Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Size: px
Start display at page:

Download "Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b."

Transcription

1 Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c Suppose a is a vector in the plane. If the component of the a in the direction of 1, 1 is 2 and the component of a in the direction of 2, 1 is 7 5/5. Find a vector with length 3 that points in the opposite direction as a does. Assume a = x, y. Then, using the two components, you can write out two equations for x and y. Find x and y. the vector desired is 3a/ a. 3. Given a = 1, 1 and b = 2, 3, decompose b into two parts, such that one is parallel with a and one is perpendicular with a. b = b a a a a. b = b b = b (b a)a. a 2 4. Suppose we know a b = 2, a = 2, b = 3, (a b) c = 3. Find the following quantities: (a). The angle between a + b and a b. (b). [(a 2b) (b 2c)] c 5. Let A(5, 2, 3), B(6, 4, 0), C(7, 5, 1) and D(14, 14, 18). (1). Compute the area of the triangle ABC. (2). Compute the volume of the parallelepiped determined by AB, AC and AD. Is the frame given by { AB, AC, AD} left-handed or right handed? (3). Find the distance from D to plane ABC (You can just use the results from (1) and (2)) (1). 1 2 AB AC (2). V = ( AB AC) AD = determinant (3). d = V/ AB AC 6. Given two planes x + y + z = 5 and 3x y = 4, write a parametric equation and a symmetric equation for the line of intersection of the two planes. 7. Find the line that passes through (2, 6, 3) and parallel with both 3x 9y + 4z = 10 and 2x y + 4z = 12. 1

2 The direction of the line is parallel with the cross product of the normal vectors of the planes (why?). 8. Consider L 1 : x(t) = 3 2t, 4t 1, 3t+2 and L 2 : x(t) = 6t+3, 1 t, 2 2t. Are they skew, parallel or intersecting? If they are parallel or intersecting, find the plane that contains both lines. 9. (1). Consider the curve r(t) = 3t sin(t), 3t cos(t), 2t 2. Compute the arclength of this curve from t = 1 to t = 2. (2) Suppose that T (t) is the unit tangent vector of a curve. Explain why dt /ds is perpendicular with T where s is the arclength. (1). s = 2 1 r (t) dt (2). Use the fact that T is a constant. 10. Consider r(t) = t, t 2, t 3. Find the tangent line of this curve at (1, 1, 1) and a plane that is normal to this curve at (1, 1, 1). A vector tangent to the curve is the velocity v(t) = r (t). For the line, the line passes through (1, 1, 1) and is parallel with v(1); for the plane, it passes thorough (1, 1, 1) and is perpendicular with v(1). 11. (1). Describe the surface y 2 = x 2 + z 2 and get a rough sketch. (Hint: This is a surface of revolution.) (2). Find the trace of the ellipsoid x 2 /a 2 + y 2 /b 2 + z 2 /c 2 = 1, which is tangent to planes P 1 : x = 2, P 2 : y = 3 and P 3 : z = 1, in the plane that passes through (0, 0, 0) and is perpendicular with (1, 1, 0). (1). This is the cone revoluted from y = ±x, z = 0 about y-axis. (2). a = 2, b = 3, c = 1. The plane is simply x y = 0. hence, the trace is x2 4 + x2 9 + z2 1 = 1, y = x. This is an ellipse. *************************************************************** 1. Sketch the level curves of f(x, y) = x 2 y 2. The level curves are x 2 y 2 = k. Discuss k > 0, k = 0, k < 0 2. Can we define a suitable value for the function f(x, y) at (0, 0) to make it continuous? If yes, compute the value; if not, explain why. 2

