2.1 Angles, Lines and Parallels & 2.2 Congruent Triangles and Pasch s Axiom

Size: px
Start display at page:

Download "2.1 Angles, Lines and Parallels & 2.2 Congruent Triangles and Pasch s Axiom"

Transcription

1 2 Euclidean Geometry In the previous section we gave a sketch overview of the early parts of Euclid s Elements. While the Elements set the standard for the modern axiomatic approach to mathematics, it has many weaknesses. In particular, Euclid s system is incomplete: many assumptions are made implicitly (existence of objects, continuity of lines, etc.). Over the centuries, mathematicians tried to find a complete axiomatic system for Euclidean Geometry, culminating in the work of Hilbert (1899) and irkhoff (1932). While both systems are in fact incomplete 1 the pursuit cannot be considered wasted. In this section we list Hilbert s axioms and show how he attempted to fix some of the problems inherent in Euclid. Later in the course we shall discuss irkhoff s system for nalytic Geometry (geometry using co-ordinates). 2.1 ngles, Lines and Parallels & 2.2 ongruent Triangles and Pasch s xiom Hilbert s axioms for plane geometry are shown on the next page. The undefined terms consist of two types of objects (points and lines), and three relations (between, on and congruent.) t various places during the list of axioms, definitions need to be made. efinition 2.1. The expression denotes the line through distinct points and. Lines l and m intersect if there exists a point lying on both. Lines are parallel if they do not intersect. Segments and are parallel if and only if the lines and are parallel (similarly for rays). Given a line l and two points,, we say that, lie on the same side of l if the segment does not intersect l. Otherwise and are on opposite sides of l. The segment consists of distinct points and and all the points on the line though and such that lies between and. The ray is the segment together with all points on the line through and such that lies between and. triangle consists of line segments, and where,, are three points not on the same line. Two triangles are congruent if corresponding sides and angles are congruent. n angle with vertex consists of a point together with its sides: two rays and. We denote the angle. It is important to note that, in the usual model of plane geometry, a line extends infinitely in both directions, a segment is bounded, and a ray extends infinitely in one direction. Line Segment Ray ngle 1 consequence of Gödel s First Incompleteness Theorem.

2 Hilbert s xioms for Plane Geometry Undefined terms 1. Points (use capital letters, e.g.,,, ) 2. Lines (use lower case letters, e.g., l) 3. etween (a point lies between points,, written ) 4. On (a point lies on a line l) 5. ongruence = (for segments, angles, triangles, etc.) xioms of Incidence I-1 Through any distinct, there exists a line l. I-2 There is at most one line through distinct,. Notation: line through and I-3 On every line there exist at least two distinct points. There exist at least three points not all on the same line. xioms of Order/etweenness O-1 If, then, and are distinct points on the same line and. O-2 For any distinct points and, there is at least one point on the line through and such that. O-3 If,, are distinct points on the same line, exactly one lies between the other two. efinitions: segment and triangle O-4 (Pasch s xiom) Let be a triangle and l a line not containing any of,,. If l contains a point of the segment, then it also contains a point of either or. xioms of ongruence efinition: ray -1 If, are distinct points and is another point, then for each ray r from there is a unique point on r such that = and =. -2 If = and = EF, then = EF. Moreover, every segment it congruent to itself. -3 If,, = and =, then =. efinitions: angle, side of line -4 Given and a ray, there is a unique ray on a given side of such that =. -5 If = EF and = GHI, then EF = GHI. Moreover, every angle is congruent to itself. -6 (Side-ngle-Side) Given triangles and, if =, =, and =, then the triangles are congruent. xiom of ontinuity Suppose that the points on l are partitioned into two non-empty subsets Σ 1, Σ 2 such that no point of Σ 1 lies between two points of Σ 2, and vice versa. Then there exists a unique point O lying on l such that P 1 O P 2 if and only if O = P 1, O = P 2 and one of P 1 or P 2 lies in Σ 1 and the other in Σ 2. efinition: parallel lines Playfair s xiom Given a line l and a point P not on l, one may construct exactly one line through P parallel to l. 2

3 asic Theorems Theorem 2.2. If two lines are not parallel, then they meet in exactly one point. Proof. Suppose that, are distinct points of intersection. y axiom I-2, there is exactly one line through and. ontradiction. Theorem 2.3 (ngle-side-ngle). Suppose that triangles and EF satisfy = EF, = E, = EF Then the triangles are congruent. Proof. Given the assumptions, axiom -1 tells us that we can construct a point G on the ray EF such that EG =. If G = F, we are done: = EF allows axiom -6 (side-angle-side) to tell us that the triangles are congruent. Suppose instead, for a contradiction, that G = F. xiom -6 says that = EG. Then EG = = EF, by assumption. Since F and G lie on the same side of E, axiom -4 says that they lie on the same ray through. ut then F and G both lie on two distinct lines: contradicts axiom I-2. EF and G. This G F E Length and angle measure bsolute length and angle measure are not present in the geometry of Euclid, nor are they mentioned in Hilbert s axioms. In a strict interpretation of either system, length and angle can only be compared: line segments or angles may be congruent, greater or lesser in magnitude to one another, or even come in ratios of magnitudes. Example Suppose that a point lies between points and in such a way that =. We would say that the lengths of and are equal, that is double the length of and that is the midpoint of. This is tedious. We are much more comfortable assuming the existence of a common scale and comparing everything to that. To facilitate this, we add a few postulates about distance: 2 1. To every pair of distinct points, there corresponds a unique positive number called the distance between the points. 2. = =. 2 These are a modified version of the School Mathematics Study Group axioms for distance developed in the 1960 s for teaching high school geometry. 3

