Divide and Conquer Algorithms. Sathish Vadhiyar

Size: px
Start display at page:

Download "Divide and Conquer Algorithms. Sathish Vadhiyar"

Transcription

1 Divide and Conquer Algorithms Sathish Vadhiyar

2 Introduction One of the important parallel algorithm models The idea is to decompose the problem into parts solve the problem on smaller parts find the global result using individual results Works naturally and works well for parallelization

3 Introduction Various models Recursive sub-division: Has a division and computation phase, then a merge phase. E.g., merge sort Local compute merge/coordinate local compute. E.g., following algorithms

4 Recursive sub-division: Merge sort (you know already) Solving tri-diagonal systems

5 Parallel solution of linear system with special matrices Tridiagonal Matrices a1 h1 g2 a2 h2 x1 x2 b1 b2 g3 a3 h3 x3 b3 =.. gn an. xn. bn In general: g i x i-1 + a i x i + h i x i+1 = b i Substituting for x i-1 and x i+1 in terms of {x i-2, x i } and {x i, x i+2 } respectively: G i x i-2 + A i x i + H i x i+2 = B i

6 Tridiagonal Matrices A1 H1 A2 H2 G3 A3 H3 G4 A4 H4 x1 x2 x3.. = B1 B2 B3.. Gn-2 An xn Bn Reordering:

7 Tridiagonal Matrices A2 H2 x2 B2 G4 A4 H4 x4 B4 A1 H1 G3 A3 H3 Gn An. xn x1 x3. =. Bn B1 B3. Gn-3 An-1 xn-1 Bn-1

8 Tridiagonal Systems Thus the problem of size n has been split into even and odd equations of size n/2 This is odd even reduction For parallelization, each process can divide the problem into subproblems of smaller size and solve the subproblems This is divide-and-conquer technique

9 Tridiagonal Systems - Parallelization At each stage one representative process of the domain of processes is chosen This representative performs the odd-even reduction of problem i to two problems of size i/2 The problems are distributed to 2 representatives n n/ n/ n/

10 Local compute merge local compute Prefix Computations Sample sort

11 Parallel Algorithm: Prefix computations on arrays Array X partitioned into subarrays Local prefix sums of each subarray calculated in parallel Prefix sums of last elements of each subarray written to a separate array Y Prefix sums of elements in Y are calculated. Each prefix sum of Y is added to corresponding block of X Divide and conquer strategy

12 Example ,3,6 4,9,15 7,15,24 6,15,24 6,21,45 Passing last elements to a processor 1,3,6,10,15,21,28,36,45 Divide Local prefix sum Computing prefix sum of last elements on the processor Adding global prefix sum to local prefix sum in each processor

13 Lessons Learned.. Has local computations Global communication/coordination Back to local computations

14 Sample Sort

15 Parallel Sorting by Regular Sampling (PSRS) 1. Each processor sorts its local data 2. Each processor selects a sample vector of size p-1; kth element is (n/p * (k+1)/p) 3. Samples are sent and merge-sorted on processor 0 4. Processor 0 defines a vector of p-1 splitters starting from p/2 element; i.e., kth element is p(k+1/2); broadcasts to the other processors

16 Example

17 PSRS 5. Each processor sends local data to correct destination processors based on splitters; all-to-all exchange 6. Each processor merges the data chunk it receives

18 Step 5 Each processor finds where each of the p-1 pivots divides its list, using a binary search i.e., finds the index of the largest element number larger than the jth pivot At this point, each processor has p sorted sublists with the property that each element in sublist i is greater than each element in sublist i-1 in any processor

19 Step 6 Each processor i performs a p-way merge-sort to merge the ith sublists of p processors

20 Example Continued

21 Analysis The first phase of local sorting takes O((n/p)log(n/p)) 2 nd phase: Sorting p(p-1) elements in processor 0 O(p 2 logp 2 ) Each processor performs p-1 binary searches of n/p elements plog(n/p) 3 rd phase: Each processor merges (p-1) sublists Size of data merged by any processor is no more than 2n/p (proof) Complexity of this merge sort 2(n/p)logp Summing up: O((n/p)logn)

22 Analysis 1 st phase no communication 2 nd phase p(p-1) data collected; p-1 data broadcast 3 rd phase: Each processor sends (p-1) sublists to other p-1 processors; processors work on the sublists independently

23 Analysis Not scalable for large number of processors Merging of p(p-1) elements done on one processor; processors require 16 GB memory

24 Sorting by Random Sampling An interesting alternative; random sample is flexible in size and collected randomly from each processor s local data Advantage A random sampling can be retrieved before local sorting; overlap between sorting and splitter calculation

25 Sources/References On the versatility of parallel sorting by regular sampling. Li et al. Parallel Computing Parallel Sorting by regular sampling. Shi and Schaeffer. JPDC Highly scalable parallel sorting. Solomonic and Kale. IPDPS 2010.

