Topic 1 Classification Alternatives

Size: px
Start display at page:

Download "Topic 1 Classification Alternatives"

Transcription

1 Topic 1 Classification Alternatives [Jiawei Han, Micheline Kamber, Jian Pei Data Mining Concepts and Techniques. 3 rd Ed. Morgan Kaufmann. ISBN: ] 1

2 Contents 2. Classification Using Frequent Patterns 3. Support Vector Machines (SVMs) 4. Classification by Backpropagation (ANNs) 5. Bayesian Belief Networks 6. Other Classification Methods 2

3 Introduction Basic Concepts Eager learning (e.g., decision tree) spends a lot of time for model building (training/learning). - Once a model has been built, classifying a test example is extremely fast. Lazy learning (e.g., k-nearest-neighbor classifier) does not require model building (no training). - Classifying a test example is quite expensive because we need to compute the proximity values individually between the test and training examples. 3

4 When we want to classify an unknown (unseen) tuple, a k-nearest-neighbor (k-nn) classifier searches the pattern space for the k training tuples that are closest to the unknown tuple. These k training tuples are the k nearest neighbors of the unknown tuple. For k-nn classification, the unknown tuple is assigned the most common class among its k- nearest neighbors (i.e., majority class of its k nearest neighbors). 4

5 The 1-, 2-, and 3-nearest neighbors of an instance x. In (b), we may randomly choose one of class labels (i.e., + or ) to classify the data point x. 5

6 The Euclidean distance between two points or tuples X 1 = (x 11, x 12,..., x 1n ) and X 2 = (x 21, x 22,..., x 2n ) is defined as Other distance metrics (e.g., Manhattan, Minkowski, Cosine, and Mahalanobis distance) can be used. 6

7 The importance of choosing the right value for k. - If k is too small, then the k-nn classifier may be susceptible to overfitting because of noise in the training data. - If k is too large, the k-nn classifier may misclassify the test instance because its list of nearest neighbors may include data points that are located far away from its neighborhood, as shown below. 7

8 . k-nn classification with large k. (x is classified as instead of +) 8

9 Algorithm v1: Basic k-nn classification algorithm 1. Find the k training instances that are closest to the unseen instance. 2. Take the most commonly occurring class label of these k instances and assign it to the class label of the unseen instance. 9

10 Algorithm v2: Basic k-nn classification algorithm. 1. Let k be the number of nearest neighbors and D be the set of training examples. 2. for each test example z = (x, y ) do 3. Compute d(x, x), the distance between z and every example (x, y) D. 4. Select D z D, the set of k closest training examples to z. 5. y = 6. end for 10

11 Once the k-nn list D z is obtained, the test example is classified based on the majority class of its k nearest neighbors: where v is a class label, y i is the class label for one of the k nearest neighbors, and I( ) is an indicator function that returns the value 1 if its argument is true and 0 otherwise. 11

12 In the majority voting approach, every neighbor has the same impact on the classification. This makes the algorithm sensitive to the choice of k. 12

13 One way to reduce the impact of k is to weight the influence of each nearest neighbor x i according to its distance: w i = 1/d(x, x i ) 2. As a result, training examples that are located far away from z have a weaker impact on the classification compared to those that are located close to z. 13

14 Using the distance-weighted voting scheme, the class label can be determined as follows: 14

15 k-nn classifiers can produce wrong predictions due to varying scales of attribute values of tuples. For example, suppose we want to classify a group of people based on attributes such as height (measured in meters) and weight (measured in pounds). 15

16 The height attribute has a low variability, ranging from 1.5 m to 1.85 m, whereas the weight attribute may vary from 90 lb. to 250 lb. If the scale of the attributes are not taken into consideration, the proximity measure may be dominated by differences in the weights of a person. 16

17 Data normalization (aka feature scaling): We normalize the values of each attribute before computing proximity measure (e.g., Euclidean distance). - This helps prevent attributes with large ranges (e.g., weight) from outweighing attributes with smaller ranges (e.g., height). 17

18 Min-max normalization (aka unity-based normalization): can be used to transform a value v of a numeric attribute A to v in the range [0, 1] by computing v = (v min A ) / (max A min A ) [0, 1], where min A and max A are the minimum and maximum values of attribute A. 18