4 3. For any line l, there is a bijective function p : l R such that the distance between points and on l is p() p(). 4. Given distinct points and on a line, p can be chosen such that p() = 0 and p() > 0. efinition 2.4. triangle is equilateral if the lengths of its three sides are equal. Let O and R be distinct points. The circle with center O and radius OR is the set of all points such that O = OR. point P is inside the circle if P = O or OP < OR. point Q is outside if OQ > OR. point is the midpoint of a segment if lies between and and =. R Equilateral Triangle M Midpoint P O ircle bisector of an angle is a ray such that intersects at a midpoint M. ngles with a common vertex and whose sides form two lines are called vertical. If two angles share a common side and the other sides lie in opposite directions on the same line, then the angles are supplementary. right angle is an angle which is congruent to any supplementary angle. Intersecting lines are perpendicular if one (both) of the angles made at the intersection is a right angle. Q isector Vertical ngles Supplementary angles Right angles ll these definitions could be stated more awkwardly in terms of congruent segments. ngle Measure This can be defined similarly to length: 1. To every angle there corresponds a degree measure m : a real number between 0 and m = m EF = EF. 3. Suppose that lies on one side of a line such that =. The degree measure provides a bijective correspondence between such points lying on the same side of the line and the interval (0, 180). 4

5 4. Suppose P is a point lying between the rays and in the sense that there exist points, E on these rays with P E. Then m + m = m. 5. Supplementary angles are assumed to sum to 180. None of this is strictly necessary, though it makes everything much easier for us and simplifies several common definitions. Working without the definitions is entirely possible. For a challenge, see if you can fix some of the following discussion by removing all references to length and angle measure... side: The xiom of ontinuity To do much with Hilbert s geometry, a major weakness of Euclid has to be overcome: the issue of continuity. Many proofs rely on the intersections of lines and circles, without which Euclid s ruler and compass constructions useless. If you ve studied edekind cuts in analysis, you might find the phrasing of the axiom familiar. Theorem (Elementary ontinuity Principle) If is a circle such that P is inside and Q is outside the circle, then the segment PQ intersects in exactly one point. 2. (ircular ontinuity Principle) If and are circles such that contains at least one point P inside, and one point Q outside,, then the circles intersect in exactly two points. oth statements can be proved from the xiom of ontinuity. The rough idea of the first is to consider all the points Σ 1 on the segment PQ which lie inside or on, and to let Σ 2 be the points on the segment outside of. One shows that Σ 1 and Σ 2 satisfy the assumptions of the xiom: the unique point Õ whose existence is guaranteed by the xiom is then shown to lie on the circle itself. full discussion lies well beyond the difficulty of this class! In the standard model of Euclidean geometry, where lines and circles are what we pictorially think of as lines and circles, the discussion is irrelevant; both continuity principles are pictorially trivial. The challenge is that the principles must to hold in any model. P Σ Q 2 Õ Σ 1 rmed with our definitions, our concepts of length and circle, we can now prove the first proposition in the Elements using a fixed version of Euclid s proof. Theorem 2.6 (Euclid I.1). We may construct an equilateral triangle on a given segment. Proof. onstruct the circle α centered at passing through. Let be the point on such that is the midpoint of. onstruct the circle β centered at passing through. β contains (inside α) and (outside α). y the ircular ontinuity Principle, the circles intersect in precisely two points P, Q. Since P lies on both circles, it follows that = P = P, whence is equilateral. α P β Q 5

6 isectors and Isosceles Triangles We discuss the following result on isosceles triangles: meaning equal legs, so isosceles triangles have two sides congruent. Theorem 2.7 (Euclid I.5). The base angles of an isosceles triangle are congruent. Euclid s proof relies on a complicated construction following from the Side-ngle-Side theorem (Proposition I.4). Unfortunately his proof of SS relies on superposition: i.e. placing one triangle on top of the other. This concept is not supported by his axioms, whence Euclid s proof is broken. One could attempt to fix this in Euclidean style by using the proof of Proposition 10. Theorem 2.8 (Euclid I.9,10). Given an angle (segment), the bisector of that angle (segment) may be constructed. Here is a sketch of a fixed proof of the isosceles triangle theorem. isect the angle via a ray where is inside the triangle. Let the intersection of the bisector with be M. Side-ngle-Side implies that M = M. Therefore = M = M =. There are three problems with this: M Euclid s system should proceed in such a fashion that earlier results do not depend upon later ones! Using Proposition 9 to prove Proposition 5 is no good! What does inside the triangle mean? How do we know that the bisector of the angle actually intersects the segment? This second and third problems are common in Euclid. The bisector starts off inside the triangle and ends up outside, so it must cross, correct? Euclid makes no such assumption in his axioms, and does not define inside. The sketched argument is therefore broken. Or is it... Problems such as these led to the creation of Pasch s xiom 3 which was incorporated into Euclidean Geometry as Hilbert s xiom O-4. It states that if a line passes through one side of a triangle and doesn t pass through any of the corners, then it must also pass through one (but not both) of the other sides. With careful use of Pasch s xiom, the inside of a triangle can be properly defined and one can show that a line passing through a corner lying partly inside a triangle must also cross an edge. s a fix for Proposition I.5, this is a heavy lift! Here are some of the details. 3 fter Moritz Pasch in

7 Proof of Theorem 2.7. Suppose WLOG we have = so that is isosceles. onsider a new triangle = where =, = and =. We have: = =. This is a consequence of axiom -4. Thus =. = = = and =. y xiom -6 (Side-ngle-Side) we have =. onsequently the angles and = are congruent. = = The proof is very sneaky: just relabel the original triangle and use SS! Proof of Theorem 2.8. To bisect an angle, first construct the point on the ray such that = (axiom -1, or equivalently construct the circle centered at passing through... ) Now draw circles centered at and with radii. These intersect at two points, call one of them E. raw the ray E. y construction, =, E = E. We have two isosceles triangles ( E and ), and thus congruent base angles by the previous result. It follows (sum angles) that E = E. SS then says that E = E, whence angles E and E are congruent. ecause of Pasch s axiom, the sketch proof above is now valid. E Triangle ongruence Theorems We have already seen SS (xiom -6) and S (Theorem 2.3). The remaining angle theorems are SSS and S. It is worth noting that the remaining combinations ( and SS) are not theorems. Theorem 2.9. onsider triangles and EF. Side-Side-Side If = E, = EF and = F then the triangles are congruent. ngle-ngle-side If = E, = EF and = EF then the triangles are congruent. Proofs of these results in Hilbert s system require a little more work, though it is worth noting that they do not depend on Playfair s xiom (Euclid s Parallel Postulate). Euclid similarly proves all four triangle congruence theorems before invoking the parallel postulate for the first time. This implies that congruence theorems are valid in any model satisfing all the axioms except the parallel postulate. The equivalence of Playfair s xiom and Euclid s Parallel Postulate were discussed in hapter 1. 7