Parallel Sorting. Sathish Vadhiyar

Parallel Sorting. Sathish Vadhiyar Parallel Sorting Sathish Vadhiyar Parallel Sorting Problem The input sequence of size N is distributed across P processors The output is such that elements in each processor P i is sorted elements in P

More information

We can use a max-heap to sort data.

We can use a max-heap to sort data. Sorting 7B N log N Sorts 1 Heap Sort We can use a max-heap to sort data. Convert an array to a max-heap. Remove the root from the heap and store it in its proper position in the same array. Repeat until

More information

Unit-2 Divide and conquer 2016

Unit-2 Divide and conquer 2016 2 Divide and conquer Overview, Structure of divide-and-conquer algorithms, binary search, quick sort, Strassen multiplication. 13% 05 Divide-and- conquer The Divide and Conquer Paradigm, is a method of

More information

Lecture 3: Sorting 1

Lecture 3: Sorting 1 Lecture 3: Sorting 1 Sorting Arranging an unordered collection of elements into monotonically increasing (or decreasing) order. S = a sequence of n elements in arbitrary order After sorting:

More information

Randomized Algorithms: Selection

Randomized Algorithms: Selection Randomized Algorithms: Selection CSE21 Winter 2017, Day 25 (B00), Day 16 (A00) March 15, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Selection Problem: WHAT Given list of distinct integers a 1, a 2,,

More information

Parallel quicksort algorithms with isoefficiency analysis. Parallel quicksort algorithmswith isoefficiency analysis p. 1

Parallel quicksort algorithms with isoefficiency analysis. Parallel quicksort algorithmswith isoefficiency analysis p. 1 Parallel quicksort algorithms with isoefficiency analysis Parallel quicksort algorithmswith isoefficiency analysis p. 1 Overview Sequential quicksort algorithm Three parallel quicksort algorithms Isoefficiency

More information

With regards to bitonic sorts, everything boils down to doing bitonic sorts efficiently.

With regards to bitonic sorts, everything boils down to doing bitonic sorts efficiently. Lesson 2 5 Distributed Memory Sorting Bitonic Sort The pseudo code for generating a bitonic sequence: 1. create two bitonic subsequences 2. Make one an increasing sequence 3. Make one into a decreasing

More information

Algorithms and Applications

Algorithms and Applications Algorithms and Applications 1 Areas done in textbook: Sorting Algorithms Numerical Algorithms Image Processing Searching and Optimization 2 Chapter 10 Sorting Algorithms - rearranging a list of numbers

More information

John Mellor-Crummey Department of Computer Science Rice University

John Mellor-Crummey Department of Computer Science Rice University Parallel Sorting John Mellor-Crummey Department of Computer Science Rice University johnmc@rice.edu COMP 422/534 Lecture 23 6 April 2017 Topics for Today Introduction Sorting networks and Batcher s bitonic

More information

Introduction to Parallel Computing

Introduction to Parallel Computing Introduction to Parallel Computing George Karypis Sorting Outline Background Sorting Networks Quicksort Bucket-Sort & Sample-Sort Background Input Specification Each processor has n/p elements A ordering

More information

Lesson 1 4. Prefix Sum Definitions. Scans. Parallel Scans. A Naive Parallel Scans

Lesson 1 4. Prefix Sum Definitions. Scans. Parallel Scans. A Naive Parallel Scans Lesson 1 4 Prefix Sum Definitions Prefix sum given an array...the prefix sum is the sum of all the elements in the array from the beginning to the position, including the value at the position. The sequential

More information

Highly Scalable Parallel Sorting. Edgar Solomonik and Laxmikant Kale University of Illinois at Urbana-Champaign April 20, 2010

Highly Scalable Parallel Sorting. Edgar Solomonik and Laxmikant Kale University of Illinois at Urbana-Champaign April 20, 2010 Highly Scalable Parallel Sorting Edgar Solomonik and Laxmikant Kale University of Illinois at Urbana-Champaign April 20, 2010 1 Outline Parallel sorting background Histogram Sort overview Histogram Sort

More information

Data Structures and Algorithms CMPSC 465

Data Structures and Algorithms CMPSC 465 Data Structures and Algorithms CMPSC 465 LECTURES 7-8 More Divide and Conquer Multiplication Adam Smith S. Raskhodnikova and A. Smith; based on slides by E. Demaine and C. Leiserson John McCarthy (1927

More information

Lecture 8 Parallel Algorithms II

Lecture 8 Parallel Algorithms II Lecture 8 Parallel Algorithms II Dr. Wilson Rivera ICOM 6025: High Performance Computing Electrical and Computer Engineering Department University of Puerto Rico Original slides from Introduction to Parallel

More information

Dense Matrix Algorithms

Dense Matrix Algorithms Dense Matrix Algorithms Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text Introduction to Parallel Computing, Addison Wesley, 2003. Topic Overview Matrix-Vector Multiplication

More information

Fundamental mathematical techniques reviewed: Mathematical induction Recursion. Typically taught in courses such as Calculus and Discrete Mathematics.