3 (a). f(x, y) = xy x 2 +y 2 (b). f(x, y) = arctan( 1 x 2 +2y 2 ) (c). f(x, y) = x2 +y 6 y 2 +x 6 The key idea is to check if the limits exist as (x, y) (0, 0). If the limits exist, we can define the values to be the limits and then the functions become continuous. Part(a). The limit is zero as we showed in lecture. You can use polar coordinates. (b). The inside goes to positive infinity but the arctan then goes to π/2. The third one, by checking different directions y = kx. You see different limits. f(h,0) f(0,0) (1). Use the definition f x = lim h 0 h. (2). This is simply asking if f(x, y) f(0, 0) as you approach the origin. 3. Let P = ln x + y 2 and Q = 2xy + y 1 y 2. Can you find a function f(x, y) such that f x = P and f y = Q for x > 0, y < 1? If yes, find f; if not, explain why. This problem tests f xy = f yx. You should check that P y, Q x are continuous. They verify that if they are equal or not. 4. Suppose we want to compute (1.03) 1/3 ln(0.95) without calculator. Find a function f(x, y) and (x 0, y 0 ) such that f(x 0, y 0 ) = (1.03) 1/3 ln(0.95), and also (x 0, y 0 ) is close to (a, b) where f(a, b) is easily found. Use linear approximation of f to compute this value approximately. 5. Suppose f(u, v) is a differentiable function of u and v. Let w = f(u, v) ln(1 + u) xv. Suppose u = (x + y) 1/2 and v = xy. Com- at (x, y) = (2, 2) using chain rule. pute w x 6. Suppose f(x, y) = ln(x 2 + y 2 ). (1). Compute the tangent plane of the graph at (1, 1, ln 2). Can you find a normal vector of this plane? (2). Compute the tangent line of the level set f(x, y) = ln(2). Can you find a normal vector of this line? (3). On the level set f(x, y) = ln(2), near the point (1, 1), y can be regarded as a function of x. Compute y (x) x=1. (1). The tangent plane of the graph is given by z = f(1, 1) + f x (1, 1)(x 1) + f y (1, 1)(y 1). 3

4 Another way is to regard it as the level set of F = f(x, y) z = 0. Use the technique for computing tangent planes of level sets to compute the tangent plane. (2). The tangent line can be computed using two understandings. The first is the linear approximation: { } f(1, 1)+f x (1, 1)(x 1)+f y (1, 1)(y 1) ln(2) = 0 f x (1, 1)(x 1)+f y (1, 1)(y 1) = 0. The second understanding is that f(1, 1) is a normal vector of the line. Then, f(1, 1) x 1, y 1 = 0 (3). This tests implicit differentiation. y (1) = fx(1,1) f y(1,1) 7. Let f(x, y, z) = ln(1 + x 2 + y 2 z 2 ). (1). Find the direction in which f(x, y, z) decreases the fastest at (1, 1, 1). (2). Compute the rate of change of f with respect to distance in the direction indicated by 2, 1, 4 at (1, 1, 1). (3). Let r(t) = t 2, t 2, 2t 2 1. Compute r(1) and r (1). Then, compute d dt f(r(t)) t=1 using what you got just now. Explain how this is related to the directional derivative in (2). (1). As we explained, f points the fastest increasing direction while f points the fastest decreasing direction. In our case, we need a unit normal vector. Hence, the unit vector has something to do with f. (2). This is just directional derivative: D u f, but you should find u first. (3). Chain rule: d dt f = f(r(1)) r (1). You only need to compute f,r(1) and r (1). This rate of change w.r.t. time is equal to the directional derivative times speed. The speed is v = r (1). If you multiply this with the directional derivative, you get the same thing. 8. (1). Suppose P V nrt = 0 where n and R are two constants. Show that P V T V T P = 1 (2). Let F (x, y, z) = ln(x 2 + y 2 ) e x z. Consider the level set F = ln 2 1. This determines an implicit function. Near point (1, 1, 1), compute x y. 4

