Machine Learning nearest neighbors classification. Luigi Cerulo Department of Science and Technology University of Sannio

Size: px
Start display at page:

Download "Machine Learning nearest neighbors classification. Luigi Cerulo Department of Science and Technology University of Sannio"

Transcription

1 Machine Learning nearest neighbors classification Luigi Cerulo Department of Science and Technology University of Sannio

2 Nearest Neighbors Classification The idea is based on the hypothesis that things that are alike are likely to have properties that are alike. We can use this principle to classify data by placing it in the category with the most similar, or "nearest" neighbors. birds of a feather flock together

3 Success applications Computer vision applications, including optical character recognition and facial recognition in both still images and video. Predicting whether a person enjoys a movie which he/she has been recommended (as in the Netflix challenge). Identifying patterns in genetic data, for use in detecting specific proteins or diseases.

4 knn algorithm Example dataset Features Example ingredient sweetness crunchiness Class food type apple 10 9 fruit bacon 1 4 protein banana 10 1 fruit carrot 7 10 vegetable celery 3 10 vegetable cheese 1 1 protein

5 knn algorithm Example dataset Features Example ingredient sweetness crunchiness Class food type apple 10 9 fruit bacon 1 4 protein banana 10 1 fruit carrot 7 10 vegetable celery 3 10 vegetable cheese 1 1 protein

6 knn algorithm Example dataset Features Example ingredient sweetness crunchiness Class food type apple 10 9 fruit bacon 1 4 protein banana 10 1 fruit carrot 7 10 vegetable celery 3 10 vegetable cheese 1 1 protein

7 knn algorithm Example dataset Features Example ingredient sweetness crunchiness Class food type apple 10 9 fruit bacon 1 4 protein banana 10 1 fruit carrot 7 10 vegetable celery 3 10 vegetable cheese 1 1 protein

8 Calculating distance Locating the tomato's nearest neighbors requires a distance function, or a formula that measures the similarity between two instances.

9 Calculating distance Locating the tomato's nearest neighbors requires a distance function, or a formula that measures the similarity between two instances.

10 Calculating distance Mathematically a distance is a function 0 means more similar more than zero means less similar D :(X, Y )! R It has some properties: Z D(X, Y )=D(Y,X) D(X, X) =0 X D(X, Y ) apple D(X, Z)+D(Z, Y ) Y

11 The most famous distance Euclidean distance 2-dimension (q 1,q 2 ) D(p, q) = p (p 1 q 1 ) 2 +(p 2 q 2 ) 2 (p 1,p 2 ) N-dimension D(p, q) = p (p 1 q 1 ) 2 +(p 2 q 2 ) 2 + +(p n q n ) 2

12 Manhattan distance Euclidean distance 2-dimension (q 1,q 2 ) D(p, q) = p 1 q 1 + p 2 q 2 (p 1,p 2 ) N-dimension D(p, q) = p 1 q 1 + p 2 q p n q n

13 Other useful distance measures Minkowski distance Chebyshev distance Hamming distance Mahalanobis distance

14 Calculating euclidean distance between tomato and green bean D(tomato, greenbean) = p (6 3) 2 +(4 7) 2 =4.2 sweetness crunchiness tomato 6 4 green bean

15 How to classify tomato? To classify the tomato as a vegetable, protein, or fruit, we'll begin by calculating the distance between tomato and all other examples in the training set

16 How to classify tomato? To classify the tomato as a vegetable, protein, or fruit, we'll begin by assigning the tomato, the food type of its single nearest neighbor. This is called 1NN classification as k =

17 How to classify tomato? To classify the tomato as a vegetable, protein, or fruit, we'll begin by assigning the tomato, the food type of its single nearest neighbor. This is called 1NN classification as k = 1 With k = 3 a vote among the three nearest neighbors orange, 1.4 grape, and nuts, is performed 3 6

18 Choosing an appropriate k Usually k is an odd number so to avoid a tie vote. Deciding how many neighbors to use for knn determines how well the model will generalize to future data. The balance between overfitting and underfitting the training data is a problem known as the bias-variance tradeoff. Choosing a large k reduces the impact or variance caused by noisy data, but can bias the learner such that it runs the risk of ignoring small, but important patterns.

19 Choosing an appropriate k Suppose a very large k (k=the total number of observations in the training data). As every training instance is represented in the final vote, the most common training class always has a majority of the voters. The model would, thus, always predict the majority class, regardless of which neighbors are nearest. Suppose a very small k (k=1). noisy data or outliers, to unduly influence the classification of examples and any unlabeled example will affect negatively the prediction.

