We will be sketching 3-dimensional functions. You will be responsible for doing this both by hand and with Mathematica.

Size: px
Start display at page:

Download "We will be sketching 3-dimensional functions. You will be responsible for doing this both by hand and with Mathematica."

Transcription

1 Review polar coordinates before 9.7. Section 9.6 Functions and Surfaces We will be sketching 3-dimensional functions. You will be responsible for doing this both b hand and with Mathematica. Remember: Function notation in -dimensions = f x ( ) is a function of x x, ordered pairs ( ) x independent variable (Domain), dependent variable (Range). Now: Functions in 3-dimensions z = f x, ( ) z is a function of x and x, z, ordered triplets ( ) x and are the independent variables (Domain), z is the dependent variable (Range). In -dimensions, the Domain was written something like this: { x x 3} (this is just an example) In 3-dimensions, the Domain is written something like this: {( x, ) x 1 0, x 1} + + (another example) the domain is an area located in the x-plane In -dimensions In 3-dimensions, f ( x ) Figure 3 near ex. 4 The blue, S part is the function The tan part is the Domain. The function part lies directl above or below its domain. D is an area. x domain is the set of all inputs or x-values range is the set of all outputs or -values or f(x) values

2 Figure 4 shows a ver basic function a linear function in 3-dim., a plane. All variables raised to the first power. (, ) f x = ax + b + c 1443 ( ) f x, = 6 3x 1443 or z = ax+ b+ c z = 6 3x 3x+ + z 6= 0 Recognize the equation of a plane we know? ax + b + cz + d = 0 Notice x,, and z are first degree. No x here. What s the normal vector, n r, to the plane? r n = The domain of a plane is all real numbers. BUT IF we restrict the surface to the first octant onl, D, is the new domain of part of our restricted plane. The region in the x-plane. 3 When x=z=0, =3 and when =z=0, x=. Notice it s an area. Surface S is the plane ling directl above domain D. So choosing all of the points in D would go (up or down) and hit our restricted plane. D x 1 st ex. (, ) = ln( + 1) z = ln ( x+ 1) f x x Do ou remember f ( x) = lnx? a. Evaluate f ( 1,1) b. Evaluate f ( e,1) c. Find and sketch the Domain of f. Since it is a natural log fn., are there an restrictions on x+-1? D : x,? f {( ) } d. Find the Range of f. So once we plug in the appropriate x and -values, what will the natural log of all of that give ou? R : f x,? f { ( ) } { z }

3 Quadratic Surface is the graph of a second degree equations in 3 variables. Right before the HW Exercise is Table (tab this page, ou ll return to it throughout the semester) These are analogous to our conic sections from the past in -dimensions ellipse, hperbola, parabola. These will be centered at the origin. Remember: x + = 1 ellipse a and b stretch the ellipse out along the x and axes respectivel a b Notice the 1 on the right side and the plus sign and the x and. x a 1 = hperbola opens right & left b x 1 If =, it opens up and down b a b Notice the 1 on the right side and the minus sign and the x and. a b a = x tpe of parabola opens up and if it s negative opens down The x = opens right and if negative opens left After Ex.5 To start to sketch graphs of functions of two variables, we find the shapes of cross-sections (slices). To find these shapes, we keep one variable fixed b putting in a constant, k, for that variable and then focus on that equation and figure out what that famil of curves is. There are two vertical slices (one parallel to the xz-plane and the other parallel to the z-plane) and one horizontal slice (parallel to the x-plane; aka the floor ).

4 To find the slices parallel to the z-plane we set x equal to the constant. x = k To find the slices parallel to the xz-plane we set equal to the constant. = k To find the slices parallel to the x-plane we set z equal to the constant. z = k Ellipsoids A general ellipsoid looks like x z + + = 1 a b c notice all + signs, x,, and z are all squared Discuss slices b looking at a picture first. TEC 9.6b Show how changing a, b, and c affect it. All traces are ellipses. Side Note: If x z a= b= c like + + = 1, would this be an ellipsoid? Ellipsoid Example: x z + + = To graph it we look at the TRACES (cross-sections) in the coordinate planes. k = constant Traces in x = k (parallel to the z-plane) Traces in = k (parallel to the xz-plane)

