Theorem (NIB), The "The Adjacent Supplementary Angles" Theorem (Converse of Postulate 14) :

Size: px
Start display at page:

Download "Theorem (NIB), The "The Adjacent Supplementary Angles" Theorem (Converse of Postulate 14) :"

Transcription

1 More on Neutral Geometry I (Including Section 3.3) ( "NI" means "NOT IN OOK" ) Theorem (NI), The "The djacent Supplementary ngles" Theorem (onverse of ostulate 14) : If two adjacent angles are supplementary, then they form a linear pair. roof: Suppose that ray ) are supplementary. and are two adjacent angles (with common (We need to show that they form a linear pair.) y ostulate 4 (The Ruler lacement ostulate), there is a point on line such that. Thus, since and are both in the half-plane side of opposite the half-plane containing, and are on the same side of. Now, and form a linear pair by definition of linear pair. y ostulate 14, and are supplementary. y the supposition above, and are also supplementary. Therefore,./ m( ) = m( ). We see then that ray and are both rays in the same half-plane side of line such that each ray combines with ray to produce angle with the same measure r = 180 m( ). y ostulate 12 (The ngle onstruction ostulate), there is one and only one ray in that same half-plane side of which unions with to produce the angle with that particular angle measure, r = m( ) = m( ). y the uniqueness of this ray, we can conclude that = and so, =. Therefore, form a linear pair. Q

2 Section 3.3: Triangle ongruence onditions 2 Theorem (ngle-side-ngle ongruence ondition): If, in two triangles, the vertices of one triangle can be put into one-to-one correspondence with the vertices of the other triangle such that: Two angles and the included side of one triangle are congruent to the corresponding angles and included side of the other triangle, Then, the correspondence of triangle vertices is a congruence and the two triangles are congruent. roof: Let and be two triangles and consider the correspondence of vertices. Suppose that, and, and. [We need to show. ] [ We do this by showing that.], and then we apply ostulate 15 (SS) to conclude that Suppose, by way of contradiction, that and are not congruent.. Without loss of generality, we assume that >. [ Note: If <, then we rename the points,, as,,, and we rename the points,, as,,, respectively. fter these renamings, every statement made to this point is true. In particular, >. ] Since >, there exists a point T such that T and T =, by the Ruler lacement ostulate (ostulate 4). Note that T since T =. T Since m( ) = m( ), we conclude by ostulate 13 that m( T ) < m( ). In particular, m( T ) m( ). Since T =, T. Recall that T and. Therefore, T by SS, and T by and m( T ) = m( ), which contradicts that fact that m( T ) < m( ).. by SS. The S Triangle ongruence ondition is valid. Q

3 Theorem 3.3.2, The "ongruent ase ngles" Theorem (onverse of the "Isosceles Triangle Theorem"): If two angles in a triangle are congruent, then the sides opposite these congruent angles are congruent segments and the triangle is an Isosceles triangle. roof: The proof is a simple application of the -S- triangle congruence condition and is left as an exercise. 3 Theorem (ngle-ngle-side ongruence ondition): If, in two triangles, the vertices of one triangle can be put into one-to-one correspondence with the vertices of the other triangle such that: Two angles and the side opposite one of them in one triangle are congruent to the corresponding angles and corresponding opposite side of the other triangle, Then, the correspondence of triangle vertices is a congruence and the two triangles are congruent. roof: Let and be two triangles and consider the correspondence of vertices. Suppose that, and and. [ We show that using a proof-by-contradiction. ] Suppose, by way of contradiction, that and are not congruent.. Without loss of generality, we assume that >. Since >, there exists a point T such that T and T =, by the Ruler lacement ostulate (ostulate 4). Thus, T. T Now, T is an exterior angle of T and T is an interior angle of that triangle which is not adjacent to T. y Theorem (The xterior ngle Theorem), m( T ) > m( T ).

4 Note that T since T =, and recall that and T. T by ostulate 15 (SS). T by and, therefore, m( T ) = m( ). lso, m( ) = m( ) = m( T ) since T =. m( T ) = m( T ), which contradicts the fact that m( T ) > m( T ).. Recall that and. by SS. The S Triangle ongruence ondition is valid. Q 4 Theorem 3.3.4: SSS ongruence for Quadrilaterals Theorem 3.3.5, The "Larger Side opposite Larger ngle" Theorem: or two sides of a triangle and the angles opposite them, the angle opposite the larger side is the larger of the twos angles. Theorem The Triangle Inequality: The sum of the lengths of any two sides > the length of the third side. or proving the Side-Side-Side ongruence ondition, we will need the Hinge Theorem which is not proven here, but a proof of it can be found in the textbook. Theorem The Hinge Theorem: Given that two sides of one triangle are congruent to two corresponding sides of another triangle, then, the greater of the two included angles has the longer of the two corresponding third sides opposite these included angles. The Shorter Side is Opposite of the Smaller ngle. The Longer Side is Opposite of the Larger ngle.