5 This problem tests implicit differentiation. Let F = P V nrt. Then, we have a level set F (P, V, T ) = 0. The product is 1. P V = F V F P V T = F T F V T P = F P. F T You can verify it directly: P = nrt/v. Hence, P/ V = nrt/v 2. Similarly you can compute others. The product is 1. (2). Use the formula for implicit differentiation. 9. The cone z 2 = x 2 + y 2 and the plane 2x + 3y + 4z + 2 = 0 intersect in an ellipse. Find the tangent line of the ellipse at P (3, 4, 5). Find the plane that is normal to the ellipse at P (3, 4, 5). (This is essentially your homework problem) Think about the situation. Will the tangent line be tangent to the cone? Will the tangent lint be in the old plane? If your answers are both yes, then you know that the tangent line is perpendicular with the normal of the cone and the normal of the old plane. How do you construct the vector parallel with the line? Cross product! How do you compute the normal of the cone? Gradient! The direction of the tangent line is a normal of the new plane, the second part is easy. 10. Find a plane that is tangent to the paraboloid z = 2x 2 + 3y 2 and is parallel with 4x 3y z = 10. What is the distance between the plane you find to the plane 4x 3y z = 10? (This is also essentially your homework problem.) How do you compute the normal of the tangent plane? Gradient! Wait, gradient of what? is that the gradient of f(x, y) = 2x 2 + 3y 2? No! Gradient of F that has the surface as a level set... Hence, F = 4x, 6y, 1. What is the relation between this normal with the plane given? It s parallel with the normal of the plane: F 4, 3, 1. Figure out x, y, z. The distance of the planes? They are parallel. Find a point on one plane, compute the distance from this point to the other plane. 5

6 11. F (x, y, z) = xyz + x 2 2y 2 + z 3. Find the tangent plane of the level set F = 14 at P (5, 2, 3). Find u such that D u F is the largest at P (5, 2, 3). F = yz + 4x, xz 4y, xy + 3z 2 is the normal of the level set. x 0 = 5, y 0 = 2, z 0 = 3, compute F. The plane is easy. Just directional derivative. It is the largest if u is in the same direction as the gradient. 12. z = 2x 4 8xy + 2y 4. Is there a highest point on the graph? if yes, find it. Is there a lowest point on the graph? If yes, find it. There is no global max since the function value can be very large. There must be a min in the middle somewhere. The min must be a critical point. hence, find all critical points check which one is the one you want. Some people may use 2nd derivative test to check the critical points. The 2nd derivative test is only for local min and local max. It s true that the global min must a local min. Then, if there is only one local min, then it must be the one you want. However, if you have several, you must compute the function values. Hence, to make your life easy, you probably compute the function values directly. 13. Find all critical points of f(x, y) = x 3 + y 3 + 3xy and classify them. This is straightforward. f x = 3x 2 + 3y = 0 and f y = 3y 2 + 3x = 0. Hence, y = x 2 and x 4 + x = 0. x = 0 or x = 1. Use y = x 2 instead of y 2 = x to determine y. The latter will give you more points which are not critical points. 14. Find all critical points of f(x, y) = 6xy 2 2x 3 3y 4 and classify them. For (0, 0), the test fails. Check the behavior near it and convince yourself that it is a saddle point. This is an example in the book. Read the book. 6

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

Equation of tangent plane: for implicitly defined surfaces section 12.9

Equation of tangent plane: for implicitly defined surfaces section 12.9 Equation of tangent plane: for implicitly defined surfaces section 12.9 Some surfaces are defined implicitly, such as the sphere x 2 + y 2 + z 2 = 1. In general an implicitly defined surface has the equation

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

MAT175 Overview and Sample Problems

MAT175 Overview and Sample Problems MAT175 Overview and Sample Problems The course begins with a quick review/overview of one-variable integration including the Fundamental Theorem of Calculus, u-substitutions, integration by parts, and

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES MA 6100 FINAL EXAM Green April 0, 018 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME Be sure the paper you are looking at right now is GREEN! Write the following in the TEST/QUIZ NUMBER boxes (and blacken

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables 302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.8 Chapter Review 3.8.1 Concepts to Know You should have an understanding of, and be able to explain the concepts listed below. 1. Boundary and interior points

More information

14.5 Directional Derivatives and the Gradient Vector

14.5 Directional Derivatives and the Gradient Vector 14.5 Directional Derivatives and the Gradient Vector 1. Directional Derivatives. Recall z = f (x, y) and the partial derivatives f x and f y are defined as f (x 0 + h, y 0 ) f (x 0, y 0 ) f x (x 0, y 0