5 Traces in z = k (parallel to the x-plane) Elliptic Paraboloid x = + z c a b Notice, z but x. + sign between squared terms. Discuss slices b looking at a picture first. TEC 9. 6a, the third one, C, is an elliptic paraboloid. Show how changing a, b, and c affect it. Slider a shows slices parallel to the z-plane are all ellipses. Slider b in blue, planes trace out parabolas parallel to xz-plane. Slider c in white, traces out parabolas, parallel to the x-plane. Let s look at the traces: Traces in x = k (z-plane)

6 Traces in = k (xz-plane) Traces in z = k (x-plane) Hperboloid of One Sheet + = 1 x z a b c Notice sign in front of the z, and that the x, and z are all squared. Example: x + z = 1 (parallel to the z-plane) Traces in x = k, x + z = 1 k + z = 1 z = 1 k Notice the minus sign and all variables to the second power. These traces parallel to the z-plane are a famil of (parallel to the xz-plane) Traces in = k, x + z = 1 x + k z = 1 x z = 1 k Notice the minus sign and all variables to the second power. So these traces parallel to the xz-plane are a famil of

7 (parallel to the x-plane) Traces in z = k, x + z = 1 x + k = 1 x + = 1+ k Notice the + sign and all variables to the second power. These traces parallel to the x-plane are a famil of You have this TEC (Tools for Enriching Calculus) CD, so look at some slices on 9.6a. You should be able to see families of hperbolas parallel to the two vertical planes opening up/down and right/left depending on the constant k values. See the famil of circles in the horizontal planes. On the TEC CD, look at some slices on 9.6a. Look at the Quadric Surfaces 9.6b. Homework Hint #1, : You ll need to complete the square to get it into a recognizable form. Just like the did on Example 9 in the book: This is just an extra example for them. Do not go over in class. Hperbolic Paraboloid TEC 9.6a, the second one. or called a Saddle z = x c a b Notice the minus sign. Ver similar to elliptic paraboloid except for this minus sign. Example: z = x x = k z plane z = k z = + k Notice z and. Traces in ( ) The traces parallel to the z-plane are a famil of parabolas that open upside down.

8 Traces in = k ( xz plane) Notice z and x. z = x k z = x k The traces parallel to the xz-plane are a famil of parabolas that open up. Traces in z = k ( x plane) k = x x = k Notice the minus sign and both x and are squared. The traces parallel to the x-plane are a famil of hperbolas.

Quadric Surfaces. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24

Quadric Surfaces. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24 Quadric Surfaces Philippe B. Laval KSU Today Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24 Introduction A quadric surface is the graph of a second degree equation in three variables. The general

More information

Quadric Surfaces. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Quadric Surfaces Spring /

Quadric Surfaces. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Quadric Surfaces Spring / .... Quadric Surfaces Philippe B. Laval KSU Spring 2012 Philippe B. Laval (KSU) Quadric Surfaces Spring 2012 1 / 15 Introduction A quadric surface is the graph of a second degree equation in three variables.

More information

12.6 Cylinders and Quadric Surfaces

12.6 Cylinders and Quadric Surfaces 12 Vectors and the Geometry of Space 12.6 and Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and We have already looked at two special types of surfaces:

More information

Section 12.2: Quadric Surfaces

Section 12.2: Quadric Surfaces Section 12.2: Quadric Surfaces Goals: 1. To recognize and write equations of quadric surfaces 2. To graph quadric surfaces by hand Definitions: 1. A quadric surface is the three-dimensional graph of an

More information

Quadric Surfaces. Six basic types of quadric surfaces: ellipsoid. cone. elliptic paraboloid. hyperboloid of one sheet. hyperboloid of two sheets

Quadric Surfaces. Six basic types of quadric surfaces: ellipsoid. cone. elliptic paraboloid. hyperboloid of one sheet. hyperboloid of two sheets Quadric Surfaces Six basic types of quadric surfaces: ellipsoid cone elliptic paraboloid hyperboloid of one sheet hyperboloid of two sheets hyperbolic paraboloid (A) (B) (C) (D) (E) (F) 1. For each surface,

More information

1.6 Quadric Surfaces Brief review of Conic Sections 74 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2

1.6 Quadric Surfaces Brief review of Conic Sections 74 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2 7 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.18: Parabola y = x 1.6 Quadric Surfaces Figure 1.19: Parabola x = y 1.6.1 Brief review of Conic Sections You may need to review conic sections for

More information

Pure Math 30: Explained!