5 Theorem (Side-Side-Side ongruence ondition): If, in two triangles, the vertices of one triangle can be put into one-to-one correspondence with the vertices of the other triangle such that: The three sides of one triangle are congruent to the corresponding sides of the other triangle, Then, the correspondence of triangle vertices is a congruence and the two triangles are congruent. roof: Let and be two triangles and consider the correspondence of vertices. Suppose that and and. 5 [ We show that using a proof-by-contradiction. Then, we conclude that by SS. ] Suppose, by way of contradiction, and are not congruent. m( ) m( ). Without loss of generality, we assume that m( ) > m( ). lso, recall that and. y Theorem (The Hinge Theorem), >, which contradicts the fact that.. by ostulate 15 (SS). The SSS Triangle ongruence ondition is valid. Q Theorem (NI), The rop a erpendicular Theorem. Given any line l and any point, there exists a unique line through which is perpendicular to line l. roof: onsider line l and a point. We first assume that point is not on line l. (See the figure.) l We must show that there exists a line through which is perpendicular to line l.

6 Let be any point on line l. If line is perpendicular to line l, then such a perpendicular line exists. 6 Suppose then that line is not perpendicular to line l. Let be a point on l so that is an acute angle. y the ngle onstruction ostulate, there is a unique ray in the half-plane on the side of line l which is opposite of the side containing such that H l m( ) = m( ). y the Ruler ostulate, there is a point on ray such that =. oints and are on different half-plane sides of l ; therefore, line l intersects the segment at some point with. y construction, =. y construction,. lso,. Therefore, by SS. by. and are right angles by the ongruent Supplementary ngles Theorem. Therefore, line is perpendicular to line l. Therefore, there exists at least one line through point which is perpendicular to l. To prove that there is only one such line through perpendicular to line l, suppose (by way of contradiction) that there were a second line through and perpendicular to line l intersecting line l at point. Without loss of generality, we can assume that. (See the figure.) Then, is an exterior angle of. y the xterior ngle Theorem, m( ) > m( ) since is a nonadjacent interior angle of. ut they are both right angles: m( ) = m( ) = 90, a contradiction. Thus, when point is not on line l, there is a unique line through which is perpendicular to line l. Line l We next assume that point is on line l. Since the point is on line l, then, by the ngle onstruction ostulate, in each half plane bounded by line l, there is one and only one ray from point forming an angle of measure 90. y the "djacent Supplementary ngles" Theorem (onverse of SMSG ostulate 14), the rays in the two half-planes are opposite rays that form the unique line through perpendicular to line l. Q l

Proving Lines Parallel

Proving Lines Parallel Proving Lines Parallel Proving Triangles ongruent 1 Proving Triangles ongruent We know that the opposite sides of a parallelogram are congruent. What about the converse? If we had a quadrilateral whose

More information

The angle measure at for example the vertex A is denoted by m A, or m BAC.

The angle measure at for example the vertex A is denoted by m A, or m BAC. MT 200 ourse notes on Geometry 5 2. Triangles and congruence of triangles 2.1. asic measurements. Three distinct lines, a, b and c, no two of which are parallel, form a triangle. That is, they divide the

More information

Saccheri Quadrilaterals

Saccheri Quadrilaterals Saccheri Quadrilaterals efinition: Let be any line segment, and erect two perpendiculars at the endpoints and. ark off points and on these perpendiculars so that and lie on the same side of the line, and

More information

Lesson 1.9.1: Proving the Interior Angle Sum Theorem Warm-Up 1.9.1

Lesson 1.9.1: Proving the Interior Angle Sum Theorem Warm-Up 1.9.1 NME: SIMILRITY, CONGRUENCE, ND PROOFS Lesson 9: Proving Theorems bout Triangles Lesson 1.9.1: Proving the Interior ngle Sum Theorem Warm-Up 1.9.1 When a beam of light is reflected from a flat surface,

More information

There are three ways to classify triangles based on sides

There are three ways to classify triangles based on sides Unit 4 Notes: Triangles 4-1 Triangle ngle-sum Theorem ngle review, label each angle with the correct classification: Triangle a polygon with three sides. There are two ways to classify triangles: by angles

More information

Geometry Definitions, Postulates, and Theorems. Chapter 4: Congruent Triangles. Section 4.1: Apply Triangle Sum Properties

Geometry Definitions, Postulates, and Theorems. Chapter 4: Congruent Triangles. Section 4.1: Apply Triangle Sum Properties Geometry efinitions, Postulates, and Theorems Key hapter 4: ongruent Triangles Section 4.1: pply Triangle Sum Properties Standards: 12.0 Students find and use measures of sides and of interior and exterior

More information

Hyperbolic Geometry 8.2 Basic Theorems of Hyperbolic Geometry

Hyperbolic Geometry 8.2 Basic Theorems of Hyperbolic Geometry Hyperbolic Geometry 8.2 asic Theorems of Hyperbolic Geometry In these notes we explore the consequences of accepting the Hyperbolic Parallel Postulate: Given a line l and a point P not on l, there is more

More information

3. (9x + 9) x 45 5x. 5. (7x + 6)

3. (9x + 9) x 45 5x. 5. (7x + 6) 5 hapter eview 5.1 ngles of riangles (pp. 231 238) ynamic Solutions available at igideasath.com lassify the triangle by its sides and by measuring its angles. he triangle does not have any congruent sides,

More information

Geometry Tutor Worksheet 4 Intersecting Lines

Geometry Tutor Worksheet 4 Intersecting Lines Geometry Tutor Worksheet 4 Intersecting Lines 1 Geometry Tutor - Worksheet 4 Intersecting Lines 1. What is the measure of the angle that is formed when two perpendicular lines intersect? 2. What is the

More information

The side that is opposite the vertex angle is the base of the isosceles triangle.