More information

Math 253, Section 102, Fall 2006 Practice Final Solutions

Math 253, Section 102, Fall 2006 Practice Final Solutions Math 253, Section 102, Fall 2006 Practice Final Solutions 1 2 1. Determine whether the two lines L 1 and L 2 described below intersect. If yes, find the point of intersection. If not, say whether they

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

Quiz 6 Practice Problems

Quiz 6 Practice Problems Quiz 6 Practice Problems Practice problems are similar, both in difficulty and in scope, to the type of problems you will see on the quiz. Problems marked with a are for your entertainment and are not

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

Kevin James. MTHSC 206 Section 15.6 Directional Derivatives and the Gra

Kevin James. MTHSC 206 Section 15.6 Directional Derivatives and the Gra MTHSC 206 Section 15.6 Directional Derivatives and the Gradient Vector Definition We define the directional derivative of the function f (x, y) at the point (x 0, y 0 ) in the direction of the unit vector

More information

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane.

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane. Math 21a Tangent Lines and Planes Fall, 2016 What do we know about the gradient f? Tangent Lines to Curves in the Plane. 1. For each of the following curves, find the tangent line to the curve at the point

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

(a) Find the equation of the plane that passes through the points P, Q, and R.

(a) Find the equation of the plane that passes through the points P, Q, and R. Math 040 Miterm Exam 1 Spring 014 S o l u t i o n s 1 For given points P (, 0, 1), Q(, 1, 0), R(3, 1, 0) an S(,, 0) (a) Fin the equation of the plane that passes through the points P, Q, an R P Q = 0,

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Directional Derivatives and the Gradient Vector Philippe B Laval KSU April 7, 2012 Philippe B Laval (KSU) Functions of Several Variables April 7, 2012 1 / 19 Introduction

More information

HOMEWORK ASSIGNMENT #4, MATH 253

HOMEWORK ASSIGNMENT #4, MATH 253 HOMEWORK ASSIGNMENT #4, MATH 253. Prove that the following differential equations are satisfied by the given functions: (a) 2 u 2 + 2 u y 2 + 2 u z 2 =0,whereu =(x2 + y 2 + z 2 ) /2. (b) x w + y w y +

More information

TEST 3 REVIEW DAVID BEN MCREYNOLDS

TEST 3 REVIEW DAVID BEN MCREYNOLDS TEST 3 REVIEW DAVID BEN MCREYNOLDS 1. Vectors 1.1. Form the vector starting at the point P and ending at the point Q: P = (0, 0, 0), Q = (1,, 3). P = (1, 5, 3), Q = (8, 18, 0). P = ( 3, 1, 1), Q = (, 4,

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2 PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Summary...1 3. Assignments...2 i PMTH212, Multivariable Calculus Assignment Summary 2010 Assignment Date to be Posted

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 55 Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from the

More information

Math 126 Winter CHECK that your exam contains 8 problems.

Math 126 Winter CHECK that your exam contains 8 problems. Math 126 Winter 2016 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name CHECK that your exam contains 8 problems. This exam is closed book. You may use one 8 1 11 sheet of hand-written

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER 3: Partial derivatives and differentiation

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER 3: Partial derivatives and differentiation UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES SOLUTIONS ) 3-1. Find, for the following functions: a) fx, y) x cos x sin y. b) fx, y) e xy. c) fx, y) x + y ) lnx + y ). CHAPTER 3: Partial derivatives

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

t dt ds Then, in the last class, we showed that F(s) = <2s/3, 1 2s/3, s/3> is arclength parametrization. Therefore,

t dt ds Then, in the last class, we showed that F(s) = <2s/3, 1 2s/3, s/3> is arclength parametrization. Therefore, 13.4. Curvature Curvature Let F(t) be a vector values function. We say it is regular if F (t)=0 Let F(t) be a vector valued function which is arclength parametrized, which means F t 1 for all t. Then,

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

Math 240 Practice Problems

Math 240 Practice Problems Math 4 Practice Problems Note that a few of these questions are somewhat harder than questions on the final will be, but they will all help you practice the material from this semester. 1. Consider the

More information

12.7 Tangent Planes and Normal Lines

12.7 Tangent Planes and Normal Lines .7 Tangent Planes and Normal Lines Tangent Plane and Normal Line to a Surface Suppose we have a surface S generated by z f(x,y). We can represent it as f(x,y)-z 0 or F(x,y,z) 0 if we wish. Hence we can

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other.