20 Choosing an appropriate k In practice, choosing k depends on the difficulty of the concept to be learned and the number of records in the training data. Typically, k is set somewhere between 3 and 10. One common practice is to set k equal to the square root of the number of training examples. An alternative approach is to test several k values on a variety of test datasets and choose the one that delivers the best classification performance. On the other hand, unless the data is very noisy, larger and more representative training datasets can make the choice of k less important. This is because even subtle concepts will have a sufficiently large pool of examples to vote as nearest neighbors.

21 knn algorithm summary The knn algorithm begins with a training set made up of examples that are classified into several categories (nominal variable). For an unlabeled example, that have the same features as the training data, knn identifies k examples in the training set that are the "nearest" in similarity. The unlabeled example is assigned the class of the majority of the k nearest neighbors. k is an integer specified in advance.

22 Preparing data for knn Features are typically transformed to a standard range prior to applying the knn algorithm. The rationale for this step is that the distance formula is dependent on how features are measured. In particular, if certain features have much larger values than others, the distance measurements will be strongly dominated by the larger values. X new = max X min ( X) ( X) min ( X) X new X µ = = σ ( ) ( ) X Mean X StdDev X min-max normalization z-score standardization

23 Euclidean distance for nominal data A typical solution utilizes dummy coding. A dichotomic variable (2 category) is coded with the value 1 to indicates one category, and 0 indicates the other. X male female male 1 ifx= male = 0 otherwise An n-category variable is dummy coded with (n-1) binary variables with an exclusive 1 to indicate each category. X blue yellow red green d1 d2 d

24 Euclidean distance for ordinal data A typical solution is to number the n-categories form 0 to (n-1) and then normalize. numbered i normalized i n X cold warm hot

25 knn is lazy It is known also as instance-based learning or rote learning or non-parametric learning method. Strengths Simple and effective Makes no assumptions about the underlying data distribution Fast training phase Weaknesses Does not produce a model, which limits the ability to find novel insights in relationships among features Slow classification phase Requires a large amount of memory Nominal features and missing data require additional processing Without generating theories about the underlying data it limits our ability to understand how the classifier is using the data. But this allows the learner to find natural patterns rather than trying to fit the data into a preconceived form. It reveals very powerful in many contexts.

26 Diagnosing breast cancer with the knn algorithm Dataset: Breast Cancer Wisconsin Diagnostic" from UCI Machine Learning Repository ( file: wdbc.data (W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) ) 569 examples of cancer biopsies, each with 32 features. One feature is an identification number, another is the cancer diagnosis (M=malignant, B=benign). 30 are numeric-valued laboratory measurements. Radius Texture Perimeter Area Smoothness Compactness Concavity Concave points Symmetry Fractal dimension

27 Exploring and preparing the data

28 Exploring and preparing the data Assigning column names

29 Exploring and preparing the data Removing first column. A model that includes an identifier will most likely suffer from overfitting, and is not likely to generalize well to other data. Proportion of the class variable

30 Exploring and preparing the data Summary of other variables. Different ranges can be noticed so that normalization is required!

31 Exploring and preparing the data Min-max normalization

32 Creating training and test datasets Although all 569 biopsies are labeled with a benign or malignant status, it is not very interesting to predict what we already know. A more interesting question is how well our learner performs on a dataset of unseen (unlabeled) data. If we had access to a laboratory, we could apply our learner to measurements taken from the next 100 masses of unknown cancer status and see how well the machine learner's predictions compare to diagnoses obtained using conventional methods. But we don t have unseen data, so we can simulate this scenario by dividing our data into two portions: a training dataset that will be used to build the knn model and a test dataset that will be used to estimate the predictive accuracy of the model. We will use the first 469 records for the training dataset and the remaining 100 to simulate new patients.

33 Exploring and preparing the data Building training and testing sets Store the class labels columns in a vector Remove the class label columns from the datasets

34 The class package contains the knn function Install the class package in R.

35 Train on training data and predict on testing data Run the knn function with k=3 Predicted class True class (from the test set)

36 How well is the prediction? An intuitive measure of prediction performance is to evaluate to what extent the predicted class is equals to the true class (aka accuracy)

37 How well is the prediction? But usually in a two class problem one class (positive) is more important to the other (negative). So it is important to know to what extent the positive class has been correctly predicted as positives (true positives, TP) and to what extent is has been wrongly predicted as positives (false positives, FP) FP TP

38 How well is the prediction? But it is also important to know to what extent the negative class has been correctly predicted as negative (true negatives, TN) and to what extent is has been wrongly predicted as negative (false negatives, FN) TN FN FP TP