The side that is opposite the vertex angle is the base of the isosceles triangle. Unit 5, Lesson 6. Proving Theorems about Triangles Isosceles triangles can be seen throughout our daily lives in structures, supports, architectural details, and even bicycle frames. Isosceles triangles

More information

GEOMETRY R Unit 2: Angles and Parallel Lines

GEOMETRY R Unit 2: Angles and Parallel Lines GEOMETRY R Unit 2: Angles and Parallel Lines Day Classwork Homework Friday 9/15 Unit 1 Test Monday 9/18 Tuesday 9/19 Angle Relationships HW 2.1 Angle Relationships with Transversals HW 2.2 Wednesday 9/20

More information

You try: What is the definition of an angle bisector? You try: You try: is the bisector of ABC. BD is the bisector of ABC. = /4.MD.

You try: What is the definition of an angle bisector? You try: You try: is the bisector of ABC. BD is the bisector of ABC. = /4.MD. US Geometry 1 What is the definition of a midpoint? midpoint of a line segment is the point that bisects the line segment. That is, M is the midpoint of if M M. 1 What is the definition of an angle bisector?

More information

Proving Theorems about Lines and Angles

Proving Theorems about Lines and Angles Proving Theorems about Lines and Angles Angle Vocabulary Complementary- two angles whose sum is 90 degrees. Supplementary- two angles whose sum is 180 degrees. Congruent angles- two or more angles with

More information

Geometry Unit 4a - Notes Triangle Relationships

Geometry Unit 4a - Notes Triangle Relationships Geometry Unit 4a - Notes Triangle Relationships This unit is broken into two parts, 4a & 4b. test should be given following each part. Triangle - a figure formed by three segments joining three noncollinear

More information

Geo Final Review 2014

Geo Final Review 2014 Period: ate: Geo Final Review 2014 Multiple hoice Identify the choice that best completes the statement or answers the question. 1. n angle measures 2 degrees more than 3 times its complement. Find the

More information

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles.

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles. Geometry Definitions, Postulates, and Theorems Chapter : Parallel and Perpendicular Lines Section.1: Identify Pairs of Lines and Angles Standards: Prepare for 7.0 Students prove and use theorems involving

More information

What could be the name of the plane represented by the top of the box?

What could be the name of the plane represented by the top of the box? hapter 02 Test Name: ate: 1 Use the figure below. What could be the name of the plane represented by the top of the box? E F I 2 Use the figure below. re points,, and E collinear or noncollinear? noncollinear

More information

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false. Chapter 1 Line and Angle Relationships 1.1 Sets, Statements and Reasoning Definitions 1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

More information

POTENTIAL REASONS: Definition of Congruence:

POTENTIAL REASONS: Definition of Congruence: Sec 1.6 CC Geometry Triangle Proofs Name: POTENTIAL REASONS: Definition of Congruence: Having the exact same size and shape and there by having the exact same measures. Definition of Midpoint: The point

More information

theorems & postulates & stuff (mr. ko)

theorems & postulates & stuff (mr. ko) theorems & postulates & stuff (mr. ko) postulates 1 ruler postulate The points on a line can be matched one to one with the real numbers. The real number that corresponds to a point is the coordinate of

More information

B M. and Quad Quad MNOP

B M.  and Quad Quad MNOP hapter 7 ongruence Postulates &Theorems -Δ s In math, the word congruent is used to describe objects that have the same size and shape. When you traced things when you were a little kid, you were using

More information

4-2 Triangle Congruence Conditions. Congruent Triangles - C F. and

4-2 Triangle Congruence Conditions. Congruent Triangles - C F. and 4-2 Triangle ongruence onditions ongruent Triangles -,, ª is congruent to ª (ª ª) under a correspondence of parts if and only if 1) all three pairs of corresponding angles are congruent, and 2) all three

More information

Chapter 1. Euclid s Elements, Book I (constructions)

Chapter 1. Euclid s Elements, Book I (constructions) hapter 1 uclid s lements, ook I (constructions) 102 uclid s lements, ook I (constructions) 1.1 The use of ruler and compass uclid s lements can be read as a book on how to construct certain geometric figures

More information

GEOMETRY. PARALLEL LINES Theorems Theorem 1: If a pair of parallel lines is cut by a transversal, then corresponding angles are equal.

GEOMETRY. PARALLEL LINES Theorems Theorem 1: If a pair of parallel lines is cut by a transversal, then corresponding angles are equal. GOMTRY RLLL LINS Theorems Theorem 1: If a pair of parallel lines is cut by a transversal, then corresponding angles are equal. Theorem 2: If a pair of parallel lines is cut by a transversal, then the alternate

More information

Unit 10 Circles 10-1 Properties of Circles Circle - the set of all points equidistant from the center of a circle. Chord - A line segment with

Unit 10 Circles 10-1 Properties of Circles Circle - the set of all points equidistant from the center of a circle. Chord - A line segment with Unit 10 Circles 10-1 Properties of Circles Circle - the set of all points equidistant from the center of a circle. Chord - A line segment with endpoints on the circle. Diameter - A chord which passes through

More information

Mth 97 Winter 2013 Sections 4.3 and 4.4

Mth 97 Winter 2013 Sections 4.3 and 4.4 Section 4.3 Problem Solving Using Triangle Congruence Isosceles Triangles Theorem 4.5 In an isosceles triangle, the angles opposite the congruent sides are congruent. A Given: ABC with AB AC Prove: B C

More information

H.Geometry Chapter 4 Definition Sheet

H.Geometry Chapter 4 Definition Sheet Section 4.1 Triangle Sum Theorem The sum of the measure of the angles in a triangle is Conclusions Justification Third Angle Theorem If two angles in one triangle are to two angles in another triangle,

More information

Stop signs would be examples of congruent shapes. Since a stop sign has 8 sides, they would be congruent octagons.