The angle measure at for example the vertex A is denoted by m A, or m BAC.

The angle measure at for example the vertex A is denoted by m A, or m BAC. MT 200 ourse notes on Geometry 5 2. Triangles and congruence of triangles 2.1. asic measurements. Three distinct lines, a, b and c, no two of which are parallel, form a triangle. That is, they divide the

More information

You try: What is the definition of an angle bisector? You try: You try: is the bisector of ABC. BD is the bisector of ABC. = /4.MD.

You try: What is the definition of an angle bisector? You try: You try: is the bisector of ABC. BD is the bisector of ABC. = /4.MD. US Geometry 1 What is the definition of a midpoint? midpoint of a line segment is the point that bisects the line segment. That is, M is the midpoint of if M M. 1 What is the definition of an angle bisector?

More information

Basic Euclidean Geometry

Basic Euclidean Geometry hapter 1 asic Euclidean Geometry This chapter is not intended to be a complete survey of basic Euclidean Geometry, but rather a review for those who have previously taken a geometry course For a definitive

More information

B M. and Quad Quad MNOP

B M.  and Quad Quad MNOP hapter 7 ongruence Postulates &Theorems -Δ s In math, the word congruent is used to describe objects that have the same size and shape. When you traced things when you were a little kid, you were using

More information

CHAPTER 2. Euclidean Geometry

CHAPTER 2. Euclidean Geometry HPTER 2 Euclidean Geometry In this chapter we start off with a very brief review of basic properties of angles, lines, and parallels. When presenting such material, one has to make a choice. One can present

More information

Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms

Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms Unit 1 asics of Geometry Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms 1. Point has no dimension, geometrically looks

More information

Theorem (NIB), The "The Adjacent Supplementary Angles" Theorem (Converse of Postulate 14) :

Theorem (NIB), The The Adjacent Supplementary Angles Theorem (Converse of Postulate 14) : More on Neutral Geometry I (Including Section 3.3) ( "NI" means "NOT IN OOK" ) Theorem (NI), The "The djacent Supplementary ngles" Theorem (onverse of ostulate 14) : If two adjacent angles are supplementary,

More information

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points.

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Math 3181 Dr. Franz Rothe Name: All3181\3181_spr13t1.tex 1 Solution of Test I Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Definition

More information

Basics of Geometry Unit 1 - Notes. Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes.

Basics of Geometry Unit 1 - Notes. Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. asics of Geometry Unit 1 - Notes Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms 1. Point has no dimension, geometrically

More information

Stop signs would be examples of congruent shapes. Since a stop sign has 8 sides, they would be congruent octagons.

Stop signs would be examples of congruent shapes. Since a stop sign has 8 sides, they would be congruent octagons. hapter 5 ongruence Theorems -! s In math, the word congruent is used to describe objects that have the same size and shape. When you traced things when you were a little kid, you were using congruence.

More information

History of Mathematics

History of Mathematics History of Mathematics Paul Yiu Department of Mathematics Florida tlantic University Spring 2014 1: Pythagoras Theorem in Euclid s Elements Euclid s Elements n ancient Greek mathematical classic compiled

More information

Chapter 2 Similarity and Congruence

Chapter 2 Similarity and Congruence Chapter 2 Similarity and Congruence Definitions Definition AB = CD if and only if AB = CD Remember, mab = AB. Definitions Definition AB = CD if and only if AB = CD Remember, mab = AB. Definition ABC =

More information

Problem 2.1. Complete the following proof of Euclid III.20, referring to the figure on page 1.

Problem 2.1. Complete the following proof of Euclid III.20, referring to the figure on page 1. Math 3181 Dr. Franz Rothe October 30, 2015 All3181\3181_fall15t2.tex 2 Solution of Test Name: Figure 1: Central and circumference angle of a circular arc, both obtained as differences Problem 2.1. Complete

More information

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed:

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed: Math 3181 Dr. Franz Rothe September 29, 2016 All3181\3181_fall16h3.tex Names: Homework has to be turned in this handout. For extra space, use the back pages, or put blank pages between. The homework can

More information

A point is pictured by a dot. While a dot must have some size, the point it represents has no size. Points are named by capital letters..

A point is pictured by a dot. While a dot must have some size, the point it represents has no size. Points are named by capital letters.. Chapter 1 Points, Lines & Planes s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My guess that you might already be pretty familiar with many

More information

Elementary Planar Geometry

Elementary Planar Geometry Elementary Planar Geometry What is a geometric solid? It is the part of space occupied by a physical object. A geometric solid is separated from the surrounding space by a surface. A part of the surface

More information

Ch 4 Review Problems pp #7 36, 48,51,52 due MONDAY 12/12

Ch 4 Review Problems pp #7 36, 48,51,52 due MONDAY 12/12 Geometry 4.4 4.6 ongruence Proofs ecember 08, 2016 h 4 Review Problems pp.176 180 #7 36, 48,51,52 due MONY 12/12 h 5 Review Problems pp. 206 209 #15 50 h 6 Review Problems pp. 250 254 #9 19, 33 53 4.2

More information

Solutions to the Test. Problem 1. 1) Who is the author of the first comprehensive text on geometry? When and where was it written?