19 In general, min-max normalization (aka unitybased normalization): can be used to transform a value v of a numeric attribute A to v in the range [0, 1] by computing or v = l + [(v min A ) / (max A min A )] (u l) [l, u], where min A and max A are the minimum and maximum values of attribute A. 19

20 Note that it is possible that an unseen instance may have a value of A that is less than min or greater than max. If we want to keep the adjusted numbers in the range from 0 to 1, we can just convert any values of A that are less than min or greater than max to 0 or 1, respectively. 20

21 Dealing with non-numeric attributes: For nonnumeric attributes (e.g., nominal or categorical), a simple method is to compare the corresponding value of the non-numeric attribute in tuple X 1 with that in tuple X 2. - If the two are identical (e.g., tuples X 1 and X 2 both have the blue color), then the difference between the two is 0. - If the two are different (e.g., tuple X 1 is blue but tuple X 2 is red), then the difference is 1. 21

22 Contents 2. Classification Using Frequent Patterns 3. Support Vector Machines (SVMs) 4. Classification by Backpropagation (ANNs) 5. Bayesian Belief Networks 6. Other Classification Methods 22

23 2. Classification Using Frequent Patterns. 23

24 Contents 2. Classification Using Frequent Patterns 3. Support Vector Machines (SVMs) 4. Classification by Backpropagation (ANNs) 5. Bayesian Belief Networks 6. Other Classification Methods 24

25 3. Support Vector Machines (SVMs). 25

26 Contents 2. Classification Using Frequent Patterns 3. Support Vector Machines (SVMs) 4. Classification by Backpropagation (ANNs) 5. Bayesian Belief Networks 6. Other Classification Methods 26

27 4. Classification by Backpropagation (ANNs). 27

28 Contents 2. Classification Using Frequent Patterns 3. Support Vector Machines (SVMs) 4. Classification by Backpropagation (ANNs) 5. Bayesian Belief Networks 6. Other Classification Methods 28

29 5. Bayesian Belief Networks. 29

30 Contents 2. Classification Using Frequent Patterns 3. Support Vector Machines (SVMs) 4. Classification by Backpropagation (ANNs) 5. Bayesian Belief Networks 6. Other Classification Methods 30

31 6. Other Classification Methods Genetic Algorithms (GAs) Rough Set Approach Fuzzy Set Approach 31

32 Summary 32

33 Exercises. 33

34 References 1. Jiawei Han, Micheline Kamber, Jian Pei Data Mining Concepts and Techniques. 3 rd Ed. Morgan Kaufmann. ISBN: Pang-Ning Tan, Michael Steinbach, Vipin Kumar Introduction to Data Mining. 1 st Ed. Pearson. ISBN: Charu C. Aggarwal Data Mining The Textbook. Springer. ISBN:

35 References 4. Nong Ye Data Mining: Theories, Algorithms, and Examples. CRC Press. ISBN: Uday Kamath, Krishna Choppella Mastering Java Machine Learning. Packt Publishing. ISBN:

36 Extra Slides Distance Metrics 1. Euclidean distance between two points x = (x 1, x 2,..., x d ) and y = (y 1, y 2,..., y d ) is defined as (also denoted as L 2 (x, y), L 2 (x, y), x y 2, x y 2 ) 36

37 Extra Slides Distance Metrics 2. Manhattan distance between two points x = (x 1, x 2,..., x d ) and y = (y 1, y 2,..., y d ) is defined as (the sum of the absolute differences of their Cartesian coordinates) (also denoted as L 1 (x, y), L 1 (x, y), x y 1, x y 1 ) 37

38 Extra Slides Distance Metrics 3. Minkowski distance between two points x = (x 1, x 2,..., x d ) and y = (y 1, y 2,..., y d ) is defined as (a generalization of both the Euclidean distance (p = 2) and the Manhattan distance (p = 1)) (also denoted as L p (x, y), L p (x, y)) 38

39 Extra Slides Distance Metrics 4. Cosine distance between two points x = (x 1, x 2,..., x d ) and y = (y 1, y 2,..., y d ) is defined as - dot (or inner) product x y = - length (or magnitude) of a vector x is x = 39

40 Extra Slides Distance Metrics 5. Mahalanobis distance between two points x = (x 1, x 2,..., x d ) and y = (y 1, y 2,..., y d ) is defined as where - S is a covariance matrix (also denoted as ). - S 1 is the inverse of S - x T is the transpose of x 40