Pure Math 30: Explained! www.puremath30.com 5 Conics Lesson Part I - Circles Circles: The standard form of a circle is given by the equation (x - h) +(y - k) = r, where (h, k) is the centre of the circle and r is the radius. Example

More information

Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by

Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by a two dimensional (plane) curve C in three dimensional space a line L in a plane not parallel to the one in

More information

Section 2.5. Functions and Surfaces

Section 2.5. Functions and Surfaces Section 2.5. Functions and Surfaces ² Brief review for one variable functions and curves: A (one variable) function is rule that assigns to each member x in a subset D in R 1 a unique real number denoted

More information

4 = 1 which is an ellipse of major axis 2 and minor axis 2. Try the plane z = y2

4 = 1 which is an ellipse of major axis 2 and minor axis 2. Try the plane z = y2 12.6 Quadrics and Cylinder Surfaces: Example: What is y = x? More correctly what is {(x,y,z) R 3 : y = x}? It s a plane. What about y =? Its a cylinder surface. What about y z = Again a cylinder surface

More information

8.6 Three-Dimensional Cartesian Coordinate System

8.6 Three-Dimensional Cartesian Coordinate System SECTION 8.6 Three-Dimensional Cartesian Coordinate Sstem 69 What ou ll learn about Three-Dimensional Cartesian Coordinates Distance and Midpoint Formulas Equation of a Sphere Planes and Other Surfaces

More information

Key Idea. It is not helpful to plot points to sketch a surface. Mainly we use traces and intercepts to sketch

Key Idea. It is not helpful to plot points to sketch a surface. Mainly we use traces and intercepts to sketch Section 12.7 Quadric surfaces 12.7 1 Learning outcomes After completing this section, you will inshaallah be able to 1. know what are quadric surfaces 2. how to sketch quadric surfaces 3. how to identify

More information

Section 4.4: Parabolas

Section 4.4: Parabolas Objective: Graph parabolas using the vertex, x-intercepts, and y-intercept. Just as the graph of a linear equation y mx b can be drawn, the graph of a quadratic equation y ax bx c can be drawn. The graph

More information

What you will learn today

What you will learn today What you will learn today Conic Sections (in 2D coordinates) Cylinders (3D) Quadric Surfaces (3D) Vectors and the Geometry of Space 1/24 Parabolas ellipses Hyperbolas Shifted Conics Conic sections result

More information

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section.

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section. Chapter 12 Vector Geometry Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible to view 3-D plots generated by Mathematica

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Chapter 15: Functions of Several Variables

Chapter 15: Functions of Several Variables Chapter 15: Functions of Several Variables Section 15.1 Elementary Examples a. Notation: Two Variables b. Example c. Notation: Three Variables d. Functions of Several Variables e. Examples from the Sciences

More information

Functions of Several Variables

Functions of Several Variables . Functions of Two Variables Functions of Several Variables Rectangular Coordinate System in -Space The rectangular coordinate system in R is formed by mutually perpendicular axes. It is a right handed

More information

Math 126C: Week 3 Review

Math 126C: Week 3 Review Math 126C: Week 3 Review Note: These are in no way meant to be comprehensive reviews; they re meant to highlight the main topics and formulas for the week. Doing homework and extra problems is always the

More information

7.3 3-D Notes Honors Precalculus Date: Adapted from 11.1 & 11.4

7.3 3-D Notes Honors Precalculus Date: Adapted from 11.1 & 11.4 73 3-D Notes Honors Precalculus Date: Adapted from 111 & 114 The Three-Variable Coordinate System I Cartesian Plane The familiar xy-coordinate system is used to represent pairs of numbers (ordered pairs

More information

Demo of some simple cylinders and quadratic surfaces

Demo of some simple cylinders and quadratic surfaces Demo of some simple cylinders and quadratic surfaces Yunkai Zhou Department of Mathematics Southern Methodist University (Prepared for Calculus-III, Math 2339) Acknowledgement: The very nice free software

More information

Wind speed (knots) 8. Find and sketch the domain of the function. 9. Let f x, y, z e sz x 2 y Let t x, y, z ln 25 x 2 y 2 z 2.