Solutions to the Test. Problem 1. 1) Who is the author of the first comprehensive text on geometry? When and where was it written? Solutions to the Test Problem 1. 1) Who is the author of the first comprehensive text on geometry? When and where was it written? Answer: The first comprehensive text on geometry is called The Elements

More information

Example G1: Triangles with circumcenter on a median. Prove that if the circumcenter of a triangle lies on a median, the triangle either is isosceles

Example G1: Triangles with circumcenter on a median. Prove that if the circumcenter of a triangle lies on a median, the triangle either is isosceles 1 Example G1: Triangles with circumcenter on a median. Prove that if the circumcenter of a triangle lies on a median, the triangle either is isosceles or contains a right angle. D D 2 Solution to Example

More information

POTENTIAL REASONS: Definition of Congruence:

POTENTIAL REASONS: Definition of Congruence: Sec 1.6 CC Geometry Triangle Proofs Name: POTENTIAL REASONS: Definition of Congruence: Having the exact same size and shape and there by having the exact same measures. Definition of Midpoint: The point

More information

Geometry. Points, Lines, Planes & Angles. Part 2. Slide 1 / 185. Slide 2 / 185. Slide 3 / 185. Table of Contents

Geometry. Points, Lines, Planes & Angles. Part 2. Slide 1 / 185. Slide 2 / 185. Slide 3 / 185. Table of Contents Slide 1 / 185 Slide 2 / 185 Geometry Points, Lines, Planes & ngles Part 2 2014-09-20 www.njctl.org Part 1 Introduction to Geometry Table of ontents Points and Lines Planes ongruence, istance and Length

More information

An Approach to Geometry (stolen in part from Moise and Downs: Geometry)

An Approach to Geometry (stolen in part from Moise and Downs: Geometry) An Approach to Geometry (stolen in part from Moise and Downs: Geometry) Undefined terms: point, line, plane The rules, axioms, theorems, etc. of elementary algebra are assumed as prior knowledge, and apply

More information

Pi at School. Arindama Singh Department of Mathematics Indian Institute of Technology Madras Chennai , India

Pi at School. Arindama Singh Department of Mathematics Indian Institute of Technology Madras Chennai , India Pi at School rindama Singh epartment of Mathematics Indian Institute of Technology Madras Chennai-600036, India Email: asingh@iitm.ac.in bstract: In this paper, an attempt has been made to define π by

More information

Triangle Congruency; Triangle Proofs

Triangle Congruency; Triangle Proofs Lesson 68 Triangle ongruency; Triangle Proofs Review: Lessons 9, 10, 66 and 67. Rules - Triangle congruency theorems* Side-angle-side (SS): If two sides and the included angle in one triangle have the

More information

There are three ways to classify triangles based on sides

There are three ways to classify triangles based on sides Unit 4 Notes: Triangles 4-1 Triangle ngle-sum Theorem ngle review, label each angle with the correct classification: Triangle a polygon with three sides. There are two ways to classify triangles: by angles

More information

Honors 213. Third Hour Exam. Name

Honors 213. Third Hour Exam. Name Honors 213 Third Hour Exam Name Monday, March 27, 2000 100 points Page 1 Please note: Because of multiple exams given Monday, this exam will be returned by Thursday, March 30. 1. (5 pts.) Define what it

More information

The side that is opposite the vertex angle is the base of the isosceles triangle.

The side that is opposite the vertex angle is the base of the isosceles triangle. Unit 5, Lesson 6. Proving Theorems about Triangles Isosceles triangles can be seen throughout our daily lives in structures, supports, architectural details, and even bicycle frames. Isosceles triangles

More information

Chapter 1. Euclid s Elements, Book I (constructions)

Chapter 1. Euclid s Elements, Book I (constructions) hapter 1 uclid s lements, ook I (constructions) 102 uclid s lements, ook I (constructions) 1.1 The use of ruler and compass uclid s lements can be read as a book on how to construct certain geometric figures

More information

Inversive Plane Geometry

Inversive Plane Geometry Inversive Plane Geometry An inversive plane is a geometry with three undefined notions: points, circles, and an incidence relation between points and circles, satisfying the following three axioms: (I.1)

More information

Proving Lines Parallel

Proving Lines Parallel Proving Lines Parallel Proving Triangles ongruent 1 Proving Triangles ongruent We know that the opposite sides of a parallelogram are congruent. What about the converse? If we had a quadrilateral whose

More information

Warm-Up Based on upper. Based on lower boundary of 1. m 1 m 2 m 3 m What do you notice about these angles?

Warm-Up Based on upper. Based on lower boundary of 1. m 1 m 2 m 3 m What do you notice about these angles? Warm-Up 1.8.1 Metalbro is a construction company involved with building a new skyscraper in ubai. The diagram below is a rough sketch of a crane that Metalbro workers are using to build the skyscraper.

More information

Whenever two figures have the same size and shape, they are called congruent. Triangles ABC and DEF are congruent. You can match up vertices like

Whenever two figures have the same size and shape, they are called congruent. Triangles ABC and DEF are congruent. You can match up vertices like Unit 1: orresponding Parts in a ongruence Section 1: ongruent Figures Whenever two figures have the same size and shape, they are called congruent. F D E Triangles and DEF are congruent. You can match

More information

8 Standard Euclidean Triangle Geometry

8 Standard Euclidean Triangle Geometry 8 Standard Euclidean Triangle Geometry 8.1 The circum-center Figure 8.1: In hyperbolic geometry, the perpendicular bisectors can be parallel as shown but this figure is impossible in Euclidean geometry.

More information

Definition (Axiomatic System). An axiomatic system (a set of axioms and their logical consequences) consists of:

Definition (Axiomatic System). An axiomatic system (a set of axioms and their logical consequences) consists of: Course Overview Contents 1 AxiomaticSystems.............................. 1 2 Undefined Terms............................... 2 3 Incidence................................... 2 4 Distance....................................