39 Performance measures confusion table (aka contingency table) True class Accuracy ACC = TP + FP TP + FP + FN + FN Predicted class negative class positive class negative class TN FN positive class FP TP Sensitivity or Recall Specificity TPR = FNR = TNR = TP TP + FN FN TP + FN =1 TN TN + FP TPR F1-score F 1= 2TP 2TP + FP + FN FPR = NPV = FP FP + TN =1 TN TN + FN TNR Precision PPV = TP TP + FP

40 Computing performance measures with R

41 Exercises 1.Try to improve prediction performance by using a z-score standardization and alternative values of k (e.g. 5 or 9) 2.Generate automatically 10 random train/test splits (similar to previous in size) and compute for each split the prediction accuracy. Print out the average of such accuracies. (hint: in R the sample function is able to generate a random permutation of a vector, see help for more details)

k-nn Disgnosing Breast Cancer

k-nn Disgnosing Breast Cancer k-nn Disgnosing Breast Cancer Prof. Eric A. Suess February 4, 2019 Example Breast cancer screening allows the disease to be diagnosed and treated prior to it causing noticeable symptoms. The process of

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

CS7267 MACHINE LEARNING NEAREST NEIGHBOR ALGORITHM. Mingon Kang, PhD Computer Science, Kennesaw State University

CS7267 MACHINE LEARNING NEAREST NEIGHBOR ALGORITHM. Mingon Kang, PhD Computer Science, Kennesaw State University CS7267 MACHINE LEARNING NEAREST NEIGHBOR ALGORITHM Mingon Kang, PhD Computer Science, Kennesaw State University KNN K-Nearest Neighbors (KNN) Simple, but very powerful classification algorithm Classifies

More information

INTRODUCTION TO MACHINE LEARNING. Measuring model performance or error

INTRODUCTION TO MACHINE LEARNING. Measuring model performance or error INTRODUCTION TO MACHINE LEARNING Measuring model performance or error Is our model any good? Context of task Accuracy Computation time Interpretability 3 types of tasks Classification Regression Clustering

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

Stat 4510/7510 Homework 4

Stat 4510/7510 Homework 4 Stat 45/75 1/7. Stat 45/75 Homework 4 Instructions: Please list your name and student number clearly. In order to receive credit for a problem, your solution must show sufficient details so that the grader

More information

K- Nearest Neighbors(KNN) And Predictive Accuracy

K- Nearest Neighbors(KNN) And Predictive Accuracy Contact: mailto: Ammar@cu.edu.eg Drammarcu@gmail.com K- Nearest Neighbors(KNN) And Predictive Accuracy Dr. Ammar Mohammed Associate Professor of Computer Science ISSR, Cairo University PhD of CS ( Uni.

More information

Chuck Cartledge, PhD. 23 September 2017

Chuck Cartledge, PhD. 23 September 2017 Introduction K-Nearest Neighbors Na ıve Bayes Hands-on Q&A Conclusion References Files Misc. Big Data: Data Analysis Boot Camp Classification with K-Nearest Neighbors and Na ıve Bayes Chuck Cartledge,

More information

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018 MIT 801 [Presented by Anna Bosman] 16 February 2018 Machine Learning What is machine learning? Artificial Intelligence? Yes as we know it. What is intelligence? The ability to acquire and apply knowledge

More information

CS4491/CS 7265 BIG DATA ANALYTICS

CS4491/CS 7265 BIG DATA ANALYTICS CS4491/CS 7265 BIG DATA ANALYTICS EVALUATION * Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington Dr. Mingon Kang Computer Science, Kennesaw State University Evaluation for

More information

2. On classification and related tasks

2. On classification and related tasks 2. On classification and related tasks In this part of the course we take a concise bird s-eye view of different central tasks and concepts involved in machine learning and classification particularly.

More information

CISC 4631 Data Mining

CISC 4631 Data Mining CISC 4631 Data Mining Lecture 03: Nearest Neighbor Learning Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) Prof. R. Mooney (UT Austin) Prof E. Keogh (UCR), Prof. F.

More information

Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy

Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy Machine Learning Dr.Ammar Mohammed Nearest Neighbors Set of Stored Cases Atr1... AtrN Class A Store the training samples Use training samples

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

List of Exercises: Data Mining 1 December 12th, 2015

List of Exercises: Data Mining 1 December 12th, 2015 List of Exercises: Data Mining 1 December 12th, 2015 1. We trained a model on a two-class balanced dataset using five-fold cross validation. One person calculated the performance of the classifier by measuring

More information

Large Scale Data Analysis Using Deep Learning

Large Scale Data Analysis Using Deep Learning Large Scale Data Analysis Using Deep Learning Machine Learning Basics - 1 U Kang Seoul National University U Kang 1 In This Lecture Overview of Machine Learning Capacity, overfitting, and underfitting