41 Extra Slides 41

9 Classification: KNN and SVM

9 Classification: KNN and SVM CSE4334/5334 Data Mining 9 Classification: KNN and SVM Chengkai Li Department of Computer Science and Engineering University of Texas at Arlington Fall 2017 (Slides courtesy of Pang-Ning Tan, Michael Steinbach

More information

Data Mining and Data Warehousing Classification-Lazy Learners

Data Mining and Data Warehousing Classification-Lazy Learners Motivation Data Mining and Data Warehousing Classification-Lazy Learners Lazy Learners are the most intuitive type of learners and are used in many practical scenarios. The reason of their popularity is

More information

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20 Data mining Piotr Paszek Classification k-nn Classifier (Piotr Paszek) Data mining k-nn 1 / 20 Plan of the lecture 1 Lazy Learner 2 k-nearest Neighbor Classifier 1 Distance (metric) 2 How to Determine

More information

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 4. Instance-Based Learning. Introduction to Data Mining, 2 nd Edition

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 4. Instance-Based Learning. Introduction to Data Mining, 2 nd Edition Data Mining Classification: Alternative Techniques Lecture Notes for Chapter 4 Instance-Based Learning Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Instance Based Classifiers

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Classification Advanced Reading: Chapter 8 & 9 Han, Chapters 4 & 5 Tan Anca Doloc-Mihu, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei. Data Mining.

More information

CISC 4631 Data Mining

CISC 4631 Data Mining CISC 4631 Data Mining Lecture 03: Nearest Neighbor Learning Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) Prof. R. Mooney (UT Austin) Prof E. Keogh (UCR), Prof. F.

More information

CS 584 Data Mining. Classification 1

CS 584 Data Mining. Classification 1 CS 584 Data Mining Classification 1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is the class. Find a model for

More information

Nearest Neighbor Classifiers

Nearest Neighbor Classifiers Nearest Neighbor Classifiers TNM033 Data Mining Techniques Linköping University 2009-12-04 When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call that bird a duck.

More information

Basic Data Mining Technique

Basic Data Mining Technique Basic Data Mining Technique What is classification? What is prediction? Supervised and Unsupervised Learning Decision trees Association rule K-nearest neighbor classifier Case-based reasoning Genetic algorithm

More information

K-Nearest Neighbour Classifier. Izabela Moise, Evangelos Pournaras, Dirk Helbing

K-Nearest Neighbour Classifier. Izabela Moise, Evangelos Pournaras, Dirk Helbing K-Nearest Neighbour Classifier Izabela Moise, Evangelos Pournaras, Dirk Helbing Izabela Moise, Evangelos Pournaras, Dirk Helbing 1 Reminder Supervised data mining Classification Decision Trees Izabela

More information

Data Mining. 3.5 Lazy Learners (Instance-Based Learners) Fall Instructor: Dr. Masoud Yaghini. Lazy Learners

Data Mining. 3.5 Lazy Learners (Instance-Based Learners) Fall Instructor: Dr. Masoud Yaghini. Lazy Learners Data Mining 3.5 (Instance-Based Learners) Fall 2008 Instructor: Dr. Masoud Yaghini Outline Introduction k-nearest-neighbor Classifiers References Introduction Introduction Lazy vs. eager learning Eager

More information

The k-means Algorithm and Genetic Algorithm

The k-means Algorithm and Genetic Algorithm The k-means Algorithm and Genetic Algorithm k-means algorithm Genetic algorithm Rough set approach Fuzzy set approaches Chapter 8 2 The K-Means Algorithm The K-Means algorithm is a simple yet effective

More information

CS7267 MACHINE LEARNING NEAREST NEIGHBOR ALGORITHM. Mingon Kang, PhD Computer Science, Kennesaw State University

CS7267 MACHINE LEARNING NEAREST NEIGHBOR ALGORITHM. Mingon Kang, PhD Computer Science, Kennesaw State University CS7267 MACHINE LEARNING NEAREST NEIGHBOR ALGORITHM Mingon Kang, PhD Computer Science, Kennesaw State University KNN K-Nearest Neighbors (KNN) Simple, but very powerful classification algorithm Classifies

More information

Data Preprocessing. Supervised Learning

Data Preprocessing. Supervised Learning Supervised Learning Regression Given the value of an input X, the output Y belongs to the set of real values R. The goal is to predict output accurately for a new input. The predictions or outputs y are

More information

Data Mining. Lecture 03: Nearest Neighbor Learning

Data Mining. Lecture 03: Nearest Neighbor Learning Data Mining Lecture 03: Nearest Neighbor Learning Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) Prof. R. Mooney (UT Austin) Prof E. Keogh (UCR), Prof. F. Provost

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Scalable Clustering Methods: BIRCH and Others Reading: Chapter 10.3 Han, Chapter 9.5 Tan Cengiz Gunay, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei.