More information

1 Appendix to notes 2, on Hyperbolic geometry:

1 Appendix to notes 2, on Hyperbolic geometry: 1230, notes 3 1 Appendix to notes 2, on Hyperbolic geometry: The axioms of hyperbolic geometry are axioms 1-4 of Euclid, plus an alternative to axiom 5: Axiom 5-h: Given a line l and a point p not on l,

More information

MATH 30 GEOMETRY UNIT OUTLINE AND DEFINITIONS Prepared by: Mr. F.

MATH 30 GEOMETRY UNIT OUTLINE AND DEFINITIONS Prepared by: Mr. F. 1 MTH 30 GEMETRY UNIT UTLINE ND DEFINITINS Prepared by: Mr. F. Some f The Typical Geometric Properties We Will Investigate: The converse holds in many cases too! The Measure f The entral ngle Tangent To

More information

Geometry Notes - Unit 4 Congruence

Geometry Notes - Unit 4 Congruence Geometry Notes - Unit 4 ongruence Triangle is a figure formed by three noncollinear points. lassification of Triangles by Sides Equilateral triangle is a triangle with three congruent sides. Isosceles

More information

Let s use a more formal definition. An angle is the union of two rays with a common end point.

Let s use a more formal definition. An angle is the union of two rays with a common end point. hapter 2 ngles What s the secret for doing well in geometry? Knowing all the angles. s we did in the last chapter, we will introduce new terms and new notations, the building blocks for our success. gain,

More information

7.2 Isosceles and Equilateral Triangles

7.2 Isosceles and Equilateral Triangles Name lass Date 7.2 Isosceles and Equilateral Triangles Essential Question: What are the special relationships among angles and sides in isosceles and equilateral triangles? Resource Locker Explore G.6.D

More information

4-2 Triangle Congruence Conditions. Congruent Triangles - C F. and

4-2 Triangle Congruence Conditions. Congruent Triangles - C F. and 4-2 Triangle ongruence onditions ongruent Triangles -,, ª is congruent to ª (ª ª) under a correspondence of parts if and only if 1) all three pairs of corresponding angles are congruent, and 2) all three

More information

MST Topics in History of Mathematics

MST Topics in History of Mathematics MST Topics in History of Mathematics Euclid s Elements and the Works of rchimedes Paul Yiu Department of Mathematics Florida tlantic University Summer 2014 June 30 2.6 ngle properties 11 2.6 ngle properties

More information

Transformations and Isometries

Transformations and Isometries Transformations and Isometries Definition: A transformation in absolute geometry is a function f that associates with each point P in the plane some other point P in the plane such that (1) f is one-to-one

More information

a. If an insect is a butterfly, then it has four wings b. Four angles are formed if two lines intersect

a. If an insect is a butterfly, then it has four wings b. Four angles are formed if two lines intersect Geometry Unit 1 Part 1 Test Review Name: ate: Period: Part I efinitions, Postulates, Formulas, and Theorems Point Inductive Reasoning onditional Statement Postulate Line onjecture hypothesis Segment ddition

More information

A Communications Network???

A Communications Network??? A Communications Network??? A Communications Network What are the desirable properties of the switching box? 1. Every two users must be connected at a switch. 2. Every switch must "look alike". 3. The

More information

The Geometry of Piles of Salt Thinking Deeply About Simple Things

The Geometry of Piles of Salt Thinking Deeply About Simple Things The Geometry of Piles of Salt Thinking eeply bout Simple Things University of Utah Teacher s Math ircle Monday, February 4 th, 2008 y Troy Jones Waterford School Important Terms (the word line may be

More information

Some Comments on Leaving Certificate Geometry Work in Progress

Some Comments on Leaving Certificate Geometry Work in Progress Some Comments on Leaving Certificate Geometry Work in Progress D. R. Wilkins April 23, 2016 i Axioms for Leaving Certificate Geometry In 1932, George D. Birkhoff published a paper entitled A set of postulates

More information

UNIT 2 NOTE PACKET. Triangle Proofs

UNIT 2 NOTE PACKET. Triangle Proofs Name GEOMETRY UNIT 2 NOTE PKET Triangle Proofs ate Page Topic Homework 9/19 2-3 Vocabulary Study Vocab 9/20 4 Vocab ont. and No Homework Reflexive/ddition/Subtraction 9/23 5-6 rawing onclusions from Vocab

More information

FIGURES FOR SOLUTIONS TO SELECTED EXERCISES. V : Introduction to non Euclidean geometry

FIGURES FOR SOLUTIONS TO SELECTED EXERCISES. V : Introduction to non Euclidean geometry FIGURES FOR SOLUTIONS TO SELECTED EXERCISES V : Introduction to non Euclidean geometry V.1 : Facts from spherical geometry V.1.1. The objective is to show that the minor arc m does not contain a pair of

More information

A HISTORICAL INTRODUCTION TO ELEMENTARY GEOMETRY

A HISTORICAL INTRODUCTION TO ELEMENTARY GEOMETRY i MATH 119 A HISTORICAL INTRODUCTION TO ELEMENTARY GEOMETRY Geometry is an word derived from ancient Greek meaning earth measure ( ge = earth or land ) + ( metria = measure ). Euclid wrote the Elements

More information

Geometry. Points, Lines, Planes & Angles. Part 2. Angles. Slide 1 / 185 Slide 2 / 185. Slide 4 / 185. Slide 3 / 185. Slide 5 / 185.