Stop signs would be examples of congruent shapes. Since a stop sign has 8 sides, they would be congruent octagons. hapter 5 ongruence Theorems -! s In math, the word congruent is used to describe objects that have the same size and shape. When you traced things when you were a little kid, you were using congruence.

More information

Nov 9-12:30 PM. Math Practices. Triangles. Triangles Similar Triangles. Throughout this unit, the Standards for Mathematical Practice are used.

Nov 9-12:30 PM. Math Practices. Triangles. Triangles Similar Triangles. Throughout this unit, the Standards for Mathematical Practice are used. Triangles Triangles Similar Triangles Nov 9-12:30 PM Throughout this unit, the Standards for Mathematical Practice are used. MP1: Making sense of problems & persevere in solving them. MP2: Reason abstractly

More information

Geometry/Trigonometry Unit 5: Polygon Notes Period:

Geometry/Trigonometry Unit 5: Polygon Notes Period: Geometry/Trigonometry Unit 5: Polygon Notes Name: Date: Period: # (1) Page 270 271 #8 14 Even, #15 20, #27-32 (2) Page 276 1 10, #11 25 Odd (3) Page 276 277 #12 30 Even (4) Page 283 #1-14 All (5) Page

More information

History of Mathematics

History of Mathematics History of Mathematics Paul Yiu Department of Mathematics Florida tlantic University Spring 2014 1: Pythagoras Theorem in Euclid s Elements Euclid s Elements n ancient Greek mathematical classic compiled

More information

Warm-Up Based on upper. Based on lower boundary of 1. m 1 m 2 m 3 m What do you notice about these angles?

Warm-Up Based on upper. Based on lower boundary of 1. m 1 m 2 m 3 m What do you notice about these angles? Warm-Up 1.8.1 Metalbro is a construction company involved with building a new skyscraper in ubai. The diagram below is a rough sketch of a crane that Metalbro workers are using to build the skyscraper.

More information

Parallel Lines: Two lines in the same plane are parallel if they do not intersect or are the same.

Parallel Lines: Two lines in the same plane are parallel if they do not intersect or are the same. Section 2.3: Lines and Angles Plane: infinitely large flat surface Line: extends infinitely in two directions Collinear Points: points that lie on the same line. Parallel Lines: Two lines in the same plane

More information

describes a ray whose endpoint is point A. TRUE g. A plane has no thickness. TRUE h. Symbols XY and YX describe the same line. TRUE i.

describes a ray whose endpoint is point A. TRUE g. A plane has no thickness. TRUE h. Symbols XY and YX describe the same line. TRUE i. Geometry Ms. H. Ray, 010 NSWRS TO TH RVIW FOR TH GOMTRY MITRM XM. 1. True or False? e prepared to explain your answer. a. efinitions and theorems are very important in mathematics but every mathematical

More information

2.1 Angles, Lines and Parallels & 2.2 Congruent Triangles and Pasch s Axiom

2.1 Angles, Lines and Parallels & 2.2 Congruent Triangles and Pasch s Axiom 2 Euclidean Geometry In the previous section we gave a sketch overview of the early parts of Euclid s Elements. While the Elements set the standard for the modern axiomatic approach to mathematics, it

More information

Proof: Given ABC XYZ, with A X, B Y, and Our strategy is to show C Z and apply ASA. So, WLOG, we assume for contradiction that m C > m Z.

Proof: Given ABC XYZ, with A X, B Y, and Our strategy is to show C Z and apply ASA. So, WLOG, we assume for contradiction that m C > m Z. Theorem: AAS Congruence. If under some correspondence, two angles and a side opposite one of the angles of one triangle are congruent, respectively, to the corresponding two angles and side of a second

More information

Lesson 13.1 The Premises of Geometry

Lesson 13.1 The Premises of Geometry Lesson 13.1 The remises of Geometry 1. rovide the missing property of equality or arithmetic as a reason for each step to solve the equation. Solve for x: 5(x 4) 2x 17 Solution: 5(x 4) 2x 17 a. 5x 20 2x

More information

a + b + c = 180 Example: 1. a = 2. b = 3. a = 4.1 Interior angles of a triangle. a = 180 So a = 1 3. Find the missing measurements.

a + b + c = 180 Example: 1. a = 2. b = 3. a = 4.1 Interior angles of a triangle. a = 180 So a = 1 3. Find the missing measurements. 4.1 Interior angles of a triangle. b a a + b + c = 180 c Example: a 70 35 1 3. Find the missing measurements. a + 70 + 35 = 180 So a = 75 1. a = 2. b = a 3 4 6 6 1 4 b 3. a = 135 Triangle Sum onjecture:

More information

Classify each triangle by its side lengths as equilateral, isosceles, or scalene. (Note: Give two classifications in Exercise 13.)

Classify each triangle by its side lengths as equilateral, isosceles, or scalene. (Note: Give two classifications in Exercise 13.) hapter 4 ongruent Triangles 4.2 and 4.9 lassifying Triangles and Isosceles, and quilateral Triangles. Match the letter of the figure to the correct vocabulary word in xercises 1 4. 1. right triangle 2.

