A calculator may be used on the exam. The formulas below will be provided in the examination booklet. The Geometry and Honors Geometry Semester examination will have the following types of questions: Selected Response Student Produced Response (Grid-in) Short nswer calculator may be used on the exam. The

More information

Key Concept Euler s Formula

Key Concept Euler s Formula 11-1 Space Figures and Cross Sections Objectives To recognize polyhedrons and their parts To visualize cross sections of space figures Common Core State Standards G-GMD.B.4 Identify the shapes of two-dimensional

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.3 Direct Proof and Counterexample III: Divisibility Copyright Cengage Learning. All rights

More information

THE COMPETITIVE EDGE

THE COMPETITIVE EDGE SAMPLE PAGES FOR THE READY EOG ASSESSMENT THE COMPETITIVE EDGE THIRD GRADE MATHEMATICS with COMMON CORE STATE STANDARDS 2012 EDITION J ANE H EREFORD CPC CONTEMPORARY PUBLISHING COMPANY OF RALEIGH, INC.

More information

1/25 Warm Up Find the value of the indicated measure

1/25 Warm Up Find the value of the indicated measure 1/25 Warm Up Find the value of the indicated measure. 1. 2. 3. 4. Lesson 7.1(2 Days) Angles of Polygons Essential Question: What is the sum of the measures of the interior angles of a polygon? What you

More information

Practice A Introduction to Three-Dimensional Figures

Practice A Introduction to Three-Dimensional Figures Name Date Class Identify the base of each prism or pyramid. Then choose the name of the prism or pyramid from the box. rectangular prism square pyramid triangular prism pentagonal prism square prism triangular

More information

Properties of Angles and Triangles. Outcomes: G1 Derive proofs that involve the properties of angles and triangles.

Properties of Angles and Triangles. Outcomes: G1 Derive proofs that involve the properties of angles and triangles. Properties of Angles and Triangles Outcomes: G1 Derive proofs that involve the properties of angles and triangles. Achievement Indicators: Generalize, using inductive reasoning, the relationships between

More information

Math 462: Review questions

Math 462: Review questions Math 462: Review questions Paul Hacking 4/22/10 (1) What is the angle between two interior diagonals of a cube joining opposite vertices? [Hint: It is probably quickest to use a description of the cube

More information

Any questions about the material so far? About the exercises?

Any questions about the material so far? About the exercises? Any questions about the material so far? About the exercises? Here is a question for you. In the diagram on the board, DE is parallel to AC, DB = 4, AB = 9 and BE = 8. What is the length EC? Polygons Definitions:

More information

CSE 20 DISCRETE MATH WINTER

CSE 20 DISCRETE MATH WINTER CSE 20 DISCRETE MATH WINTER 2016 http://cseweb.ucsd.edu/classes/wi16/cse20-ab/ Today's learning goals Explain the steps in a proof by (strong) mathematical induction Use (strong) mathematical induction

More information

seen something like it many times when playing video games.

seen something like it many times when playing video games. Cakes and Pancakes Translating and Stacking Two-Dimensional Figures.2 Learning Goals In this lesson, you will: Apply translations to two-dimensional plane figures to create three-dimensional solids. Describe

More information

Intermediate Math Circles Fall 2018 Patterns & Counting

Intermediate Math Circles Fall 2018 Patterns & Counting Intermediate Math Circles Fall 2018 Patterns & Counting Michael Miniou The Centre for Education in Mathematics and Computing Faculty of Mathematics University of Waterloo December 5, 2018 Michael Miniou

More information

Carnegie Learning Math Series Course 1, A Florida Standards Program. Chapter 1: Factors, Multiples, Primes, and Composites

Carnegie Learning Math Series Course 1, A Florida Standards Program. Chapter 1: Factors, Multiples, Primes, and Composites . Factors and Multiples Carnegie Learning Math Series Course, Chapter : Factors, Multiples, Primes, and Composites This chapter reviews factors, multiples, primes, composites, and divisibility rules. List

More information

Discrete Mathematics Introduction

Discrete Mathematics Introduction Discrete Mathematics Introduction Saad Mneimneh 1 Introduction College mathematics will often focus on calculus, and while it is true that calculus is the most important field that started modern mathematics,

More information

Lesson Polygons

Lesson Polygons Lesson 4.1 - Polygons Obj.: classify polygons by their sides. classify quadrilaterals by their attributes. find the sum of the angle measures in a polygon. Decagon - A polygon with ten sides. Dodecagon

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Question 1. Incidence matrix with gaps Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 2016 www-m10.ma.tum.de/projektivegeometriess16

More information

Polygons and Angles. Polygons and Angles. Solutions. Curriculum Ready.

Polygons and Angles. Polygons and Angles. Solutions. Curriculum Ready. Polygons and Angles Polygons and Angles Curriculum Ready www.mathletics.com Basics Page 3 questions 1. Circle the shapes that are polygons: 2. Name these polygons (based on the number of sides) and state

More information

Coloring. Radhika Gupta. Problem 1. What is the chromatic number of the arc graph of a polygonal disc of N sides?

Coloring. Radhika Gupta. Problem 1. What is the chromatic number of the arc graph of a polygonal disc of N sides? Coloring Radhika Gupta 1 Coloring of A N Let A N be the arc graph of a polygonal disc with N sides, N > 4 Problem 1 What is the chromatic number of the arc graph of a polygonal disc of N sides? Or we would

More information

2 nd Grade Math Learning Targets. Algebra:

2 nd Grade Math Learning Targets. Algebra: 2 nd Grade Math Learning Targets Algebra: 2.A.2.1 Students are able to use concepts of equal to, greater than, and less than to compare numbers (0-100). - I can explain what equal to means. (2.A.2.1) I

More information

Exercise set 2 Solutions

Exercise set 2 Solutions Exercise set 2 Solutions Let H and H be the two components of T e and let F E(T ) consist of the edges of T with one endpoint in V (H), the other in V (H ) Since T is connected, F Furthermore, since T

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information