Fundamental mathematical techniques reviewed: Mathematical induction Recursion. Typically taught in courses such as Calculus and Discrete Mathematics. Fundamental mathematical techniques reviewed: Mathematical induction Recursion Typically taught in courses such as Calculus and Discrete Mathematics. Techniques introduced: Divide-and-Conquer Algorithms

More information

Sorting Algorithms. Slides used during lecture of 8/11/2013 (D. Roose) Adapted from slides by

Sorting Algorithms. Slides used during lecture of 8/11/2013 (D. Roose) Adapted from slides by Sorting Algorithms Slides used during lecture of 8/11/2013 (D. Roose) Adapted from slides by Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text ``Introduction to Parallel

More information

Divide and Conquer. Algorithm Fall Semester

Divide and Conquer. Algorithm Fall Semester Divide and Conquer Algorithm 2014 Fall Semester Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide instance of problem into two or more smaller instances 2. Solve smaller instances

More information

Divide-and-Conquer. Dr. Yingwu Zhu

Divide-and-Conquer. Dr. Yingwu Zhu Divide-and-Conquer Dr. Yingwu Zhu Divide-and-Conquer The most-well known algorithm design technique: 1. Divide instance of problem into two or more smaller instances 2. Solve smaller instances independently

More information

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Part 2 1 3 Maximum Selection Problem : Given n numbers, x 1, x 2,, x

More information

Sorting Algorithms. Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

Sorting Algorithms. Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar Sorting Algorithms Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text ``Introduction to Parallel Computing'', Addison Wesley, 2003. Topic Overview Issues in Sorting on Parallel

More information

II (Sorting and) Order Statistics

II (Sorting and) Order Statistics II (Sorting and) Order Statistics Heapsort Quicksort Sorting in Linear Time Medians and Order Statistics 8 Sorting in Linear Time The sorting algorithms introduced thus far are comparison sorts Any comparison

More information

The divide-and-conquer paradigm involves three steps at each level of the recursion: Divide the problem into a number of subproblems.

The divide-and-conquer paradigm involves three steps at each level of the recursion: Divide the problem into a number of subproblems. 2.3 Designing algorithms There are many ways to design algorithms. Insertion sort uses an incremental approach: having sorted the subarray A[1 j - 1], we insert the single element A[j] into its proper

More information

7.3 Divide-and-Conquer Algorithm and Recurrence Relations

7.3 Divide-and-Conquer Algorithm and Recurrence Relations 73 Divide-and-Conquer Algorithm and Recurrence Relations Many recursive algorithms take a problem with a given input and divide it into one or more smaller problems This reduction is repeatedly applied

More information

Introduction to Parallel Computing Errata

Introduction to Parallel Computing Errata Introduction to Parallel Computing Errata John C. Kirk 27 November, 2004 Overview Book: Introduction to Parallel Computing, Second Edition, first printing (hardback) ISBN: 0-201-64865-2 Official book website:

More information

Plotting run-time graphically. Plotting run-time graphically. CS241 Algorithmics - week 1 review. Prefix Averages - Algorithm #1

Plotting run-time graphically. Plotting run-time graphically. CS241 Algorithmics - week 1 review. Prefix Averages - Algorithm #1 CS241 - week 1 review Special classes of algorithms: logarithmic: O(log n) linear: O(n) quadratic: O(n 2 ) polynomial: O(n k ), k 1 exponential: O(a n ), a > 1 Classifying algorithms is generally done

More information

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 6. Sorting Algorithms

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 6. Sorting Algorithms SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 6 6.0 Introduction Sorting algorithms used in computer science are often classified by: Computational complexity (worst, average and best behavior) of element

More information

UNIT-2. Problem of size n. Sub-problem 1 size n/2. Sub-problem 2 size n/2. Solution to the original problem

UNIT-2. Problem of size n. Sub-problem 1 size n/2. Sub-problem 2 size n/2. Solution to the original problem Divide-and-conquer method: Divide-and-conquer is probably the best known general algorithm design technique. The principle behind the Divide-and-conquer algorithm design technique is that it is easier

More information

CSC 447: Parallel Programming for Multi- Core and Cluster Systems

CSC 447: Parallel Programming for Multi- Core and Cluster Systems CSC 447: Parallel Programming for Multi- Core and Cluster Systems Parallel Sorting Algorithms Instructor: Haidar M. Harmanani Spring 2016 Topic Overview Issues in Sorting on Parallel Computers Sorting