More information

Basic Euclidean Geometry

Basic Euclidean Geometry hapter 1 asic Euclidean Geometry This chapter is not intended to be a complete survey of basic Euclidean Geometry, but rather a review for those who have previously taken a geometry course For a definitive

More information

Segment Addition Postulate: If B is BETWEEN A and C, then AB + BC = AC. If AB + BC = AC, then B is BETWEEN A and C.

Segment Addition Postulate: If B is BETWEEN A and C, then AB + BC = AC. If AB + BC = AC, then B is BETWEEN A and C. Ruler Postulate: The points on a line can be matched one to one with the REAL numbers. The REAL number that corresponds to a point is the COORDINATE of the point. The DISTANCE between points A and B, written

More information

Geometry Notes - Unit 4 Congruence

Geometry Notes - Unit 4 Congruence Geometry Notes - Unit 4 ongruence Triangle is a figure formed by three noncollinear points. lassification of Triangles by Sides Equilateral triangle is a triangle with three congruent sides. Isosceles

More information

When two (or more) parallel lines are cut by a transversal, the following angle relationships are true:

When two (or more) parallel lines are cut by a transversal, the following angle relationships are true: Lesson 8: Parallel Lines Two coplanar lines are said to be parallel if they never intersect. or any given point on the first line, its distance to the second line is equal to the distance between any other

More information

Wahkiakum School District, Pre-EOC Geometry 2012

Wahkiakum School District, Pre-EOC Geometry 2012 Pre-EO ssesment Geometry #2 Wahkiakum School istrict GEOM Page 1 1. Seth was supposed to prove PQR by SS for his homework assignment. He wrote the following proof: Given PRQ, PQ, and QR, then PQR by SS.

More information

Properties of Triangles

Properties of Triangles Properties of Triangles Perpendiculars and isectors segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. point is equidistant from two points

More information

7.2 Isosceles and Equilateral Triangles

7.2 Isosceles and Equilateral Triangles Name lass Date 7.2 Isosceles and Equilateral Triangles Essential Question: What are the special relationships among angles and sides in isosceles and equilateral triangles? Resource Locker Explore G.6.D

More information

1. What is the sum of the measures of the angles in a triangle? Write the proof (Hint: it involves creating a parallel line.)

1. What is the sum of the measures of the angles in a triangle? Write the proof (Hint: it involves creating a parallel line.) riangle asics irst: Some basics you should already know. eometry 4.0 1. What is the sum of the measures of the angles in a triangle? Write the proof (Hint: it involves creating a parallel line.) 2. In

More information

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Polygon a closed plane figure with at least 3 sides that are segments -the sides do not intersect except at the vertices N-gon -

More information

If B is the If two angles are

If B is the If two angles are If If B is between A and C, then 1 2 If P is in the interior of RST, then If B is the If two angles are midpoint of AC, vertical, then then 3 4 If angles are adjacent, then If angles are a linear pair,

More information

Math-2. Lesson 7-4 Properties of Parallelograms And Isosceles Triangles

Math-2. Lesson 7-4 Properties of Parallelograms And Isosceles Triangles Math-2 Lesson 7-4 Properties of Parallelograms nd Isosceles Triangles What sequence of angles would you link to prove m4 m9 3 1 4 2 13 14 16 15 lternate Interior Corresponding 8 5 7 6 9 10 12 11 What sequence

More information

MST Topics in History of Mathematics

MST Topics in History of Mathematics MST Topics in History of Mathematics Euclid s Elements and the Works of rchimedes Paul Yiu Department of Mathematics Florida tlantic University Summer 2014 June 30 2.6 ngle properties 11 2.6 ngle properties

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name ate hapter 5 Maintaining Mathematical Proficiency Find the coordinates of the midpoint M of the segment with the given endpoints. Then find the distance between the two points. 1. ( 3, 1 ) and ( 5,

More information

Module 2 Properties of Quadrilaterals

Module 2 Properties of Quadrilaterals Module 2 Properties of Quadrilaterals What this module is about This module is about the properties of the diagonals of special quadrilaterals. The special quadrilaterals are rectangles, square, and rhombus.

More information

Ch 4 Review Problems pp #7 36, 48,51,52 due MONDAY 12/12

Ch 4 Review Problems pp #7 36, 48,51,52 due MONDAY 12/12 Geometry 4.4 4.6 ongruence Proofs ecember 08, 2016 h 4 Review Problems pp.176 180 #7 36, 48,51,52 due MONY 12/12 h 5 Review Problems pp. 206 209 #15 50 h 6 Review Problems pp. 250 254 #9 19, 33 53 4.2

More information

BD separates ABC into two parts ( 1 and 2 ),then the measure

BD separates ABC into two parts ( 1 and 2 ),then the measure M 1312 section 3.5 1 Inequalities in a Triangle Definition: Let a and b be real numbers a > b if and only if there is a positive number p for which a = b + p Example 1: 7 > 2 and 5 is a positive number

More information

Slide 1 / 343 Slide 2 / 343

Slide 1 / 343 Slide 2 / 343 Slide 1 / 343 Slide 2 / 343 Geometry Quadrilaterals 2015-10-27 www.njctl.org Slide 3 / 343 Table of ontents Polygons Properties of Parallelograms Proving Quadrilaterals are Parallelograms Rhombi, Rectangles