Wind speed (knots) 8. Find and sketch the domain of the function. 9. Let f x, y, z e sz x 2 y Let t x, y, z ln 25 x 2 y 2 z 2. . 866 CHAPTER PARTIAL DERIVATIVES. The temperature-humidit inde I (or humide, for short) is the perceived air temperature when the actual temperature is T and the relative humidit is h, so we can write

More information

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014 4. Determine the nature of the critical points of Section 4. selected answers Math 11 Multivariate Calculus D Joyce, Spring 014 Exercises from section 4.: 6, 1 16.. Determine the nature of the critical

More information

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 5 FALL 8 KUNIYUKI SCORED OUT OF 15 POINTS MULTIPLIED BY.84 15% POSSIBLE 1) Reverse the order of integration, and evaluate the resulting double integral: 16 y dx dy. Give

More information

Math 21a Final Exam Solutions Spring, 2009

Math 21a Final Exam Solutions Spring, 2009 Math a Final Eam olutions pring, 9 (5 points) Indicate whether the following statements are True or False b circling the appropriate letter No justifications are required T F The (vector) projection of

More information

Quadratic Functions Dr. Laura J. Pyzdrowski

Quadratic Functions Dr. Laura J. Pyzdrowski 1 Names: (8 communication points) About this Laboratory A quadratic function in the variable x is a polynomial where the highest power of x is 2. We will explore the domains, ranges, and graphs of quadratic

More information

Graph and Write Equations of Hyperbolas

Graph and Write Equations of Hyperbolas TEKS 9.5 a.5, 2A.5.B, 2A.5.C Graph and Write Equations of Hperbolas Before You graphed and wrote equations of parabolas, circles, and ellipses. Now You will graph and write equations of hperbolas. Wh?

More information

Name: Chapter 7 Review: Graphing Quadratic Functions

Name: Chapter 7 Review: Graphing Quadratic Functions Name: Chapter Review: Graphing Quadratic Functions A. Intro to Graphs of Quadratic Equations: = ax + bx+ c A is a function that can be written in the form = ax + bx+ c where a, b, and c are real numbers

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

Math 2260 Exam #1 Practice Problem Solutions

Math 2260 Exam #1 Practice Problem Solutions Math 6 Exam # Practice Problem Solutions. What is the area bounded by the curves y x and y x + 7? Answer: As we can see in the figure, the line y x + 7 lies above the parabola y x in the region we care

More information

Chapter 10. Exploring Conic Sections

Chapter 10. Exploring Conic Sections Chapter 10 Exploring Conic Sections Conics A conic section is a curve formed by the intersection of a plane and a hollow cone. Each of these shapes are made by slicing the cone and observing the shape

More information

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Name: Period: ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Algebra II Unit 10 Plan: This plan is subject to change at the teacher s discretion. Section Topic Formative Work Due Date 10.3 Circles

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Math 252 Test # 1 Material Winter 2011 (Test Date: February 4, 2011)

Math 252 Test # 1 Material Winter 2011 (Test Date: February 4, 2011) Math 5 Test # Material Winter (Test Date: Februar, ) EXERCISES Page 5,, 7- Page 9 -, 6, 7 Page 7 -, 6- Page 5,, 8,, Page 6 -, 9-8,, 8 EXERCISES Page 9, 9,, 5. Find the volume above the x-plane bounded

More information

1.1: Basic Functions and Translations

1.1: Basic Functions and Translations .: Basic Functions and Translations Here are the Basic Functions (and their coordinates!) you need to get familiar with.. Quadratic functions (a.k.a. parabolas) y x Ex. y ( x ). Radical functions (a.k.a.