More information

Parallel Computing: Parallel Algorithm Design Examples Jin, Hai

Parallel Computing: Parallel Algorithm Design Examples Jin, Hai Parallel Computing: Parallel Algorithm Design Examples Jin, Hai School of Computer Science and Technology Huazhong University of Science and Technology ! Given associative operator!! a 0! a 1! a 2!! a

More information

Data Structures and Algorithms CSE 465

Data Structures and Algorithms CSE 465 Data Structures and Algorithms CSE 465 LECTURE 4 More Divide and Conquer Binary Search Exponentiation Multiplication Sofya Raskhodnikova and Adam Smith Review questions How long does Merge Sort take on

More information

Lecture #2. 1 Overview. 2 Worst-Case Analysis vs. Average Case Analysis. 3 Divide-and-Conquer Design Paradigm. 4 Quicksort. 4.

Lecture #2. 1 Overview. 2 Worst-Case Analysis vs. Average Case Analysis. 3 Divide-and-Conquer Design Paradigm. 4 Quicksort. 4. COMPSCI 330: Design and Analysis of Algorithms 8/28/2014 Lecturer: Debmalya Panigrahi Lecture #2 Scribe: Yilun Zhou 1 Overview This lecture presents two sorting algorithms, quicksort and mergesort, that

More information

Sorting. CSE 143 Java. Insert for a Sorted List. Insertion Sort. Insertion Sort As A Card Game Operation. CSE143 Au

Sorting. CSE 143 Java. Insert for a Sorted List. Insertion Sort. Insertion Sort As A Card Game Operation. CSE143 Au CSE 43 Java Sorting Reading: Ch. 3 & Sec. 7.3 Sorting Binary search is a huge speedup over sequential search But requires the list be sorted Slight Problem: How do we get a sorted list? Maintain the list

More information

Sorting. CSC 143 Java. Insert for a Sorted List. Insertion Sort. Insertion Sort As A Card Game Operation CSC Picture

Sorting. CSC 143 Java. Insert for a Sorted List. Insertion Sort. Insertion Sort As A Card Game Operation CSC Picture CSC 43 Java Sorting Reading: Sec. 9.3 Sorting Binary search is a huge speedup over sequential search But requires the list be sorted Slight Problem: How do we get a sorted list? Maintain the list in sorted

More information

Lecture 2: Getting Started

Lecture 2: Getting Started Lecture 2: Getting Started Insertion Sort Our first algorithm is Insertion Sort Solves the sorting problem Input: A sequence of n numbers a 1, a 2,..., a n. Output: A permutation (reordering) a 1, a 2,...,

More information

Divide & Conquer Design Technique

Divide & Conquer Design Technique Divide & Conquer Design Technique Adnan YAZICI Dept. of Computer Engineering Middle East Technical Univ. Ankara - TURKEY 1 The Divide & Conquer strategy can be described in general terms as follows: A

More information

Sorting (Chapter 9) Alexandre David B2-206

Sorting (Chapter 9) Alexandre David B2-206 Sorting (Chapter 9) Alexandre David B2-206 Sorting Problem Arrange an unordered collection of elements into monotonically increasing (or decreasing) order. Let S = . Sort S into S =

More information

CSC 273 Data Structures

CSC 273 Data Structures CSC 273 Data Structures Lecture 6 - Faster Sorting Methods Merge Sort Divides an array into halves Sorts the two halves, Then merges them into one sorted array. The algorithm for merge sort is usually

More information

COMMUNICATION IN HYPERCUBES

COMMUNICATION IN HYPERCUBES PARALLEL AND DISTRIBUTED ALGORITHMS BY DEBDEEP MUKHOPADHYAY AND ABHISHEK SOMANI http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/palgo/index.htm COMMUNICATION IN HYPERCUBES 2 1 OVERVIEW Parallel Sum (Reduction)

More information

CS473 - Algorithms I

CS473 - Algorithms I CS473 - Algorithms I Lecture 4 The Divide-and-Conquer Design Paradigm View in slide-show mode 1 Reminder: Merge Sort Input array A sort this half sort this half Divide Conquer merge two sorted halves Combine

More information

For example, the system. 22 may be represented by the augmented matrix

For example, the system. 22 may be represented by the augmented matrix Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural of matrix) may be

More information

Algorithm classification

Algorithm classification Types of Algorithms Algorithm classification Algorithms that use a similar problem-solving approach can be grouped together We ll talk about a classification scheme for algorithms This classification scheme

More information

Sorting (Chapter 9) Alexandre David B2-206

Sorting (Chapter 9) Alexandre David B2-206 Sorting (Chapter 9) Alexandre David B2-206 1 Sorting Problem Arrange an unordered collection of elements into monotonically increasing (or decreasing) order. Let S = . Sort S into S =