More information

Topic 1 Classification Alternatives

Topic 1 Classification Alternatives Topic 1 Classification Alternatives [Jiawei Han, Micheline Kamber, Jian Pei. 2011. Data Mining Concepts and Techniques. 3 rd Ed. Morgan Kaufmann. ISBN: 9380931913.] 1 Contents 2. Classification Using Frequent

More information

CSC411/2515 Tutorial: K-NN and Decision Tree

CSC411/2515 Tutorial: K-NN and Decision Tree CSC411/2515 Tutorial: K-NN and Decision Tree Mengye Ren csc{411,2515}ta@cs.toronto.edu September 25, 2016 Cross-validation K-nearest-neighbours Decision Trees Review: Motivation for Validation Framework:

More information

Data Preprocessing. Supervised Learning

Data Preprocessing. Supervised Learning Supervised Learning Regression Given the value of an input X, the output Y belongs to the set of real values R. The goal is to predict output accurately for a new input. The predictions or outputs y are

More information

Metrics for Performance Evaluation How to evaluate the performance of a model? Methods for Performance Evaluation How to obtain reliable estimates?

Metrics for Performance Evaluation How to evaluate the performance of a model? Methods for Performance Evaluation How to obtain reliable estimates? Model Evaluation Metrics for Performance Evaluation How to evaluate the performance of a model? Methods for Performance Evaluation How to obtain reliable estimates? Methods for Model Comparison How to

More information

Classification and Regression

Classification and Regression Classification and Regression Announcements Study guide for exam is on the LMS Sample exam will be posted by Monday Reminder that phase 3 oral presentations are being held next week during workshops Plan

More information

Data Mining Classification: Alternative Techniques. Imbalanced Class Problem

Data Mining Classification: Alternative Techniques. Imbalanced Class Problem Data Mining Classification: Alternative Techniques Imbalanced Class Problem Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Class Imbalance Problem Lots of classification problems

More information

Artificial Intelligence. Programming Styles

Artificial Intelligence. Programming Styles Artificial Intelligence Intro to Machine Learning Programming Styles Standard CS: Explicitly program computer to do something Early AI: Derive a problem description (state) and use general algorithms to

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 24 2019 Logistics HW 1 is due on Friday 01/25 Project proposal: due Feb 21 1 page description

More information

ECLT 5810 Evaluation of Classification Quality

ECLT 5810 Evaluation of Classification Quality ECLT 5810 Evaluation of Classification Quality Reference: Data Mining Practical Machine Learning Tools and Techniques, by I. Witten, E. Frank, and M. Hall, Morgan Kaufmann Testing and Error Error rate:

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

Pattern recognition (4)

Pattern recognition (4) Pattern recognition (4) 1 Things we have discussed until now Statistical pattern recognition Building simple classifiers Supervised classification Minimum distance classifier Bayesian classifier (1D and

More information

k-nearest Neighbor (knn) Sept Youn-Hee Han

k-nearest Neighbor (knn) Sept Youn-Hee Han k-nearest Neighbor (knn) Sept. 2015 Youn-Hee Han http://link.koreatech.ac.kr ²Eager Learners Eager vs. Lazy Learning when given a set of training data, it will construct a generalization model before receiving

More information

Supervised Learning: K-Nearest Neighbors and Decision Trees

Supervised Learning: K-Nearest Neighbors and Decision Trees Supervised Learning: K-Nearest Neighbors and Decision Trees Piyush Rai CS5350/6350: Machine Learning August 25, 2011 (CS5350/6350) K-NN and DT August 25, 2011 1 / 20 Supervised Learning Given training

More information

Classification of Breast Cancer Cells Using JMP Marie Gaudard, North Haven Group

Classification of Breast Cancer Cells Using JMP Marie Gaudard, North Haven Group Classification of Breast Cancer Cells Using JMP Marie Gaudard, North Haven Group ABSTRACT This paper illustrates some of the features of JMP that support classification and data mining. We will utilize

More information

Evaluation Metrics. (Classifiers) CS229 Section Anand Avati

Evaluation Metrics. (Classifiers) CS229 Section Anand Avati Evaluation Metrics (Classifiers) CS Section Anand Avati Topics Why? Binary classifiers Metrics Rank view Thresholding Confusion Matrix Point metrics: Accuracy, Precision, Recall / Sensitivity, Specificity,

More information

Nearest Neighbor Classification. Machine Learning Fall 2017

Nearest Neighbor Classification. Machine Learning Fall 2017 Nearest Neighbor Classification Machine Learning Fall 2017 1 This lecture K-nearest neighbor classification The basic algorithm Different distance measures Some practical aspects Voronoi Diagrams and Decision