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center . The Ellipse The net one of our conic sections we would like to discuss is the ellipse. We will start b looking at the ellipse centered at the origin and then move it awa from the origin. Standard Form

More information

Quadratic Functions. *These are all examples of polynomial functions.

Quadratic Functions. *These are all examples of polynomial functions. Look at: f(x) = 4x-7 f(x) = 3 f(x) = x 2 + 4 Quadratic Functions *These are all examples of polynomial functions. Definition: Let n be a nonnegative integer and let a n, a n 1,..., a 2, a 1, a 0 be real

More information

Mastery. PRECALCULUS Student Learning Targets

Mastery. PRECALCULUS Student Learning Targets PRECALCULUS Student Learning Targets Big Idea: Sequences and Series 1. I can describe a sequence as a function where the domain is the set of natural numbers. Connections (Pictures, Vocabulary, Definitions,

More information

Functions of Several Variables

Functions of Several Variables Jim Lambers MAT 280 Spring Semester 2009-10 Lecture 2 Notes These notes correspond to Section 11.1 in Stewart and Section 2.1 in Marsden and Tromba. Functions of Several Variables Multi-variable calculus

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surface of revolution is formed when a curve is rotated about a line. Such a surface is the lateral boundar of a solid of revolution of the tpe discussed

More information

Quadric surface. Ellipsoid

Quadric surface. Ellipsoid Quadric surface Quadric surfaces are the graphs of any equation that can be put into the general form 11 = a x + a y + a 33z + a1xy + a13xz + a 3yz + a10x + a 0y + a 30z + a 00 where a ij R,i, j = 0,1,,

More information

MAT175 Overview and Sample Problems

MAT175 Overview and Sample Problems MAT175 Overview and Sample Problems The course begins with a quick review/overview of one-variable integration including the Fundamental Theorem of Calculus, u-substitutions, integration by parts, and

More information

Parabolas Section 11.1

Parabolas Section 11.1 Conic Sections Parabolas Section 11.1 Verte=(, ) Verte=(, ) Verte=(, ) 1 3 If the equation is =, then the graph opens in the direction. If the equation is =, then the graph opens in the direction. Parabola---

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips:

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips: Math 1330 Chapter 8 Conic Sections In this chapter, we will study conic sections (or conics). It is helpful to know exactly what a conic section is. This topic is covered in Chapter 8 of the online text.

More information

Quadratic Functions (Section 2-1)

Quadratic Functions (Section 2-1) Quadratic Functions (Section 2-1) Section 2.1, Definition of Polynomial Function f(x) = a is the constant function f(x) = mx + b where m 0 is a linear function f(x) = ax 2 + bx + c with a 0 is a quadratic

More information

Conic Sections: Parabolas

Conic Sections: Parabolas Conic Sections: Parabolas Why are the graphs of parabolas, ellipses, and hyperbolas called 'conic sections'? Because if you pass a plane through a double cone, the intersection of the plane and the cone

More information

Name. Center axis. Introduction to Conic Sections

Name. Center axis. Introduction to Conic Sections Name Introduction to Conic Sections Center axis This introduction to conic sections is going to focus on what they some of the skills needed to work with their equations and graphs. year, we will only

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Module 3: Stand Up Conics

Module 3: Stand Up Conics MATH55 Module 3: Stand Up Conics Main Math concepts: Conic Sections (i.e. Parabolas, Ellipses, Hyperbolas), nd degree equations Auxilliary ideas: Analytic vs. Co-ordinate-free Geometry, Parameters, Calculus.

More information

Math 1050 Lab Activity: Graphing Transformations

Math 1050 Lab Activity: Graphing Transformations Math 00 Lab Activit: Graphing Transformations Name: We'll focus on quadratic functions to eplore graphing transformations. A quadratic function is a second degree polnomial function. There are two common

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus Chapter 10 Topics in Analytic Geometry (Optional) 1. Inclination of a line p. 5. Circles p. 4 9. Determining Conic Type p. 13. Angle between lines p. 6. Parabolas p. 5 10. Rotation

More information

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2 Graphing Techniques In this chapter, we will take our knowledge of graphs of basic functions and expand our ability to graph polynomial and rational functions using common sense, zeros, y-intercepts, stretching

More information

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is Name: Pre-Calculus Guided Notes: Chapter 10 Conics Section Circles A circle is _ Example 1 Write an equation for the circle with center (3, ) and radius 5. To do this, we ll need the x1 y y1 distance formula:

More information

Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form.

Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form. Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form. A. Intro to Graphs of Quadratic Equations:! = ax + bx + c A is a function

More information

Student Exploration: Translating and Scaling Functions

Student Exploration: Translating and Scaling Functions Name: Date: Student Exploration: Translating and Scaling Functions Vocabulary: amplitude, parent function, periodic function, scale (a function), transform (a function), translate (a function) Prior Knowledge

More information

CHAPTER 9: Quadratic Equations and Functions

CHAPTER 9: Quadratic Equations and Functions Notes # CHAPTER : Quadratic Equations and Functions -: Exploring Quadratic Graphs A. Intro to Graphs of Quadratic Equations: = ax + bx + c A is a function that can be written in the form = ax + bx + c

More information

10.2: Parabolas. Chapter 10: Conic Sections. Conic sections are plane figures formed by the intersection of a double-napped cone and a plane.

10.2: Parabolas. Chapter 10: Conic Sections. Conic sections are plane figures formed by the intersection of a double-napped cone and a plane. Conic sections are plane figures formed b the intersection of a double-napped cone and a plane. Chapter 10: Conic Sections Ellipse Hperbola The conic sections ma be defined as the sets of points in the

More information

Algebra 2 Honors Lesson 10 Translating Functions

Algebra 2 Honors Lesson 10 Translating Functions Algebra 2 Honors Lesson 10 Translating Functions Objectives: The students will be able to translate a base function horizontally and vertically. Students will be able to describe the translation of f(x)

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

2.1 Quadraticsnts.notebook. September 10, 2018

2.1 Quadraticsnts.notebook. September 10, 2018 1 A quadratic function is a polynomial function of second degree. The graph of a quadratic function is called a parabola. 2 Standard Form: Intercept Form: Vertex Form: f(x) = a(x h) 2 + k vertex: (h, k)

More information

Transformations with Quadratic Functions KEY

Transformations with Quadratic Functions KEY Algebra Unit: 05 Lesson: 0 TRY THIS! Use a calculator to generate a table of values for the function y = ( x 3) + 4 y = ( x 3) x + y 4 Next, simplify the function by squaring, distributing, and collecting

More information

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0 Pre-Calculus Section 1.1 Completing the Square Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 4 x 0. 3x 3y

More information

form. We will see that the parametric form is the most common representation of the curve which is used in most of these cases.

form. We will see that the parametric form is the most common representation of the curve which is used in most of these cases. Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 36 Curve Representation Welcome everybody to the lectures on computer graphics.

More information

4.3, Math 1410 Name: And now for something completely different... Well, not really.

4.3, Math 1410 Name: And now for something completely different... Well, not really. 4.3, Math 1410 Name: And now for something completely different... Well, not really. How derivatives affect the shape of a graph. Please allow me to offer some explanation as to why the first couple parts

More information

Name: Date: Period: Parabolas Day One Activity Sheet and Homework. The diagram below depicts a parabola with its directrix, focus, and vertex.

Name: Date: Period: Parabolas Day One Activity Sheet and Homework. The diagram below depicts a parabola with its directrix, focus, and vertex. Name: ate: Period: Parabolas ay One Activity Sheet and Homework The diagram below depicts a parabola with its directrix, focus, and vertex. 1. or each of the parabolas below, two of the three parts is

More information

Math 20C. Lecture Examples.

Math 20C. Lecture Examples. Math 0C. Lecture Eamples. (8/30/08) Section 14.1, Part 1. Functions of two variables Definition 1 A function f of the two variables and is a rule = f(,) that assigns a number denoted f(,), to each point

More information

UNIT P1: PURE MATHEMATICS 1 QUADRATICS

UNIT P1: PURE MATHEMATICS 1 QUADRATICS QUADRATICS Candidates should able to: carr out the process of completing the square for a quadratic polnomial, and use this form, e.g. to locate the vertex of the graph of or to sketch the graph; find

More information

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values.