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other. Daily WeBWorK, #1 Consider the ellipsoid x 2 + 3y 2 + z 2 = 11. Find all the points where the tangent plane to this ellipsoid is parallel to the plane 2x + 3y + 2z = 0. In order for the plane tangent to

More information

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14 Vector and Multivariable Calculus L Marizza A Bailey Practice Trimester Final Exam Name: Problem 1. To prepare for true/false and multiple choice: Compute the following (a) (4, 3) ( 3, 2) Solution 1. (4)(

More information

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the Review Exercise 1. Determine vector and parametric equations of the plane that contains the points A11, 2, 12, B12, 1, 12, and C13, 1, 42. 2. In question 1, there are a variety of different answers possible,

More information

Equation of tangent plane: for explicitly defined surfaces

Equation of tangent plane: for explicitly defined surfaces Equation of tangent plane: for explicitly defined surfaces Suppose that the surface z = f(x,y) has a non-vertical tangent plane at a point (a, b, f(a,b)). The plane y = b intersects the surface at a curve

More information

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following:

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following: Quiz problem bank Quiz problems. Find all solutions x, y) to the following: xy x + y = x + 5x + 4y = ) x. Let gx) = ln. Find g x). sin x 3. Find the tangent line to fx) = xe x at x =. 4. Let hx) = x 3

More information

f for Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y).

f for Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y). Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y). For a function f(x,y), the gradient vector, denoted as f (pronounced grad f ) is

More information

Section 2.5. Functions and Surfaces

Section 2.5. Functions and Surfaces Section 2.5. Functions and Surfaces ² Brief review for one variable functions and curves: A (one variable) function is rule that assigns to each member x in a subset D in R 1 a unique real number denoted

More information

Workbook. MAT 397: Calculus III

Workbook. MAT 397: Calculus III Workbook MAT 397: Calculus III Instructor: Caleb McWhorter Name: Summer 2017 Contents Preface..................................................... 2 1 Spatial Geometry & Vectors 3 1.1 Basic n Euclidean

More information

14.6 Directional Derivatives and the Gradient Vector

14.6 Directional Derivatives and the Gradient Vector 14 Partial Derivatives 14.6 and the Gradient Vector Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and the Gradient Vector In this section we introduce

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Lecture 25 February 28, 2007 Recall Fact Recall Fact If f is a dierentiable function of x and y, then f has a directional derivative in the direction

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments...

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments... PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Introduction...1 3. Timetable... 3 4. Assignments...5 i PMTH212, Multivariable Calculus Assignment Summary 2009

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

Math 209, Fall 2009 Homework 3

Math 209, Fall 2009 Homework 3 Math 209, Fall 2009 Homework 3 () Find equations of the tangent plane and the normal line to the given surface at the specified point: x 2 + 2y 2 3z 2 = 3, P (2,, ). Solution Using implicit differentiation

More information

Math 20A lecture 10 The Gradient Vector

Math 20A lecture 10 The Gradient Vector Math 20A lecture 10 p. 1/12 Math 20A lecture 10 The Gradient Vector T.J. Barnet-Lamb tbl@brandeis.edu Brandeis University Math 20A lecture 10 p. 2/12 Announcements Homework five posted, due this Friday

More information

Mat 241 Homework Set 7 Due Professor David Schultz

Mat 241 Homework Set 7 Due Professor David Schultz Mat 41 Homework Set 7 Due Professor David Schultz Directions: Show all algebraic steps neatly and concisely using proper mathematical symbolism When graphs and technology are to be implemented, do so appropriately

More information

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3 MATH 14 Sample problems for first exam - Fall 1 MATH 14 First Midterm Exam - Fall 1. Find the area between the graphs of y = 9 x and y = x + 1. (a) 4 (b) (c) (d) 5 (e) 4 (f) 81. A solid has as its base

More information

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided. Math 213 Exam 2 Name: Section: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage cheat

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

Solution of final examination

Solution of final examination of final examination Math 20, pring 201 December 9, 201 Problem 1 Let v(t) (2t e t ) i j + π cos(πt) k be the velocity of a particle with initial position r(0) ( 1, 0, 2). Find the accelaration at the

More information

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages.