More information

DATA STRUCTURES AND ALGORITHMS

DATA STRUCTURES AND ALGORITHMS DATA STRUCTURES AND ALGORITHMS Fast sorting algorithms Shellsort, Mergesort, Quicksort Summary of the previous lecture Why sorting is needed? Examples from everyday life What are the basic operations in

More information

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Computer Science & Engineering 423/823 Design and Analysis of Algorithms Computer Science & Engineering 423/823 Design and Analysis of s Lecture 01 Medians and s (Chapter 9) Stephen Scott (Adapted from Vinodchandran N. Variyam) 1 / 24 Spring 2010 Given an array A of n distinct

More information

Sorting Algorithms. - rearranging a list of numbers into increasing (or decreasing) order. Potential Speedup

Sorting Algorithms. - rearranging a list of numbers into increasing (or decreasing) order. Potential Speedup Sorting Algorithms - rearranging a list of numbers into increasing (or decreasing) order. Potential Speedup The worst-case time complexity of mergesort and the average time complexity of quicksort are

More information

DIVIDE & CONQUER. Problem of size n. Solution to sub problem 1

DIVIDE & CONQUER. Problem of size n. Solution to sub problem 1 DIVIDE & CONQUER Definition: Divide & conquer is a general algorithm design strategy with a general plan as follows: 1. DIVIDE: A problem s instance is divided into several smaller instances of the same

More information

CS2223: Algorithms Sorting Algorithms, Heap Sort, Linear-time sort, Median and Order Statistics

CS2223: Algorithms Sorting Algorithms, Heap Sort, Linear-time sort, Median and Order Statistics CS2223: Algorithms Sorting Algorithms, Heap Sort, Linear-time sort, Median and Order Statistics 1 Sorting 1.1 Problem Statement You are given a sequence of n numbers < a 1, a 2,..., a n >. You need to

More information

Comparison Sorts. Chapter 9.4, 12.1, 12.2

Comparison Sorts. Chapter 9.4, 12.1, 12.2 Comparison Sorts Chapter 9.4, 12.1, 12.2 Sorting We have seen the advantage of sorted data representations for a number of applications Sparse vectors Maps Dictionaries Here we consider the problem of

More information

having any value between and. For array element, the plot will have a dot at the intersection of and, subject to scaling constraints.

having any value between and. For array element, the plot will have a dot at the intersection of and, subject to scaling constraints. 02/10/2006 01:42 AM Class 7 From Wiki6962 Table of contents 1 Basic definitions 2 Bubble Sort 2.1 Observations 3 Quick Sort 3.1 The Partition Algorithm 3.2 Duplicate Keys 3.3 The Pivot element 3.4 Size

More information

Pseudo code of algorithms are to be read by.

Pseudo code of algorithms are to be read by. Cs502 Quiz No1 Complete Solved File Pseudo code of algorithms are to be read by. People RAM Computer Compiler Approach of solving geometric problems by sweeping a line across the plane is called sweep.

More information

4. Sorting and Order-Statistics

4. Sorting and Order-Statistics 4. Sorting and Order-Statistics 4. Sorting and Order-Statistics The sorting problem consists in the following : Input : a sequence of n elements (a 1, a 2,..., a n ). Output : a permutation (a 1, a 2,...,

More information

QuickSort

QuickSort QuickSort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 1 QuickSort QuickSort on an input sequence S with n elements consists of three steps: n n n Divide: partition S into two sequences S 1 and S 2 of about

More information

Advanced Algorithms and Data Structures

Advanced Algorithms and Data Structures Advanced Algorithms and Data Structures Prof. Tapio Elomaa Course Basics A new 7 credit unit course Replaces OHJ-2156 Analysis of Algorithms We take things a bit further than OHJ-2156 We will assume familiarity

More information

Lightweight MPI Communicators with Applications to

Lightweight MPI Communicators with Applications to Lightweight MPI Communicators with Applications to Michael Axtmann, Peter Sanders, Armin Wiebigke IPDPS May 22, 2018 KIT The Research University in the Helmholtz Association www.kit.edu Overview Communicators

More information

Chapter 1 Divide and Conquer Algorithm Theory WS 2014/15 Fabian Kuhn

Chapter 1 Divide and Conquer Algorithm Theory WS 2014/15 Fabian Kuhn Chapter 1 Divide and Conquer Algorithm Theory WS 2014/15 Fabian Kuhn Divide And Conquer Principle Important algorithm design method Examples from Informatik 2: Sorting: Mergesort, Quicksort Binary search

More information

The divide and conquer strategy has three basic parts. For a given problem of size n,

The divide and conquer strategy has three basic parts. For a given problem of size n, 1 Divide & Conquer One strategy for designing efficient algorithms is the divide and conquer approach, which is also called, more simply, a recursive approach. The analysis of recursive algorithms often