More information

Nominal Data. May not have a numerical representation Distance measures might not make sense. PR and ANN

Nominal Data. May not have a numerical representation Distance measures might not make sense. PR and ANN NonMetric Data Nominal Data So far we consider patterns to be represented by feature vectors of real or integer values Easy to come up with a distance (similarity) measure by using a variety of mathematical

More information

A Comparative Study of Locality Preserving Projection and Principle Component Analysis on Classification Performance Using Logistic Regression

A Comparative Study of Locality Preserving Projection and Principle Component Analysis on Classification Performance Using Logistic Regression Journal of Data Analysis and Information Processing, 2016, 4, 55-63 Published Online May 2016 in SciRes. http://www.scirp.org/journal/jdaip http://dx.doi.org/10.4236/jdaip.2016.42005 A Comparative Study

More information

CSE Data Mining Concepts and Techniques STATISTICAL METHODS (REGRESSION) Professor- Anita Wasilewska. Team 13

CSE Data Mining Concepts and Techniques STATISTICAL METHODS (REGRESSION) Professor- Anita Wasilewska. Team 13 CSE 634 - Data Mining Concepts and Techniques STATISTICAL METHODS Professor- Anita Wasilewska (REGRESSION) Team 13 Contents Linear Regression Logistic Regression Bias and Variance in Regression Model Fit

More information

Supervised Learning: Nearest Neighbors

Supervised Learning: Nearest Neighbors CS 2750: Machine Learning Supervised Learning: Nearest Neighbors Prof. Adriana Kovashka University of Pittsburgh February 1, 2016 Today: Supervised Learning Part I Basic formulation of the simplest classifier:

More information

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München Evaluation Measures Sebastian Pölsterl Computer Aided Medical Procedures Technische Universität München April 28, 2015 Outline 1 Classification 1. Confusion Matrix 2. Receiver operating characteristics

More information

7. Nearest neighbors. Learning objectives. Foundations of Machine Learning École Centrale Paris Fall 2015

7. Nearest neighbors. Learning objectives. Foundations of Machine Learning École Centrale Paris Fall 2015 Foundations of Machine Learning École Centrale Paris Fall 2015 7. Nearest neighbors Chloé-Agathe Azencott Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr Learning

More information

CP365 Artificial Intelligence

CP365 Artificial Intelligence CP365 Artificial Intelligence Example Problem Problem: Does a given image contain cats? Input vector: RGB/BW pixels of the image. Output: Yes or No. Example Problem Problem: What category is a news story?

More information

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane DATA MINING AND MACHINE LEARNING Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Data preprocessing Feature normalization Missing

More information

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Learning 4 Supervised Learning 4 Unsupervised Learning 4

More information

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20 Data mining Piotr Paszek Classification k-nn Classifier (Piotr Paszek) Data mining k-nn 1 / 20 Plan of the lecture 1 Lazy Learner 2 k-nearest Neighbor Classifier 1 Distance (metric) 2 How to Determine

More information

Classification and Regression Analysis of the Prognostic Breast Cancer using Generation Optimizing Algorithms

Classification and Regression Analysis of the Prognostic Breast Cancer using Generation Optimizing Algorithms Classification and Regression Analysis of the Prognostic Breast Cancer using Generation Optimizing Algorithms Rafaqat Alam Khan University of Eng. & Tech. Peshawar, Pakistan Nasir Ahmad University of Eng.

More information

Data Mining. Lecture 03: Nearest Neighbor Learning

Data Mining. Lecture 03: Nearest Neighbor Learning Data Mining Lecture 03: Nearest Neighbor Learning Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) Prof. R. Mooney (UT Austin) Prof E. Keogh (UCR), Prof. F. Provost

More information

Evaluating Machine-Learning Methods. Goals for the lecture

Evaluating Machine-Learning Methods. Goals for the lecture Evaluating Machine-Learning Methods Mark Craven and David Page Computer Sciences 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Some of the slides in these lectures have been adapted/borrowed from

More information

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods + CS78: Machine Learning and Data Mining Complexity & Nearest Neighbor Methods Prof. Erik Sudderth Some materials courtesy Alex Ihler & Sameer Singh Machine Learning Complexity and Overfitting Nearest

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 08: Classification Evaluation and Practical Issues Instructor: Yizhou Sun yzsun@cs.ucla.edu October 24, 2017 Learnt Prediction and Classification Methods Vector Data

More information

DATA MINING INTRODUCTION TO CLASSIFICATION USING LINEAR CLASSIFIERS

DATA MINING INTRODUCTION TO CLASSIFICATION USING LINEAR CLASSIFIERS DATA MINING INTRODUCTION TO CLASSIFICATION USING LINEAR CLASSIFIERS 1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes and a class attribute