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages. Math 126 Final Examination Autumn 2016 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name CHECK that your exam contains 9 problems on 10 pages. This exam is closed book. You

More information

9/30/2014 FIRST HOURLY PRACTICE VIII Math 21a, Fall Name:

9/30/2014 FIRST HOURLY PRACTICE VIII Math 21a, Fall Name: 9/30/2014 FIRST HOURLY PRACTICE VIII Math 21a, Fall 2014 Name: MWF 9 Oliver Knill MWF 9 Chao Li MWF 10 Gijs Heuts MWF 10 Yu-Wen Hsu MWF 10 Yong-Suk Moon MWF 11 Rosalie Belanger-Rioux MWF 11 Gijs Heuts

More information

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM Problem Score 1 2 Name: SID: Section: Instructor: 3 4 5 6 7 8 9 10 11 12 Total MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, 2004 12:20-2:10 PM INSTRUCTIONS There are 12 problems on this exam for a total

More information

Due: Fri Sep :00 PM MDT Question

Due: Fri Sep :00 PM MDT Question Exam 1 Review (10998069) Due: Fri Sep 22 2017 03:00 PM MDT Question 12345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Description This is a collection of problems that

More information

3.6 Directional Derivatives and the Gradient Vector

3.6 Directional Derivatives and the Gradient Vector 288 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.6 Directional Derivatives and te Gradient Vector 3.6.1 Functions of two Variables Directional Derivatives Let us first quickly review, one more time, te

More information

Dr. Allen Back. Nov. 21, 2014

Dr. Allen Back. Nov. 21, 2014 Dr. Allen Back of Nov. 21, 2014 The most important thing you should know (e.g. for exams and homework) is how to setup (and perhaps compute if not too hard) surface integrals, triple integrals, etc. But

More information

Answer sheet: Second Midterm for Math 2339

Answer sheet: Second Midterm for Math 2339 Answer sheet: Second Midterm for Math 2339 October 26, 2010 Problem 1. True or false: (check one of the box, and briefly explain why) (1) If a twice differentiable f(x,y) satisfies f x (a,b) = f y (a,b)

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π M408D (54690/95/00), Midterm #2 Solutions Multiple choice questions (20 points) See last two pages. Question #1 (25 points) Dene the vector-valued function r(t) = he t ; 2; 3e t i: a) At what point P (x

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

(c) 0 (d) (a) 27 (b) (e) x 2 3x2 1. Sarah the architect is designing a modern building. The base of the building is the region in the xy-plane bounded by x =, y =, and y = 3 x. The building itself has a height bounded between z = and

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

MATH 261 FALL 2000 FINAL EXAM INSTRUCTIONS. 1. This test booklet has 14 pages including this one. There are 25 questions, each worth 8 points.

MATH 261 FALL 2000 FINAL EXAM INSTRUCTIONS. 1. This test booklet has 14 pages including this one. There are 25 questions, each worth 8 points. MATH 261 FALL 2 FINAL EXAM STUDENT NAME - STUDENT ID - RECITATION HOUR - RECITATION INSTRUCTOR INSTRUCTOR - INSTRUCTIONS 1. This test booklet has 14 pages including this one. There are 25 questions, each

More information

Review 1. Richard Koch. April 23, 2005

Review 1. Richard Koch. April 23, 2005 Review Richard Koch April 3, 5 Curves From the chapter on curves, you should know. the formula for arc length in section.;. the definition of T (s), κ(s), N(s), B(s) in section.4. 3. the fact that κ =