More information

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors 1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors on an EREW PRAM: See solution for the next problem. Omit the step where each processor sequentially computes the AND of

More information

SORTING AND SELECTION

SORTING AND SELECTION 2 < > 1 4 8 6 = 9 CHAPTER 12 SORTING AND SELECTION ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)

More information

CS 360 Exam 1 Fall 2014 Name. 1. Answer the following questions about each code fragment below. [8 points]

CS 360 Exam 1 Fall 2014 Name. 1. Answer the following questions about each code fragment below. [8 points] CS 360 Exam 1 Fall 2014 Name 1. Answer the following questions about each code fragment below. [8 points] for (v=1; v

More information

CSC630/CSC730 Parallel & Distributed Computing

CSC630/CSC730 Parallel & Distributed Computing CSC630/CSC730 Parallel & Distributed Computing Parallel Sorting Chapter 9 1 Contents General issues Sorting network Bitonic sort Bubble sort and its variants Odd-even transposition Quicksort Other Sorting

More information

CS 171: Introduction to Computer Science II. Quicksort

CS 171: Introduction to Computer Science II. Quicksort CS 171: Introduction to Computer Science II Quicksort Roadmap MergeSort Recursive Algorithm (top-down) Practical Improvements Non-recursive algorithm (bottom-up) Analysis QuickSort Algorithm Analysis Practical

More information

6/12/2013. Introduction to Algorithms (2 nd edition) Overview. The Sorting Problem. Chapter 2: Getting Started. by Cormen, Leiserson, Rivest & Stein

6/12/2013. Introduction to Algorithms (2 nd edition) Overview. The Sorting Problem. Chapter 2: Getting Started. by Cormen, Leiserson, Rivest & Stein Introduction to Algorithms (2 nd edition) by Cormen, Leiserson, Rivest & Stein Chapter 2: Getting Started (slides enhanced by N. Adlai A. DePano) Overview Aims to familiarize us with framework used throughout

More information

9/10/12. Outline. Part 5. Computational Complexity (2) Examples. (revisit) Properties of Growth-rate functions(1/3)

9/10/12. Outline. Part 5. Computational Complexity (2) Examples. (revisit) Properties of Growth-rate functions(1/3) Outline Part 5. Computational Complexity (2) Complexity of Algorithms Efficiency of Searching Algorithms Sorting Algorithms and Their Efficiencies CS 200 Algorithms and Data Structures 1 2 (revisit) Properties

More information

Quick Sort. CSE Data Structures May 15, 2002

Quick Sort. CSE Data Structures May 15, 2002 Quick Sort CSE 373 - Data Structures May 15, 2002 Readings and References Reading Section 7.7, Data Structures and Algorithm Analysis in C, Weiss Other References C LR 15-May-02 CSE 373 - Data Structures

More information

Homework Assignment #3. 1 (5 pts) Demonstrate how mergesort works when sorting the following list of numbers:

Homework Assignment #3. 1 (5 pts) Demonstrate how mergesort works when sorting the following list of numbers: CISC 4080 Computer Algorithms Spring, 2019 Homework Assignment #3 1 (5 pts) Demonstrate how mergesort works when sorting the following list of numbers: 6 1 4 2 3 8 7 5 2 Given the following array (list),

More information

Lecture 12 (Last): Parallel Algorithms for Solving a System of Linear Equations. Reference: Introduction to Parallel Computing Chapter 8.

Lecture 12 (Last): Parallel Algorithms for Solving a System of Linear Equations. Reference: Introduction to Parallel Computing Chapter 8. CZ4102 High Performance Computing Lecture 12 (Last): Parallel Algorithms for Solving a System of Linear Equations - Dr Tay Seng Chuan Reference: Introduction to Parallel Computing Chapter 8. 1 Topic Overview

More information

High Performance Computing Programming Paradigms and Scalability Part 6: Examples of Parallel Algorithms

High Performance Computing Programming Paradigms and Scalability Part 6: Examples of Parallel Algorithms High Performance Computing Programming Paradigms and Scalability Part 6: Examples of Parallel Algorithms PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering (CiE) Scientific Computing

More information

Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang

Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang Acknowledgement The set of slides have use materials from the following resources Slides for textbook by Dr. Y.

More information

Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. Acknowledgement. Outline

Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. Acknowledgement. Outline Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang Acknowledgement The set of slides have use materials from the following resources Slides for textbook by Dr. Y.