More information

I211: Information infrastructure II

I211: Information infrastructure II Data Mining: Classifier Evaluation I211: Information infrastructure II 3-nearest neighbor labeled data find class labels for the 4 data points 1 0 0 6 0 0 0 5 17 1.7 1 1 4 1 7.1 1 1 1 0.4 1 2 1 3.0 0 0.1

More information

Data Mining. 3.5 Lazy Learners (Instance-Based Learners) Fall Instructor: Dr. Masoud Yaghini. Lazy Learners

Data Mining. 3.5 Lazy Learners (Instance-Based Learners) Fall Instructor: Dr. Masoud Yaghini. Lazy Learners Data Mining 3.5 (Instance-Based Learners) Fall 2008 Instructor: Dr. Masoud Yaghini Outline Introduction k-nearest-neighbor Classifiers References Introduction Introduction Lazy vs. eager learning Eager

More information

Instance-Based Learning. Goals for the lecture

Instance-Based Learning. Goals for the lecture Instance-Based Learning Mar Craven and David Page Computer Sciences 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Some of the slides in these lectures have been adapted/borrowed from materials developed

More information

A Critical Study of Selected Classification Algorithms for Liver Disease Diagnosis

A Critical Study of Selected Classification Algorithms for Liver Disease Diagnosis A Critical Study of Selected Classification s for Liver Disease Diagnosis Shapla Rani Ghosh 1, Sajjad Waheed (PhD) 2 1 MSc student (ICT), 2 Associate Professor (ICT) 1,2 Department of Information and Communication

More information

Instance-Based Learning.

Instance-Based Learning. Instance-Based Learning www.biostat.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts k-nn classification k-nn regression edited nearest neighbor k-d trees for nearest

More information

Cross- Valida+on & ROC curve. Anna Helena Reali Costa PCS 5024

Cross- Valida+on & ROC curve. Anna Helena Reali Costa PCS 5024 Cross- Valida+on & ROC curve Anna Helena Reali Costa PCS 5024 Resampling Methods Involve repeatedly drawing samples from a training set and refibng a model on each sample. Used in model assessment (evalua+ng

More information

CS489/698 Lecture 2: January 8 th, 2018

CS489/698 Lecture 2: January 8 th, 2018 CS489/698 Lecture 2: January 8 th, 2018 Nearest Neighbour [RN] Sec. 18.8.1, [HTF] Sec. 2.3.2, [D] Chapt. 3, [B] Sec. 2.5.2, [M] Sec. 1.4.2 CS489/698 (c) 2018 P. Poupart 1 Inductive Learning (recap) Induction

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

Decision Tree (Continued) and K-Nearest Neighbour. Dr. Xiaowei Huang

Decision Tree (Continued) and K-Nearest Neighbour. Dr. Xiaowei Huang Decision Tree (Continued) and K-Nearest Neighbour Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Recap basic knowledge Decision tree learning How to split Identify the best feature to

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

Nearest Neighbor Classifiers

Nearest Neighbor Classifiers Nearest Neighbor Classifiers TNM033 Data Mining Techniques Linköping University 2009-12-04 When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call that bird a duck.

More information

K-Nearest Neighbour Classifier. Izabela Moise, Evangelos Pournaras, Dirk Helbing

K-Nearest Neighbour Classifier. Izabela Moise, Evangelos Pournaras, Dirk Helbing K-Nearest Neighbour Classifier Izabela Moise, Evangelos Pournaras, Dirk Helbing Izabela Moise, Evangelos Pournaras, Dirk Helbing 1 Reminder Supervised data mining Classification Decision Trees Izabela

More information

CS 584 Data Mining. Classification 1

CS 584 Data Mining. Classification 1 CS 584 Data Mining Classification 1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is the class. Find a model for

More information

7. Nearest neighbors. Learning objectives. Centre for Computational Biology, Mines ParisTech

7. Nearest neighbors. Learning objectives. Centre for Computational Biology, Mines ParisTech Foundations of Machine Learning CentraleSupélec Paris Fall 2016 7. Nearest neighbors Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe-agathe.azencott@mines-paristech.fr Learning

More information

Bagging for One-Class Learning

Bagging for One-Class Learning Bagging for One-Class Learning David Kamm December 13, 2008 1 Introduction Consider the following outlier detection problem: suppose you are given an unlabeled data set and make the assumptions that one

More information

Classification: Feature Vectors

Classification: Feature Vectors Classification: Feature Vectors Hello, Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just # free YOUR_NAME MISSPELLED FROM_FRIEND... : : : : 2 0 2 0 PIXEL 7,12

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Classification and K-Nearest Neighbors