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values. Module 10 lesson 6 Parametric Equations. When modeling the path of an object, it is useful to use equations called Parametric equations. Instead of using one equation with two variables, we will use two

More information

Notes Rules for Transformations of Functions If f x is the original functions, a > 0 and c > 0.

Notes Rules for Transformations of Functions If f x is the original functions, a > 0 and c > 0. 9.1.2 Parabola Investigation Do Now 1. Vertical means and horizontal is. 2. Another word for compress is. 3. Given the statement 0 < a < 1, a represents numbers like 4. Given the statement a > 1, a represents

More information

Meeting 1 Introduction to Functions. Part 1 Graphing Points on a Plane (REVIEW) Part 2 What is a function?

Meeting 1 Introduction to Functions. Part 1 Graphing Points on a Plane (REVIEW) Part 2 What is a function? Meeting 1 Introduction to Functions Part 1 Graphing Points on a Plane (REVIEW) A plane is a flat, two-dimensional surface. We describe particular locations, or points, on a plane relative to two number

More information

Figures adapted from Mathworld.wolfram.com and vectosite.net.

Figures adapted from Mathworld.wolfram.com and vectosite.net. MTH 11 CONIC SECTIONS 1 The four basic types of conic sections we will discuss are: circles, parabolas, ellipses, and hyperbolas. They were named conic by the Greeks who used them to describe the intersection

More information

9. f(x) = x f(x) = x g(x) = 2x g(x) = 5 2x. 13. h(x) = 1 3x. 14. h(x) = 2x f(x) = x x. 16.

9. f(x) = x f(x) = x g(x) = 2x g(x) = 5 2x. 13. h(x) = 1 3x. 14. h(x) = 2x f(x) = x x. 16. Section 4.2 Absolute Value 367 4.2 Eercises For each of the functions in Eercises 1-8, as in Eamples 7 and 8 in the narrative, mark the critical value on a number line, then mark the sign of the epression

More information

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS Big IDEAS: 1) Writing equations of conic sections ) Graphing equations of conic sections 3) Solving quadratic systems Section: Essential Question 8-1 Apply

More information

Unit 2 Day 9. FRED Functions

Unit 2 Day 9. FRED Functions Unit 2 Day 9 FRED Functions 1 1. Graph 2. Test a point (0,0) 3. Shade Warm Up You may want to try the problems on this slide by hand! Practice for the non-calculator part of the test! 2 2 1. 2. y x 2x

More information

Graphs and transformations, Mixed Exercise 4

Graphs and transformations, Mixed Exercise 4 Graphs and transformations, Mixed Exercise 4 a y = x (x ) 0 = x (x ) So x = 0 or x = The curve crosses the x-axis at (, 0) and touches it at (0, 0). y = x x = x( x) As a = is negative, the graph has a

More information

15. PARAMETRIZED CURVES AND GEOMETRY

15. PARAMETRIZED CURVES AND GEOMETRY 15. PARAMETRIZED CURVES AND GEOMETRY Parametric or parametrized curves are based on introducing a parameter which increases as we imagine travelling along the curve. Any graph can be recast as a parametrized

More information

Graph each pair of functions on the same coordinate plane See margin. Technology Activity: A Family of Functions

Graph each pair of functions on the same coordinate plane See margin. Technology Activity: A Family of Functions - What You ll Learn To analze translations To analze stretches, shrinks, and reflections...and Wh To analze a fabric design, as in Eample Families of Functions Check Skills You ll Need G for Help Lessons

More information

Quadratic Functions In Standard Form In Factored Form In Vertex Form Transforming Graphs. Math Background

Quadratic Functions In Standard Form In Factored Form In Vertex Form Transforming Graphs. Math Background Graphing In Standard Form In Factored Form In Vertex Form Transforming Graphs Math Background Previousl, ou Identified and graphed linear functions Applied transformations to parent functions Graphed quadratic

More information

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r NOTES +: ANALYTIC GEOMETRY NAME LESSON. GRAPHS OF EQUATIONS IN TWO VARIABLES (CIRCLES). Standard form of a Circle The point (x, y) lies on the circle of radius r and center (h, k) iff x h y k r Center:

More information

2/22/ Transformations but first 1.3 Recap. Section Objectives: Students will know how to analyze graphs of functions.