Geometry. Points, Lines, Planes & Angles. Part 2. Angles. Slide 1 / 185 Slide 2 / 185. Slide 4 / 185. Slide 3 / 185. Slide 5 / 185. Slide 1 / 185 Slide 2 / 185 eometry Points, ines, Planes & ngles Part 2 2014-09-20 www.njctl.org Part 1 Introduction to eometry Slide 3 / 185 Table of ontents Points and ines Planes ongruence, istance

More information

Geometry Definitions, Postulates, and Theorems. Chapter 4: Congruent Triangles. Section 4.1: Apply Triangle Sum Properties

Geometry Definitions, Postulates, and Theorems. Chapter 4: Congruent Triangles. Section 4.1: Apply Triangle Sum Properties Geometry efinitions, Postulates, and Theorems Key hapter 4: ongruent Triangles Section 4.1: pply Triangle Sum Properties Standards: 12.0 Students find and use measures of sides and of interior and exterior

More information

CCGPS UNIT 1A Semester 1 ANALYTIC GEOMETRY Page 1 of 35. Similarity Congruence and Proofs Name:

CCGPS UNIT 1A Semester 1 ANALYTIC GEOMETRY Page 1 of 35. Similarity Congruence and Proofs Name: GPS UNIT 1 Semester 1 NLYTI GEOMETRY Page 1 of 35 Similarity ongruence and Proofs Name: Date: Understand similarity in terms of similarity transformations M9-12.G.SRT.1 Verify experimentally the properties

More information

GEOMETRY POSTULATES AND THEOREMS. Postulate 1: Through any two points, there is exactly one line.

GEOMETRY POSTULATES AND THEOREMS. Postulate 1: Through any two points, there is exactly one line. GEOMETRY POSTULATES AND THEOREMS Postulate 1: Through any two points, there is exactly one line. Postulate 2: The measure of any line segment is a unique positive number. The measure (or length) of AB

More information

Thomas Jefferson High School for Science and Technology Program of Studies TJ Math 1

Thomas Jefferson High School for Science and Technology Program of Studies TJ Math 1 Course Description: This course is designed for students who have successfully completed the standards for Honors Algebra I. Students will study geometric topics in depth, with a focus on building critical

More information

Geometry - Chapter 1 - Corrective #1

Geometry - Chapter 1 - Corrective #1 Class: Date: Geometry - Chapter 1 - Corrective #1 Short Answer 1. Sketch a figure that shows two coplanar lines that do not intersect, but one of the lines is the intersection of two planes. 2. Name two

More information

Chapter 1 Tools of Geometry

Chapter 1 Tools of Geometry Chapter 1 Tools of Geometry Goals: 1) learn to draw conclusions based on patterns 2) learn the building blocks for the structure of geometry 3) learn to measure line segments and angles 4) understand the

More information

Day 1: Geometry Terms & Diagrams CC Geometry Module 1

Day 1: Geometry Terms & Diagrams CC Geometry Module 1 Name ate ay 1: Geometry Terms & iagrams Geometry Module 1 For #1-3: Identify each of the following diagrams with the correct geometry term. #1-3 Vocab. ank Line Segment Line Ray 1. 2. 3. 4. Explain why

More information

Geometry Unit 4a - Notes Triangle Relationships

Geometry Unit 4a - Notes Triangle Relationships Geometry Unit 4a - Notes Triangle Relationships This unit is broken into two parts, 4a & 4b. test should be given following each part. Triangle - a figure formed by three segments joining three noncollinear

More information

Geometry. Chapter 3. Congruent Triangles Ways of Proving Triangles Corresponding Parts of Δ s (CP Δ=) Theorems Based on Δ s

Geometry. Chapter 3. Congruent Triangles Ways of Proving Triangles Corresponding Parts of Δ s (CP Δ=) Theorems Based on Δ s Geometry hapter 3 ongruent Triangles Ways of Proving Triangles orresponding Parts of Δ s (P Δ=) Theorems ased on Δ s Geometry hapter 3 ongruent Triangles Navigation: lick on sheet number to find that sheet.

More information

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry Interpretations and Models Chapter 2.1-2.4 - Axiomatic Systems and Incidence Geometry Axiomatic Systems in Mathematics The gold standard for rigor in an area of mathematics Not fully achieved in most areas

More information

Geometry. figure (e.g. multilateral ABCDEF) into the figure A B C D E F is called homothety, or similarity transformation.

Geometry. figure (e.g. multilateral ABCDEF) into the figure A B C D E F is called homothety, or similarity transformation. ctober 18, 2015 Geometry. Similarity and homothety. Theorems and problems. efinition. Two figures are homothetic with respect to a point, if for each point of one figure there is a corresponding point

More information

Situation 1: Congruent Triangles vs. Similar Triangles

Situation 1: Congruent Triangles vs. Similar Triangles Situation 1: Congruent Triangles vs. Similar Triangles Prepared at the University of Georgia EMAT 6500 Date last revised: July 24 th, 2013 Nicolina Scarpelli Prompt: A teacher in a high school Analytic

More information

Saccheri Quadrilaterals

Saccheri Quadrilaterals Saccheri Quadrilaterals efinition: Let be any line segment, and erect two perpendiculars at the endpoints and. ark off points and on these perpendiculars so that and lie on the same side of the line, and

More information

Mth 97 Fall 2013 Chapter 4

Mth 97 Fall 2013 Chapter 4 4.1 Reasoning and Proof in Geometry Direct reasoning or reasoning is used to draw a conclusion from a series of statements. Conditional statements, if p, then q, play a central role in deductive reasoning.

More information

GEOMETRY. PARALLEL LINES Theorems Theorem 1: If a pair of parallel lines is cut by a transversal, then corresponding angles are equal.