More information

(Current Re nweb Grade)x.90 + ( finalexam grade) x.10 = semester grade

(Current Re nweb Grade)x.90 + ( finalexam grade) x.10 = semester grade 2//2 5:7 PM Name ate Period This is your semester exam which is worth 0% of your semester grade. You can determine grade what-ifs by using the equation below. (urrent Re nweb Grade)x.90 + ( finalexam grade)

More information

Angle Unit Definitions

Angle Unit Definitions ngle Unit Definitions Name lock Date Term Definition Notes Sketch D djacent ngles Two coplanar angles with a coon side, a coon vertex, and no coon interior points. Must be named with 3 letters OR numbers

More information

Chapter 1-2 Points, Lines, and Planes

Chapter 1-2 Points, Lines, and Planes Chapter 1-2 Points, Lines, and Planes Undefined Terms: A point has no size but is often represented by a dot and usually named by a capital letter.. A A line extends in two directions without ending. Lines

More information

Example G1: Triangles with circumcenter on a median. Prove that if the circumcenter of a triangle lies on a median, the triangle either is isosceles

Example G1: Triangles with circumcenter on a median. Prove that if the circumcenter of a triangle lies on a median, the triangle either is isosceles 1 Example G1: Triangles with circumcenter on a median. Prove that if the circumcenter of a triangle lies on a median, the triangle either is isosceles or contains a right angle. D D 2 Solution to Example

More information

Geometry. Points, Lines, Planes & Angles. Part 2. Slide 1 / 185. Slide 2 / 185. Slide 3 / 185. Table of Contents

Geometry. Points, Lines, Planes & Angles. Part 2. Slide 1 / 185. Slide 2 / 185. Slide 3 / 185. Table of Contents Slide 1 / 185 Slide 2 / 185 Geometry Points, Lines, Planes & ngles Part 2 2014-09-20 www.njctl.org Part 1 Introduction to Geometry Table of ontents Points and Lines Planes ongruence, istance and Length

More information

Let s use a more formal definition. An angle is the union of two rays with a common end point.

Let s use a more formal definition. An angle is the union of two rays with a common end point. hapter 2 ngles What s the secret for doing well in geometry? Knowing all the angles. s we did in the last chapter, we will introduce new terms and new notations, the building blocks for our success. gain,

More information

Geometry. Points, Lines, Planes & Angles. Part 2. Angles. Slide 1 / 185 Slide 2 / 185. Slide 4 / 185. Slide 3 / 185. Slide 5 / 185.

Geometry. Points, Lines, Planes & Angles. Part 2. Angles. Slide 1 / 185 Slide 2 / 185. Slide 4 / 185. Slide 3 / 185. Slide 5 / 185. Slide 1 / 185 Slide 2 / 185 eometry Points, ines, Planes & ngles Part 2 2014-09-20 www.njctl.org Part 1 Introduction to eometry Slide 3 / 185 Table of ontents Points and ines Planes ongruence, istance

More information

Skills Practice Skills Practice for Lesson 3.1

Skills Practice Skills Practice for Lesson 3.1 Skills Practice Skills Practice for Lesson.1 Name ate onstellations Naming, Measuring, and lassifying ngles Vocabulary Write the term from the box that best completes each statement. point line segment

More information

CHAPTER 2. Euclidean Geometry

CHAPTER 2. Euclidean Geometry HPTER 2 Euclidean Geometry In this chapter we start off with a very brief review of basic properties of angles, lines, and parallels. When presenting such material, one has to make a choice. One can present

More information

Geometry Cheat Sheet

Geometry Cheat Sheet Geometry Cheat Sheet Chapter 1 Postulate 1-6 Segment Addition Postulate - If three points A, B, and C are collinear and B is between A and C, then AB + BC = AC. Postulate 1-7 Angle Addition Postulate -

More information

GEOMETRY POSTULATES AND THEOREMS. Postulate 1: Through any two points, there is exactly one line.

GEOMETRY POSTULATES AND THEOREMS. Postulate 1: Through any two points, there is exactly one line. GEOMETRY POSTULATES AND THEOREMS Postulate 1: Through any two points, there is exactly one line. Postulate 2: The measure of any line segment is a unique positive number. The measure (or length) of AB

More information

Introduction to Geometry

Introduction to Geometry Introduction to Geometry Objective A: Problems involving lines and angles Three basic concepts of Geometry are: Points are a single place represented by a dot A Lines are a collection of points that continue

More information

- DF is a perpendicular bisector of AB in ABC D

- DF is a perpendicular bisector of AB in ABC D Geometry 5-1 isectors, Medians, and ltitudes. Special Segments 1. Perpendicular -the perpendicular bisector does what it sounds like, it is perpendicular to a segment and it bisects the segment. - DF is

More information

Whenever two figures have the same size and shape, they are called congruent. Triangles ABC and DEF are congruent. You can match up vertices like

Whenever two figures have the same size and shape, they are called congruent. Triangles ABC and DEF are congruent. You can match up vertices like Unit 1: orresponding Parts in a ongruence Section 1: ongruent Figures Whenever two figures have the same size and shape, they are called congruent. F D E Triangles and DEF are congruent. You can match

More information

Parallel Lines cut by a Transversal Notes, Page 1

Parallel Lines cut by a Transversal Notes, Page 1 Angle Relationships Review 2 When two lines intersect, they form four angles with one point in 1 3 common. 4 Angles that are opposite one another are VERTIAL ANGLES. Some people say instead that VERTIAL