2/22/ Transformations but first 1.3 Recap. Section Objectives: Students will know how to analyze graphs of functions. 1 2 3 4 1.4 Transformations but first 1.3 Recap Section Objectives: Students will know how to analyze graphs of functions. 5 Recap of Important information 1.2 Functions and their Graphs Vertical line

More information

14.1. It s very difficult to visualize a function f of three variables by its graph, since that

14.1. It s very difficult to visualize a function f of three variables by its graph, since that + +@= + +@=4 SECTION 4. FUNCTIONS OF SEVERAL VARIABLES 86 It s ver difficult to visualie a function f of three variables b its graph, since that would lie in a four-dimensional space. However, we do gain

More information

Precalculus, IB Precalculus and Honors Precalculus

Precalculus, IB Precalculus and Honors Precalculus NORTHEAST CONSORTIUM Precalculus, IB Precalculus and Honors Precalculus Summer Pre-View Packet DUE THE FIRST DAY OF SCHOOL The problems in this packet are designed to help ou review topics from previous

More information

Elements of three dimensional geometry

Elements of three dimensional geometry Lecture No-3 Elements of three dimensional geometr Distance formula in three dimension Let P( x1, 1, z1) and Q( x2, 2, z 2) be two points such that PQ is not parallel to one of the 2 2 2 coordinate axis

More information

Functions of Several Variables

Functions of Several Variables Chapter 3 Functions of Several Variables 3.1 Definitions and Examples of Functions of two or More Variables In this section, we extend the definition of a function of one variable to functions of two or

More information

P.5 Rational Expressions

P.5 Rational Expressions P.5 Rational Expressions I Domain Domain: Rational expressions : Finding domain a. polynomials: b. Radicals: keep it real! i. sqrt(x-2) x>=2 [2, inf) ii. cubert(x-2) all reals since cube rootscan be positive

More information

7. r = r = r = r = r = 2 5

7. r = r = r = r = r = 2 5 Exercise a: I. Write the equation in standard form of each circle with its center at the origin and the given radius.. r = 4. r = 6 3. r = 7 r = 5 5. r = 6. r = 6 7. r = 0.3 8. r =.5 9. r = 4 0. r = 3.

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas 16 Vector Calculus 16.6 and Their Areas Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and Their Areas Here we use vector functions to describe more general

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? There are 2 ways to describe it: x 2 + y 2 = 1 and x = cos θ y = sin θ When

More information

Volume Worksheets (Chapter 6)

Volume Worksheets (Chapter 6) Volume Worksheets (Chapter 6) Name page contents: date AP Free Response Area Between Curves 3-5 Volume b Cross-section with Riemann Sums 6 Volume b Cross-section Homework 7-8 AP Free Response Volume b

More information

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y)

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y) SESSION 9: FUNCTIONS KEY CONCEPTS: Definitions & Terminology Graphs of Functions - Straight line - Parabola - Hyperbola - Exponential Sketching graphs Finding Equations Combinations of graphs TERMINOLOGY

More information

Transformation a shifting or change in shape of a graph

Transformation a shifting or change in shape of a graph 1.1 Horizontal and Vertical Translations Frieze Patterns Transformation a shifting or change in shape of a graph Mapping the relating of one set of points to another set of points (ie. points on the original

More information

Final Exam Review Algebra Semester 1

Final Exam Review Algebra Semester 1 Final Exam Review Algebra 015-016 Semester 1 Name: Module 1 Find the inverse of each function. 1. f x 10 4x. g x 15x 10 Use compositions to check if the two functions are inverses. 3. s x 7 x and t(x)

More information

transformation: alters the equation and any combination of the location, shape, and orientation of the graph

transformation: alters the equation and any combination of the location, shape, and orientation of the graph Chapter 1: Function Transformations Section 1.1: Horizontal and Vertical Translations transformation: alters the equation and any combination of the location, shape, and orientation of the graph mapping:

More information