GEOMETRY. PARALLEL LINES Theorems Theorem 1: If a pair of parallel lines is cut by a transversal, then corresponding angles are equal. GOMTRY RLLL LINS Theorems Theorem 1: If a pair of parallel lines is cut by a transversal, then corresponding angles are equal. Theorem 2: If a pair of parallel lines is cut by a transversal, then the alternate

More information

Common Core State Standards High School Geometry Constructions

Common Core State Standards High School Geometry Constructions ommon ore State Standards High School Geometry onstructions HSG.O..12 onstruction: opying a line segment HSG.O..12 onstruction: opying an angle HSG.O..12 onstruction: isecting a line segment HSG.O..12

More information

Chapter 1-2 Points, Lines, and Planes

Chapter 1-2 Points, Lines, and Planes Chapter 1-2 Points, Lines, and Planes Undefined Terms: A point has no size but is often represented by a dot and usually named by a capital letter.. A A line extends in two directions without ending. Lines

More information

Chapter 6.1 Medians. Geometry

Chapter 6.1 Medians. Geometry Chapter 6.1 Medians Identify medians of triangles Find the midpoint of a line using a compass. A median is a segment that joins a vertex of the triangle and the midpoint of the opposite side. Median AD

More information

Topics in geometry Exam 1 Solutions 7/8/4

Topics in geometry Exam 1 Solutions 7/8/4 Topics in geometry Exam 1 Solutions 7/8/4 Question 1 Consider the following axioms for a geometry: There are exactly five points. There are exactly five lines. Each point lies on exactly three lines. Each

More information

A calculator, scrap paper, and patty paper may be used. A compass and straightedge is required.

A calculator, scrap paper, and patty paper may be used. A compass and straightedge is required. The Geometry and Honors Geometry Semester examination will have the following types of questions: Selected Response Student Produced Response (Grid-in) Short nswer calculator, scrap paper, and patty paper

More information

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles.

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles. Geometry Definitions, Postulates, and Theorems Chapter : Parallel and Perpendicular Lines Section.1: Identify Pairs of Lines and Angles Standards: Prepare for 7.0 Students prove and use theorems involving

More information

DE to a line parallel to Therefore

DE to a line parallel to Therefore Some Proofs 1. In the figure below segment DE cuts across triangle ABC, and CD/CA = CE/CB. Prove that DE is parallel to AB. Consider the dilation with center C and scaling factor CA/CD. This dilation fixes

More information

And Now From a New Angle Special Angles and Postulates LEARNING GOALS

And Now From a New Angle Special Angles and Postulates LEARNING GOALS And Now From a New Angle Special Angles and Postulates LEARNING GOALS KEY TERMS. In this lesson, you will: Calculate the complement and supplement of an angle. Classify adjacent angles, linear pairs, and

More information

2. A straightedge can create straight line, but can't measure. A ruler can create straight lines and measure distances.

2. A straightedge can create straight line, but can't measure. A ruler can create straight lines and measure distances. 5.1 Copies of Line Segments and Angles Answers 1. A drawing is a rough sketch and a construction is a process to create an exact and accurate geometric figure. 2. A straightedge can create straight line,

More information

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles acute triangle a triangle with all acute angles adjacent angles angles that share a common side and vertex alternate exterior angles two non-adjacent exterior angles on opposite sides of the transversal;

More information

a + b + c = 180 Example: 1. a = 2. b = 3. a = 4.1 Interior angles of a triangle. a = 180 So a = 1 3. Find the missing measurements.

a + b + c = 180 Example: 1. a = 2. b = 3. a = 4.1 Interior angles of a triangle. a = 180 So a = 1 3. Find the missing measurements. 4.1 Interior angles of a triangle. b a a + b + c = 180 c Example: a 70 35 1 3. Find the missing measurements. a + 70 + 35 = 180 So a = 75 1. a = 2. b = a 3 4 6 6 1 4 b 3. a = 135 Triangle Sum onjecture:

More information

GEOMETRY is the study of points in space

GEOMETRY is the study of points in space CHAPTER 5 Logic and Geometry SECTION 5-1 Elements of Geometry GEOMETRY is the study of points in space POINT indicates a specific location and is represented by a dot and a letter R S T LINE is a set of

More information

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false. Chapter 1 Line and Angle Relationships 1.1 Sets, Statements and Reasoning Definitions 1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

More information

Unit 2A: Angle Pairs and Transversal Notes

Unit 2A: Angle Pairs and Transversal Notes Unit 2A: Angle Pairs and Transversal Notes Day 1: Special angle pairs Day 2: Angle pairs formed by transversal through two nonparallel lines Day 3: Angle pairs formed by transversal through parallel lines

More information

Math 366 Chapter 12 Review Problems

Math 366 Chapter 12 Review Problems hapter 12 Math 366 hapter 12 Review Problems 1. ach of the following figures contains at least one pair of congruent triangles. Identify them and tell why they are congruent. a. b. G F c. d. e. f. 1 hapter

More information

KeY TeRM. perpendicular bisector

KeY TeRM. perpendicular bisector .6 Making opies Just as Perfect as the Original! onstructing Perpendicular Lines, Parallel Lines, and Polygons LeARnInG GOALS In this lesson, you will: KeY TeRM perpendicular bisector OnSTRUTIOnS a perpendicular

More information

CONSTRUCTIONS Introduction Division of a Line Segment

CONSTRUCTIONS Introduction Division of a Line Segment 216 MATHEMATICS CONSTRUCTIONS 11 111 Introduction In Class IX, you have done certain constructions using a straight edge (ruler) and a compass, eg, bisecting an angle, drawing the perpendicular bisector

More information

MTH 362 Study Guide Exam 1 System of Euclidean Geometry 1. Describe the building blocks of Euclidean geometry. a. Point, line, and plane - undefined

MTH 362 Study Guide Exam 1 System of Euclidean Geometry 1. Describe the building blocks of Euclidean geometry. a. Point, line, and plane - undefined MTH 362 Study Guide Exam 1 System of Euclidean Geometry 1. Describe the building blocks of Euclidean geometry. a. Point, line, and plane - undefined terms used to create definitions. Definitions are used