More information

GEOMETRY is the study of points in space

GEOMETRY is the study of points in space CHAPTER 5 Logic and Geometry SECTION 5-1 Elements of Geometry GEOMETRY is the study of points in space POINT indicates a specific location and is represented by a dot and a letter R S T LINE is a set of

More information

Angle Unit Definition Packet

Angle Unit Definition Packet ngle Unit Definition Packet Name lock Date Term Definition Notes Sketch djacent ngles Two angles with a coon, a coon you normay name and, and no coon interior points. 3 4 3 and 4 Vertical ngles Two angles

More information

Ms. Nassif Mathematics. Guide. 2- Correction key. Example of an appropriate method. Area of the base. Volume of water

Ms. Nassif Mathematics. Guide. 2- Correction key. Example of an appropriate method. Area of the base. Volume of water 1 2 2- orrection key Example of an appropriate method rea of the base Volume of water 568416 - Mathematics Guide 2 ( 19 16)( 19 12)( 19 10) = 3591 59.924... m 19 = rea of the base height 59.924 2 = 119.84

More information

1 Basic concepts in Geometry

1 Basic concepts in Geometry 1 asic concepts in Geometry Let s study. oint, line and plane o-ordinates of a points and distance etweenness onditional statements roof id you recognise the adjacent picture? It is a picture of pyramids

More information

Line: It s a straight arrangement of points that extends indefinitely in opposite directions.

Line: It s a straight arrangement of points that extends indefinitely in opposite directions. More Terminology and Notation: Plane: It s an infinitely large flat surface. Line: It s a straight arrangement of points that extends indefinitely in opposite directions. ollinear Points: Points that lie

More information

Unit 2A: Angle Pairs and Transversal Notes

Unit 2A: Angle Pairs and Transversal Notes Unit 2A: Angle Pairs and Transversal Notes Day 1: Special angle pairs Day 2: Angle pairs formed by transversal through two nonparallel lines Day 3: Angle pairs formed by transversal through parallel lines

More information

Unit 4 Day by Day. Day Sections and Objectives Homework. Monday October and 4.9 Packet Pages 1-3

Unit 4 Day by Day. Day Sections and Objectives Homework. Monday October and 4.9 Packet Pages 1-3 Unit 4 ay by ay ay Sections and Objectives Homework Monday October 26 U41 4.2 and 4.9 Packet Pages 1-3 Types of triangles, isosceles and equilateral triangles Page 228 (23-31, 35-37) Page 288 (5-10, 17-20,

More information

Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms

Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms Unit 1 asics of Geometry Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms 1. Point has no dimension, geometrically looks

More information

Hyperbolic Geometry. Chaper Hyperbolic Geometry

Hyperbolic Geometry. Chaper Hyperbolic Geometry Hyperbolic Geometry Chaper 6.1-6.6 Hyperbolic Geometry Theorems Unique to Hyperbolic Geometry Now we assume Hyperbolic Parallel Postulate (HPP - p21) With the HPP we get for free all the negations of the

More information

Rectilinear Figures. Introduction

Rectilinear Figures. Introduction 2 Rectilinear Figures Introduction If we put the sharp tip of a pencil on a sheet of paper and move from one point to the other, without lifting the pencil, then the shapes so formed are called plane curves.

More information

Geometry Practice Questions Semester 1

Geometry Practice Questions Semester 1 Geometry Practice Questions Semester 1 MAFS.912.G-CO.1.1 - Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line,

More information

3.2 Homework. Which lines or segments are parallel? Justify your answer with a theorem or postulate.

3.2 Homework. Which lines or segments are parallel? Justify your answer with a theorem or postulate. 3.2 Homework Which lines or segments are parallel? Justify your answer with a theorem or postulate. 1.) 2.) 3.) ; K o maj N M m/ll = 180 Using the given information, which lines, if any, can you conclude

More information

Geometry. Slide 1 / 190 Slide 2 / 190. Slide 4 / 190. Slide 3 / 190. Slide 5 / 190. Slide 5 (Answer) / 190. Angles

Geometry. Slide 1 / 190 Slide 2 / 190. Slide 4 / 190. Slide 3 / 190. Slide 5 / 190. Slide 5 (Answer) / 190. Angles Slide 1 / 190 Slide 2 / 190 Geometry ngles 2015-10-21 www.njctl.org Slide 3 / 190 Table of ontents click on the topic to go to that section Slide 4 / 190 Table of ontents for Videos emonstrating onstructions

More information

CC Geometry H Do Now: Complete the following: Quadrilaterals

CC Geometry H Do Now: Complete the following: Quadrilaterals im #26: What are the properties of parallelograms? Geometry H o Now: omplete the following: Quadrilaterals Kite iagonals are perpendicular One pair of opposite angles is congruent Two distinct pairs of

More information

Unit 2: Triangles and Quadrilaterals Lesson 2.1 Apply Triangle Sum Properties Lesson 4.1 from textbook

Unit 2: Triangles and Quadrilaterals Lesson 2.1 Apply Triangle Sum Properties Lesson 4.1 from textbook Unit 2: Triangles and Quadrilaterals Lesson 2.1 pply Triangle Sum Properties Lesson 4.1 from textbook Objectives Classify angles by their sides as equilateral, isosceles, or scalene. Classify triangles