More information

PESIT- Bangalore South Campus Hosur Road (1km Before Electronic city) Bangalore

PESIT- Bangalore South Campus Hosur Road (1km Before Electronic city) Bangalore Data Warehousing Data Mining (17MCA442) 1. GENERAL INFORMATION: PESIT- Bangalore South Campus Hosur Road (1km Before Electronic city) Bangalore 560 100 Department of MCA COURSE INFORMATION SHEET Academic

More information

Naïve Bayes for text classification

Naïve Bayes for text classification Road Map Basic concepts Decision tree induction Evaluation of classifiers Rule induction Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Support

More information

Performance Analysis of Data Mining Classification Techniques

Performance Analysis of Data Mining Classification Techniques Performance Analysis of Data Mining Classification Techniques Tejas Mehta 1, Dr. Dhaval Kathiriya 2 Ph.D. Student, School of Computer Science, Dr. Babasaheb Ambedkar Open University, Gujarat, India 1 Principal

More information

Lecture 3. Oct

Lecture 3. Oct Lecture 3 Oct 3 2008 Review of last lecture A supervised learning example spam filter, and the design choices one need to make for this problem use bag-of-words to represent emails linear functions as

More information

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia UVA CS 6316/4501 Fall 2016 Machine Learning Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff Dr. Yanjun Qi University of Virginia Department of Computer Science 11/9/16 1 Rough Plan HW5

More information

Nearest Neighbor Classification. Machine Learning Fall 2017

Nearest Neighbor Classification. Machine Learning Fall 2017 Nearest Neighbor Classification Machine Learning Fall 2017 1 This lecture K-nearest neighbor classification The basic algorithm Different distance measures Some practical aspects Voronoi Diagrams and Decision

More information

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 6: k-nn Cross-validation Regularization LEARNING METHODS Lazy vs eager learning Eager learning generalizes training data before

More information

UVA CS 4501: Machine Learning. Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia

UVA CS 4501: Machine Learning. Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia UVA CS 4501: Machine Learning Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff Dr. Yanjun Qi University of Virginia Department of Computer Science 1 Where are we? è Five major secfons

More information

7. Nearest neighbors. Learning objectives. Centre for Computational Biology, Mines ParisTech

7. Nearest neighbors. Learning objectives. Centre for Computational Biology, Mines ParisTech Foundations of Machine Learning CentraleSupélec Paris Fall 2016 7. Nearest neighbors Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe-agathe.azencott@mines-paristech.fr Learning

More information

7. Nearest neighbors. Learning objectives. Foundations of Machine Learning École Centrale Paris Fall 2015

7. Nearest neighbors. Learning objectives. Foundations of Machine Learning École Centrale Paris Fall 2015 Foundations of Machine Learning École Centrale Paris Fall 2015 7. Nearest neighbors Chloé-Agathe Azencott Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr Learning

More information

DATA MINING LECTURE 10B. Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines

DATA MINING LECTURE 10B. Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines DATA MINING LECTURE 10B Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines NEAREST NEIGHBOR CLASSIFICATION 10 10 Illustrating Classification Task Tid Attrib1

More information

Knowledge Discovery in Databases

Knowledge Discovery in Databases Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Lecture notes Knowledge Discovery in Databases Summer Semester 2012 Lecture 8: Clustering

More information

k-nearest Neighbor (knn) Sept Youn-Hee Han

k-nearest Neighbor (knn) Sept Youn-Hee Han k-nearest Neighbor (knn) Sept. 2015 Youn-Hee Han http://link.koreatech.ac.kr ²Eager Learners Eager vs. Lazy Learning when given a set of training data, it will construct a generalization model before receiving

More information

K- Nearest Neighbors(KNN) And Predictive Accuracy

K- Nearest Neighbors(KNN) And Predictive Accuracy Contact: mailto: Ammar@cu.edu.eg Drammarcu@gmail.com K- Nearest Neighbors(KNN) And Predictive Accuracy Dr. Ammar Mohammed Associate Professor of Computer Science ISSR, Cairo University PhD of CS ( Uni.