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

More information

Measuring Lengths The First Fundamental Form

Measuring Lengths The First Fundamental Form Differential Geometry Lia Vas Measuring Lengths The First Fundamental Form Patching up the Coordinate Patches. Recall that a proper coordinate patch of a surface is given by parametric equations x = (x(u,

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Winter 2012 Math 255 Section 006. Problem Set 7

Winter 2012 Math 255 Section 006. Problem Set 7 Problem Set 7 1 a) Carry out the partials with respect to t and x, substitute and check b) Use separation of varibles, i.e. write as dx/x 2 = dt, integrate both sides and observe that the solution also

More information

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES A. HAVENS These problems are for extra-credit, which is counted against lost points on quizzes or WebAssign. You do not

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

Midterm Review II Math , Fall 2018

Midterm Review II Math , Fall 2018 Midterm Review II Math 2433-3, Fall 218 The test will cover section 12.5 of chapter 12 and section 13.1-13.3 of chapter 13. Examples in class, quizzes and homework problems are the best practice for the

More information

MA 114 Worksheet #17: Average value of a function

MA 114 Worksheet #17: Average value of a function Spring 2019 MA 114 Worksheet 17 Thursday, 7 March 2019 MA 114 Worksheet #17: Average value of a function 1. Write down the equation for the average value of an integrable function f(x) on [a, b]. 2. Find

More information

The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0

The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0 Review: 0, lim D f u 0 0 0 0 u The directional derivative of f, in the direction of at, is denoted b D f, : u a, b must a unit vector u f sa sb f s 0 (, ) (, ) s f (, ) a f (, ) b 0 0 0 0 0 0 D f, f u

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Marius Ionescu October 26, 2012 Marius Ionescu () Directional Derivatives and the Gradient Vector Part October 2 26, 2012 1 / 12 Recall Fact Marius

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

Math 206 First Midterm October 5, 2012

Math 206 First Midterm October 5, 2012 Math 206 First Midterm October 5, 2012 Name: EXAM SOLUTIONS Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 8 pages including this cover AND IS DOUBLE SIDED.

More information

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral.

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral. 1 Chain rules 2 Directional derivative 3 Gradient Vector Field 4 Most Rapid Increase 5 Implicit Function Theorem, Implicit Differentiation 6 Lagrange Multiplier 7 Second Derivative Test Theorem Suppose

More information

MATH 116 REVIEW PROBLEMS for the FINAL EXAM

MATH 116 REVIEW PROBLEMS for the FINAL EXAM MATH 116 REVIEW PROBLEMS for the FINAL EXAM The following questions are taken from old final exams of various calculus courses taught in Bilkent University 1. onsider the line integral (2xy 2 z + y)dx

More information

Surfaces and Integral Curves

Surfaces and Integral Curves MODULE 1: MATHEMATICAL PRELIMINARIES 16 Lecture 3 Surfaces and Integral Curves In Lecture 3, we recall some geometrical concepts that are essential for understanding the nature of solutions of partial

More information

INTRODUCTION TO LINE INTEGRALS

INTRODUCTION TO LINE INTEGRALS INTRODUTION TO LINE INTEGRALS PROF. MIHAEL VANVALKENBURGH Last week we discussed triple integrals. This week we will study a new topic of great importance in mathematics and physics: line integrals. 1.

More information

Homework Questions 1 Gradient of a Line using y=mx+c

Homework Questions 1 Gradient of a Line using y=mx+c (C1-5.1a) Name: Homework Questions 1 Gradient of a Line using y=mx+c 1. State the gradient and the y-intercept of the following linear equations a) y = 2x 3 b) y = 4 6x m= 2 c = -3 c) 2y = 8x + 4 m= -6

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

Math 5BI: Problem Set 2 The Chain Rule

Math 5BI: Problem Set 2 The Chain Rule Math 5BI: Problem Set 2 The Chain Rule April 5, 2010 A Functions of two variables Suppose that γ(t) = (x(t), y(t), z(t)) is a differentiable parametrized curve in R 3 which lies on the surface S defined

More information