More information

Are You Ready? Conditional Statements

Are You Ready? Conditional Statements SKILL 88 onditional Statements Teaching Skill 88 Objective Determine whether a conditional statement is true, write its converse, and determine whether the converse is true. Review with students the different

More information

describes a ray whose endpoint is point A. g. A plane has no thickness. h. Symbols XY and YX describe the same line. i. Symbols AB

describes a ray whose endpoint is point A. g. A plane has no thickness. h. Symbols XY and YX describe the same line. i. Symbols AB RVIW FOR TH GOMTRY MITRM XM. 1. True or False? e prepared to explain your answer. a. efinitions and theorems are very important in mathematics but every mathematical system must contain some undefined

More information

An Approach to Geometry (stolen in part from Moise and Downs: Geometry)

An Approach to Geometry (stolen in part from Moise and Downs: Geometry) An Approach to Geometry (stolen in part from Moise and Downs: Geometry) Undefined terms: point, line, plane The rules, axioms, theorems, etc. of elementary algebra are assumed as prior knowledge, and apply

More information

Instructional Unit CPM Geometry Unit Content Objective Performance Indicator Performance Task State Standards Code:

Instructional Unit CPM Geometry Unit Content Objective Performance Indicator Performance Task State Standards Code: 306 Instructional Unit Area 1. Areas of Squares and The students will be -Find the amount of carpet 2.4.11 E Rectangles able to determine the needed to cover various plane 2. Areas of Parallelograms and

More information

Geometry Basics * Rory Adams Free High School Science Texts Project Mark Horner Heather Williams. 1 Introduction. 2 Points and Lines

Geometry Basics * Rory Adams Free High School Science Texts Project Mark Horner Heather Williams. 1 Introduction. 2 Points and Lines OpenStax-NX module: m31494 1 Geometry asics * Rory dams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStax-NX and licensed under the reative ommons ttribution

More information

(1) Page #1 24 all. (2) Page #7-21 odd, all. (3) Page #8 20 Even, Page 35 # (4) Page #1 8 all #13 23 odd

(1) Page #1 24 all. (2) Page #7-21 odd, all. (3) Page #8 20 Even, Page 35 # (4) Page #1 8 all #13 23 odd Geometry/Trigonometry Unit 1: Parallel Lines Notes Name: Date: Period: # (1) Page 25-26 #1 24 all (2) Page 33-34 #7-21 odd, 23 28 all (3) Page 33-34 #8 20 Even, Page 35 #40 44 (4) Page 60 61 #1 8 all #13

More information

Geometry. Points, Lines, Planes & Angles. Part 2. Slide 1 / 185. Slide 2 / 185. Slide 3 / 185. Table of Contents

Geometry. Points, Lines, Planes & Angles. Part 2. Slide 1 / 185. Slide 2 / 185. Slide 3 / 185. Table of Contents Slide 1 / 185 Slide 2 / 185 Geometry Points, Lines, Planes & ngles Part 2 2014-09-20 www.njctl.org Part 1 Introduction to Geometry Table of ontents Points and Lines Planes ongruence, istance and Length

More information

Geometry - Concepts 9-12 Congruent Triangles and Special Segments

Geometry - Concepts 9-12 Congruent Triangles and Special Segments Geometry - Concepts 9-12 Congruent Triangles and Special Segments Concept 9 Parallel Lines and Triangles (Section 3.5) ANGLE Classifications Acute: Obtuse: Right: SIDE Classifications Scalene: Isosceles:

More information

4 Triangles and Congruence

4 Triangles and Congruence www.ck12.org CHAPTER 4 Triangles and Congruence Chapter Outline 4.1 TRIANGLE SUMS 4.2 CONGRUENT FIGURES 4.3 TRIANGLE CONGRUENCE USING SSS AND SAS 4.4 TRIANGLE CONGRUENCE USING ASA, AAS, AND HL 4.5 ISOSCELES

More information

Basics of Geometry Unit 1 - Notes. Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes.

Basics of Geometry Unit 1 - Notes. Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. asics of Geometry Unit 1 - Notes Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms 1. Point has no dimension, geometrically

More information

Lesson 13.1 The Premises of Geometry

Lesson 13.1 The Premises of Geometry Lesson 13.1 he remises of Geometry Name eriod ate 1. rovide the missing property of equality or arithmetic as a reason for each step to solve the equation. olve for x: 5(x 4) 15 2x 17 olution: 5(x 4) 15

More information

Geometry. Slide 1 / 190. Slide 2 / 190. Slide 3 / 190. Angles. Table of Contents

Geometry. Slide 1 / 190. Slide 2 / 190. Slide 3 / 190. Angles. Table of Contents Slide 1 / 190 Slide 2 / 190 Geometry ngles 2015-10-21 www.njctl.org Table of ontents click on the topic to go to that section Slide 3 / 190 ngles ongruent ngles ngles & ngle ddition Postulate Protractors

More information

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles acute triangle a triangle with all acute angles adjacent angles angles that share a common side and vertex alternate exterior angles two non-adjacent exterior angles on opposite sides of the transversal;

More information

DO NOT LOSE THIS REVIEW! You will not be given another copy.

DO NOT LOSE THIS REVIEW! You will not be given another copy. Geometry Fall Semester Review 2011 Name: O NOT LOS THIS RVIW! You will not be given another copy. The answers will be posted on your teacher s website and on the classroom walls. lso, review the vocabulary

More information