More information

Parallel Systems Course: Chapter VIII. Sorting Algorithms. Kumar Chapter 9. Jan Lemeire ETRO Dept. November Parallel Sorting

Parallel Systems Course: Chapter VIII. Sorting Algorithms. Kumar Chapter 9. Jan Lemeire ETRO Dept. November Parallel Sorting Parallel Systems Course: Chapter VIII Sorting Algorithms Kumar Chapter 9 Jan Lemeire ETRO Dept. November 2014 Overview 1. Parallel sort distributed memory 2. Parallel sort shared memory 3. Sorting Networks

More information

Numerical Algorithms

Numerical Algorithms Chapter 10 Slide 464 Numerical Algorithms Slide 465 Numerical Algorithms In textbook do: Matrix multiplication Solving a system of linear equations Slide 466 Matrices A Review An n m matrix Column a 0,0

More information

Merge Sort. Algorithm Analysis. November 15, 2017 Hassan Khosravi / Geoffrey Tien 1

Merge Sort. Algorithm Analysis. November 15, 2017 Hassan Khosravi / Geoffrey Tien 1 Merge Sort Algorithm Analysis November 15, 2017 Hassan Khosravi / Geoffrey Tien 1 The story thus far... CPSC 259 topics up to this point Priority queue Abstract data types Stack Queue Dictionary Tools

More information

Parallel Longest Increasing Subsequences in Scalable Time and Memory

Parallel Longest Increasing Subsequences in Scalable Time and Memory Parallel Longest Increasing Subsequences in Scalable Time and Memory Peter Krusche Alexander Tiskin Department of Computer Science University of Warwick, Coventry, CV4 7AL, UK PPAM 2009 What is in this

More information

would be included in is small: to be exact. Thus with probability1, the same partition n+1 n+1 would be produced regardless of whether p is in the inp

would be included in is small: to be exact. Thus with probability1, the same partition n+1 n+1 would be produced regardless of whether p is in the inp 1 Introduction 1.1 Parallel Randomized Algorihtms Using Sampling A fundamental strategy used in designing ecient algorithms is divide-and-conquer, where that input data is partitioned into several subproblems

More information

1 Probabilistic analysis and randomized algorithms

1 Probabilistic analysis and randomized algorithms 1 Probabilistic analysis and randomized algorithms Consider the problem of hiring an office assistant. We interview candidates on a rolling basis, and at any given point we want to hire the best candidate

More information

Lecture 1. Introduction / Insertion Sort / Merge Sort

Lecture 1. Introduction / Insertion Sort / Merge Sort Lecture 1. Introduction / Insertion Sort / Merge Sort T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3nd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo choo@skku.edu

More information

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS Department of Computer Science University of Babylon LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS By Faculty of Science for Women( SCIW), University of Babylon, Iraq Samaher@uobabylon.edu.iq

More information

Chapter 4. Divide-and-Conquer. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 4. Divide-and-Conquer. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 4 Divide-and-Conquer Copyright 2007 Pearson Addison-Wesley. All rights reserved. Divide-and-Conquer The most-well known algorithm design strategy: 2. Divide instance of problem into two or more

More information

7.3 A randomized version of quicksort

7.3 A randomized version of quicksort 7.3 A randomized version of quicksort 179 7.-6? Argue that for any constant 0< 1=, theprobabilityisapproximately1 that on a random input array, PARTITION produces a split more balanced than 1 to. 7.3 A

More information

Programming in Haskell Aug-Nov 2015

Programming in Haskell Aug-Nov 2015 Programming in Haskell Aug-Nov 2015 LECTURE 11 SEPTEMBER 10, 2015 S P SURESH CHENNAI MATHEMATICAL INSTITUTE Measuring efficiency Measuring efficiency Computation is reduction Application of definitions

More information

7. Tile That Courtyard, Please

7. Tile That Courtyard, Please 7. Tile That Courtyard, Please We shape our buildings; thereafter they shape us. Winston Churchill. Programming constructs and algorithmic paradigms covered in this puzzle: List comprehension basics. Recursive

More information

17/05/2018. Outline. Outline. Divide and Conquer. Control Abstraction for Divide &Conquer. Outline. Module 2: Divide and Conquer

17/05/2018. Outline. Outline. Divide and Conquer. Control Abstraction for Divide &Conquer. Outline. Module 2: Divide and Conquer Module 2: Divide and Conquer Divide and Conquer Control Abstraction for Divide &Conquer 1 Recurrence equation for Divide and Conquer: If the size of problem p is n and the sizes of the k sub problems are

More information

Lecture 19 Sorting Goodrich, Tamassia

Lecture 19 Sorting Goodrich, Tamassia Lecture 19 Sorting 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 2004 Goodrich, Tamassia Outline Review 3 simple sorting algorithms: 1. selection Sort (in previous course) 2. insertion Sort (in previous

More information

Quick-Sort. Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:

Quick-Sort. Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm: Presentation for use with the textbook Data Structures and Algorithms in Java, 6 th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 Quick-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9

More information

Chapter 3:- Divide and Conquer. Compiled By:- Sanjay Patel Assistant Professor, SVBIT.