More information

Math-2. Lesson 7-4 Properties of Parallelograms And Isosceles Triangles

Math-2. Lesson 7-4 Properties of Parallelograms And Isosceles Triangles Math-2 Lesson 7-4 Properties of Parallelograms nd Isosceles Triangles What sequence of angles would you link to prove m4 m9 3 1 4 2 13 14 16 15 lternate Interior Corresponding 8 5 7 6 9 10 12 11 What sequence

More information

Definition 2 (Projective plane). A projective plane is a class of points, and a class of lines satisfying the axioms:

Definition 2 (Projective plane). A projective plane is a class of points, and a class of lines satisfying the axioms: Math 3181 Name: Dr. Franz Rothe January 30, 2014 All3181\3181_spr14h2.tex Homework has to be turned in this handout. The homework can be done in groups up to three due February 11/12 2 Homework 1 Definition

More information

Geometry. Points, Lines, Planes & Angles. Part 2. Slide 1 / 185. Slide 2 / 185. Slide 3 / 185. Table of Contents

Geometry. Points, Lines, Planes & Angles. Part 2. Slide 1 / 185. Slide 2 / 185. Slide 3 / 185. Table of Contents Slide 1 / 185 Slide 2 / 185 Geometry Points, Lines, Planes & ngles Part 2 2014-09-20 www.njctl.org Part 1 Introduction to Geometry Table of ontents Points and Lines Planes ongruence, istance and Length

More information

Hyperbolic Geometry 8.2 Basic Theorems of Hyperbolic Geometry

Hyperbolic Geometry 8.2 Basic Theorems of Hyperbolic Geometry Hyperbolic Geometry 8.2 asic Theorems of Hyperbolic Geometry In these notes we explore the consequences of accepting the Hyperbolic Parallel Postulate: Given a line l and a point P not on l, there is more

More information

(Current Re nweb Grade)x.90 + ( finalexam grade) x.10 = semester grade

(Current Re nweb Grade)x.90 + ( finalexam grade) x.10 = semester grade 2//2 5:7 PM Name ate Period This is your semester exam which is worth 0% of your semester grade. You can determine grade what-ifs by using the equation below. (urrent Re nweb Grade)x.90 + ( finalexam grade)

More information

3 Solution of Homework

3 Solution of Homework Math 3181 Name: Dr. Franz Rothe February 25, 2014 All3181\3181_spr14h3.tex Homework has to be turned in this handout. The homework can be done in groups up to three due March 11/12 3 Solution of Homework

More information

Geometry. Slide 1 / 343. Slide 2 / 343. Slide 3 / 343. Quadrilaterals. Table of Contents

Geometry. Slide 1 / 343. Slide 2 / 343. Slide 3 / 343. Quadrilaterals. Table of Contents Slide 1 / 343 Slide 2 / 343 Geometry Quadrilaterals 2015-10-27 www.njctl.org Table of ontents Polygons Properties of Parallelograms Proving Quadrilaterals are Parallelograms Rhombi, Rectangles and Squares

More information

A calculator and patty paper may be used. A compass and straightedge is required. The formulas below will be provided in the examination booklet.

A calculator and patty paper may be used. A compass and straightedge is required. The formulas below will be provided in the examination booklet. The Geometry and Honors Geometry Semester examination will have the following types of questions: Selected Response Student Produced Response (Grid-in) Short nswer calculator and patty paper may be used.

More information

Geometry. Slide 1 / 190. Slide 2 / 190. Slide 3 / 190. Angles. Table of Contents

Geometry. Slide 1 / 190. Slide 2 / 190. Slide 3 / 190. Angles. Table of Contents Slide 1 / 190 Slide 2 / 190 Geometry ngles 2015-10-21 www.njctl.org Table of ontents click on the topic to go to that section Slide 3 / 190 ngles ongruent ngles ngles & ngle ddition Postulate Protractors

More information

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts interpreting a schematic drawing, estimating the amount of

More information

Geometry Basics * Rory Adams Free High School Science Texts Project Mark Horner Heather Williams. 1 Introduction. 2 Points and Lines

Geometry Basics * Rory Adams Free High School Science Texts Project Mark Horner Heather Williams. 1 Introduction. 2 Points and Lines OpenStax-NX module: m31494 1 Geometry asics * Rory dams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStax-NX and licensed under the reative ommons ttribution

More information

Section Congruence Through Constructions

Section Congruence Through Constructions Section 10.1 - Congruence Through Constructions Definitions: Similar ( ) objects have the same shape but not necessarily the same size. Congruent ( =) objects have the same size as well as the same shape.

More information

2) Prove that any point P on the perpendicular bisector of AB is equidistant from both points A and B.

2) Prove that any point P on the perpendicular bisector of AB is equidistant from both points A and B. Seattle Public Schools Review Questions for the Washington State Geometry End of ourse Exam 1) Which term best defines the type of reasoning used below? bdul broke out in hives the last four times that

More information

AJ has been constructed as the angle bisector of BAD. B. AJ is the of BD.

AJ has been constructed as the angle bisector of BAD. B. AJ is the of BD. im #9: How do we construct a perpendicular bisector? Do Now: Using the angle below: 1. isect the angle. Label the bisector D. 2. Construct a copy of DC using vertex '. CC Geometry H C ' Relevant Vocabulary

More information

Geometry Practice Questions Semester 1

Geometry Practice Questions Semester 1 Geometry Practice Questions Semester 1 MAFS.912.G-CO.1.1 - Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line,

More information

Geo Final Review 2014

Geo Final Review 2014 Period: ate: Geo Final Review 2014 Multiple hoice Identify the choice that best completes the statement or answers the question. 1. n angle measures 2 degrees more than 3 times its complement. Find the

More information

Wahkiakum School District, Pre-EOC Geometry 2012

Wahkiakum School District, Pre-EOC Geometry 2012 Pre-EO ssesment Geometry #2 Wahkiakum School istrict GEOM Page 1 1. Seth was supposed to prove PQR by SS for his homework assignment. He wrote the following proof: Given PRQ, PQ, and QR, then PQR by SS.

More information