Classification and K-Nearest Neighbors Classification and K-Nearest Neighbors Administrivia o Reminder: Homework 1 is due by 5pm Friday on Moodle o Reading Quiz associated with today s lecture. Due before class Wednesday. NOTETAKER 2 Regression

More information

Nominal Data. May not have a numerical representation Distance measures might not make sense PR, ANN, & ML

Nominal Data. May not have a numerical representation Distance measures might not make sense PR, ANN, & ML Decision Trees Nominal Data So far we consider patterns to be represented by feature vectors of real or integer values Easy to come up with a distance (similarity) measure by using a variety of mathematical

More information

An Empirical Study on Lazy Multilabel Classification Algorithms

An Empirical Study on Lazy Multilabel Classification Algorithms An Empirical Study on Lazy Multilabel Classification Algorithms Eleftherios Spyromitros, Grigorios Tsoumakas and Ioannis Vlahavas Machine Learning & Knowledge Discovery Group Department of Informatics

More information

Intro to Artificial Intelligence

Intro to Artificial Intelligence Intro to Artificial Intelligence Ahmed Sallam { Lecture 5: Machine Learning ://. } ://.. 2 Review Probabilistic inference Enumeration Approximate inference 3 Today What is machine learning? Supervised

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Machine Learning for. Artem Lind & Aleskandr Tkachenko

Machine Learning for. Artem Lind & Aleskandr Tkachenko Machine Learning for Object Recognition Artem Lind & Aleskandr Tkachenko Outline Problem overview Classification demo Examples of learning algorithms Probabilistic modeling Bayes classifier Maximum margin

More information

Part II: A broader view

Part II: A broader view Part II: A broader view Understanding ML metrics: isometrics, basic types of linear isometric plots linear metrics and equivalences between them skew-sensitivity non-linear metrics Model manipulation:

More information

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday.

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday. CS 188: Artificial Intelligence Spring 2011 Lecture 21: Perceptrons 4/13/2010 Announcements Project 4: due Friday. Final Contest: up and running! Project 5 out! Pieter Abbeel UC Berkeley Many slides adapted

More information

Machine Learning and Pervasive Computing

Machine Learning and Pervasive Computing Stephan Sigg Georg-August-University Goettingen, Computer Networks 17.12.2014 Overview and Structure 22.10.2014 Organisation 22.10.3014 Introduction (Def.: Machine learning, Supervised/Unsupervised, Examples)

More information

Data Mining and Machine Learning: Techniques and Algorithms

Data Mining and Machine Learning: Techniques and Algorithms Instance based classification Data Mining and Machine Learning: Techniques and Algorithms Eneldo Loza Mencía eneldo@ke.tu-darmstadt.de Knowledge Engineering Group, TU Darmstadt International Week 2019,

More information

Mining di Dati Web. Lezione 3 - Clustering and Classification

Mining di Dati Web. Lezione 3 - Clustering and Classification Mining di Dati Web Lezione 3 - Clustering and Classification Introduction Clustering and classification are both learning techniques They learn functions describing data Clustering is also known as Unsupervised

More information

Clustering analysis of gene expression data

Clustering analysis of gene expression data Clustering analysis of gene expression data Chapter 11 in Jonathan Pevsner, Bioinformatics and Functional Genomics, 3 rd edition (Chapter 9 in 2 nd edition) Human T cell expression data The matrix contains

More information

CS 340 Lec. 4: K-Nearest Neighbors

CS 340 Lec. 4: K-Nearest Neighbors CS 340 Lec. 4: K-Nearest Neighbors AD January 2011 AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 1 / 23 K-Nearest Neighbors Introduction Choice of Metric Overfitting and Underfitting Selection

More information

Advanced Video Content Analysis and Video Compression (5LSH0), Module 8B

Advanced Video Content Analysis and Video Compression (5LSH0), Module 8B Advanced Video Content Analysis and Video Compression (5LSH0), Module 8B 1 Supervised learning Catogarized / labeled data Objects in a picture: chair, desk, person, 2 Classification Fons van der Sommen

More information

A weighted fuzzy classifier and its application to image processing tasks

A weighted fuzzy classifier and its application to image processing tasks Fuzzy Sets and Systems 158 (2007) 284 294 www.elsevier.com/locate/fss A weighted fuzzy classifier and its application to image processing tasks Tomoharu Nakashima a, Gerald Schaefer b,, Yasuyuki Yokota

More information

Package kdevine. May 19, 2017

Package kdevine. May 19, 2017 Type Package Package kdevine May 19, 2017 Title Multivariate Kernel Density Estimation with Vine Copulas Version 0.4.1 Date 2017-05-20 URL https://github.com/tnagler/kdevine BugReports https://github.com/tnagler/kdevine/issues