Chapter 3:- Divide and Conquer. Compiled By:- Sanjay Patel Assistant Professor, SVBIT. Chapter 3:- Divide and Conquer Compiled By:- Assistant Professor, SVBIT. Outline Introduction Multiplying large Integers Problem Problem Solving using divide and conquer algorithm - Binary Search Sorting

More information

CS102 Sorting - Part 2

CS102 Sorting - Part 2 CS102 Sorting - Part 2 Prof Tejada 1 Types of Sorts Incremental Approach Bubble Sort, Selection Sort, Insertion Sort, etc. Work slowly toward solution one step at a time Generally iterative in nature Divide

More information

Parallel Systems Course: Chapter VIII. Sorting Algorithms. Kumar Chapter 9. Jan Lemeire ETRO Dept. Fall Parallel Sorting

Parallel Systems Course: Chapter VIII. Sorting Algorithms. Kumar Chapter 9. Jan Lemeire ETRO Dept. Fall Parallel Sorting Parallel Systems Course: Chapter VIII Sorting Algorithms Kumar Chapter 9 Jan Lemeire ETRO Dept. Fall 2017 Overview 1. Parallel sort distributed memory 2. Parallel sort shared memory 3. Sorting Networks

More information

Parallel Computing. Slides credit: M. Quinn book (chapter 3 slides), A Grama book (chapter 3 slides)

Parallel Computing. Slides credit: M. Quinn book (chapter 3 slides), A Grama book (chapter 3 slides) Parallel Computing 2012 Slides credit: M. Quinn book (chapter 3 slides), A Grama book (chapter 3 slides) Parallel Algorithm Design Outline Computational Model Design Methodology Partitioning Communication

More information

Multiple-choice (35 pt.)

Multiple-choice (35 pt.) CS 161 Practice Midterm I Summer 2018 Released: 7/21/18 Multiple-choice (35 pt.) 1. (2 pt.) Which of the following asymptotic bounds describe the function f(n) = n 3? The bounds do not necessarily need

More information

Unit Outline. Comparing Sorting Algorithms Heapsort Mergesort Quicksort More Comparisons Complexity of Sorting 2 / 33

Unit Outline. Comparing Sorting Algorithms Heapsort Mergesort Quicksort More Comparisons Complexity of Sorting 2 / 33 Unit #4: Sorting CPSC : Basic Algorithms and Data Structures Anthony Estey, Ed Knorr, and Mehrdad Oveisi 0W Unit Outline Comparing Sorting Algorithms Heapsort Mergesort Quicksort More Comparisons Complexity

More information

UNIT-2 DIVIDE & CONQUER

UNIT-2 DIVIDE & CONQUER Overview: Divide and Conquer Master theorem Master theorem based analysis for Binary Search Merge Sort Quick Sort Divide and Conquer UNIT-2 DIVIDE & CONQUER Basic Idea: 1. Decompose problems into sub instances.

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms Chapter 3 Dense Linear Systems Section 3.3 Triangular Linear Systems Michael T. Heath and Edgar Solomonik Department of Computer Science University of Illinois at Urbana-Champaign

More information

Divide and Conquer Algorithms

Divide and Conquer Algorithms Divide and Conquer Algorithms T. M. Murali February 19, 2009 Divide and Conquer Break up a problem into several parts. Solve each part recursively. Solve base cases by brute force. Efficiently combine

More information

University of the Western Cape Department of Computer Science

University of the Western Cape Department of Computer Science University of the Western Cape Department of Computer Science Algorithms and Complexity CSC212 Paper II Final Examination 13 November 2015 Time: 90 Minutes. Marks: 100. UWC number Surname, first name Mark

More information

CS Elementary Graph Algorithms & Transform-and-Conquer

CS Elementary Graph Algorithms & Transform-and-Conquer CS483-10 Elementary Graph Algorithms & Transform-and-Conquer Outline Instructor: Fei Li Room 443 ST II Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments Depth-first Search cont Topological

More information

Problem Strategies. 320 Greedy Strategies 6

Problem Strategies. 320 Greedy Strategies 6 Problem Strategies Weighted interval scheduling: 2 subproblems (include the interval or don t) Have to check out all the possibilities in either case, so lots of subproblem overlap dynamic programming:

More information

BM267 - Introduction to Data Structures

BM267 - Introduction to Data Structures BM267 - Introduction to Data Structures 7. Quicksort Ankara University Computer Engineering Department Bulent Tugrul Bm 267 1 Quicksort Quicksort uses a divide-and-conquer strategy A recursive approach

More information

Lecture 5: Sorting Part A

Lecture 5: Sorting Part A Lecture 5: Sorting Part A Heapsort Running time O(n lg n), like merge sort Sorts in place (as insertion sort), only constant number of array elements are stored outside the input array at any time Combines

More information

CSC Design and Analysis of Algorithms

CSC Design and Analysis of Algorithms CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conquer Algorithm Design Technique Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information