More information

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 K-Nearest Neighbors Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative Check out review materials Probability Linear algebra Python and NumPy Start your HW 0 On your Local machine:

More information

Machine learning in fmri

Machine learning in fmri Machine learning in fmri Validation Alexandre Savio, Maite Termenón, Manuel Graña 1 Computational Intelligence Group, University of the Basque Country December, 2010 1/18 Outline 1 Motivation The validation

More information

INTRODUCTION TO DATA MINING. Daniel Rodríguez, University of Alcalá

INTRODUCTION TO DATA MINING. Daniel Rodríguez, University of Alcalá INTRODUCTION TO DATA MINING Daniel Rodríguez, University of Alcalá Outline Knowledge Discovery in Datasets Model Representation Types of models Supervised Unsupervised Evaluation (Acknowledgement: Jesús

More information

Classification. Slide sources:

Classification. Slide sources: Classification Slide sources: Gideon Dror, Academic College of TA Yaffo Nathan Ifill, Leicester MA4102 Data Mining and Neural Networks Andrew Moore, CMU : http://www.cs.cmu.edu/~awm/tutorials 1 Outline

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule. CS 188: Artificial Intelligence Fall 2008 Lecture 24: Perceptrons II 11/24/2008 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit

More information

Machine Learning Models for Pattern Classification. Comp 473/6731

Machine Learning Models for Pattern Classification. Comp 473/6731 Machine Learning Models for Pattern Classification Comp 473/6731 November 24th 2016 Prof. Neamat El Gayar Neural Networks Neural Networks Low level computational algorithms Learn by example (no required

More information

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/20/2010 Announcements W7 due Thursday [that s your last written for the semester!] Project 5 out Thursday Contest running

More information

CPSC 340: Machine Learning and Data Mining. Non-Parametric Models Fall 2016

CPSC 340: Machine Learning and Data Mining. Non-Parametric Models Fall 2016 CPSC 340: Machine Learning and Data Mining Non-Parametric Models Fall 2016 Assignment 0: Admin 1 late day to hand it in tonight, 2 late days for Wednesday. Assignment 1 is out: Due Friday of next week.

More information

Business Club. Decision Trees

Business Club. Decision Trees Business Club Decision Trees Business Club Analytics Team December 2017 Index 1. Motivation- A Case Study 2. The Trees a. What is a decision tree b. Representation 3. Regression v/s Classification 4. Building

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 10 130221 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Canny Edge Detector Hough Transform Feature-Based

More information

Introduction to Supervised Learning

Introduction to Supervised Learning Introduction to Supervised Learning Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA 01003 February 17, 2014 Abstract This document introduces the

More information

Machine Learning: Symbolische Ansätze

Machine Learning: Symbolische Ansätze Machine Learning: Symbolische Ansätze Evaluation and Cost-Sensitive Learning Evaluation Hold-out Estimates Cross-validation Significance Testing Sign test ROC Analysis Cost-Sensitive Evaluation ROC space

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Lecture 33: Recognition Basics Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/ Announcements Quiz moved to Tuesday Project 4

More information

10/5/2017 MIST.6060 Business Intelligence and Data Mining 1. Nearest Neighbors. In a p-dimensional space, the Euclidean distance between two records,

10/5/2017 MIST.6060 Business Intelligence and Data Mining 1. Nearest Neighbors. In a p-dimensional space, the Euclidean distance between two records, 10/5/2017 MIST.6060 Business Intelligence and Data Mining 1 Distance Measures Nearest Neighbors In a p-dimensional space, the Euclidean distance between two records, a = a, a,..., a ) and b = b, b,...,

More information

K-Nearest Neighbour (Continued) Dr. Xiaowei Huang

K-Nearest Neighbour (Continued) Dr. Xiaowei Huang K-Nearest Neighbour (Continued) Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ A few things: No lectures on Week 7 (i.e., the week starting from Monday 5 th November), and Week 11 (i.e., the week

More information

Nearest Neighbor Predictors

Nearest Neighbor Predictors Nearest Neighbor Predictors September 2, 2018 Perhaps the simplest machine learning prediction method, from a conceptual point of view, and perhaps also the most unusual, is the nearest-neighbor method,

More information

Wrapper Feature Selection using Discrete Cuckoo Optimization Algorithm Abstract S.J. Mousavirad and H. Ebrahimpour-Komleh* 1 Department of Computer and Electrical Engineering, University of Kashan, Kashan,

More information

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning Partitioning Data IRDS: Evaluation, Debugging, and Diagnostics Charles Sutton University of Edinburgh Training Validation Test Training : Running learning algorithms Validation : Tuning parameters of learning

More information