More information

Machine Learning nearest neighbors classification. Luigi Cerulo Department of Science and Technology University of Sannio

Machine Learning nearest neighbors classification. Luigi Cerulo Department of Science and Technology University of Sannio Machine Learning nearest neighbors classification Luigi Cerulo Department of Science and Technology University of Sannio Nearest Neighbors Classification The idea is based on the hypothesis that things

More information

A Lazy Approach for Machine Learning Algorithms

A Lazy Approach for Machine Learning Algorithms A Lazy Approach for Machine Learning Algorithms Inés M. Galván, José M. Valls, Nicolas Lecomte and Pedro Isasi Abstract Most machine learning algorithms are eager methods in the sense that a model is generated

More information

CS6716 Pattern Recognition

CS6716 Pattern Recognition CS6716 Pattern Recognition Prototype Methods Aaron Bobick School of Interactive Computing Administrivia Problem 2b was extended to March 25. Done? PS3 will be out this real soon (tonight) due April 10.

More information

Ensemble Learning: An Introduction. Adapted from Slides by Tan, Steinbach, Kumar

Ensemble Learning: An Introduction. Adapted from Slides by Tan, Steinbach, Kumar Ensemble Learning: An Introduction Adapted from Slides by Tan, Steinbach, Kumar 1 General Idea D Original Training data Step 1: Create Multiple Data Sets... D 1 D 2 D t-1 D t Step 2: Build Multiple Classifiers

More information

Information Management course

Information Management course Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 20: 10/12/2015 Data Mining: Concepts and Techniques (3 rd ed.) Chapter

More information

Data Cleaning and Prototyping Using K-Means to Enhance Classification Accuracy

Data Cleaning and Prototyping Using K-Means to Enhance Classification Accuracy Data Cleaning and Prototyping Using K-Means to Enhance Classification Accuracy Lutfi Fanani 1 and Nurizal Dwi Priandani 2 1 Department of Computer Science, Brawijaya University, Malang, Indonesia. 2 Department

More information

Mathematics of Data. INFO-4604, Applied Machine Learning University of Colorado Boulder. September 5, 2017 Prof. Michael Paul

Mathematics of Data. INFO-4604, Applied Machine Learning University of Colorado Boulder. September 5, 2017 Prof. Michael Paul Mathematics of Data INFO-4604, Applied Machine Learning University of Colorado Boulder September 5, 2017 Prof. Michael Paul Goals In the intro lecture, every visualization was in 2D What happens when we

More information

COMP 465: Data Mining Classification Basics

COMP 465: Data Mining Classification Basics Supervised vs. Unsupervised Learning COMP 465: Data Mining Classification Basics Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei Data Mining: Concepts and Techniques, 3 rd ed. Supervised

More information

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology Text classification II CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2015 Some slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska Classification Lecture Notes cse352 Neural Networks Professor Anita Wasilewska Neural Networks Classification Introduction INPUT: classification data, i.e. it contains an classification (class) attribute

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Nearest Neighbor 1-nearest neighbor algorithm: Remember all your data points When prediction needed for a new point Find the nearest saved data point Return the answer associated

More information

Non-trivial extraction of implicit, previously unknown and potentially useful information from data

Non-trivial extraction of implicit, previously unknown and potentially useful information from data CS 795/895 Applied Visual Analytics Spring 2013 Data Mining Dr. Michele C. Weigle http://www.cs.odu.edu/~mweigle/cs795-s13/ What is Data Mining? Many Definitions Non-trivial extraction of implicit, previously

More information

Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy

Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy Machine Learning Dr.Ammar Mohammed Nearest Neighbors Set of Stored Cases Atr1... AtrN Class A Store the training samples Use training samples

More information

Data Mining and Machine Learning: Techniques and Algorithms

Data Mining and Machine Learning: Techniques and Algorithms Instance based classification Data Mining and Machine Learning: Techniques and Algorithms Eneldo Loza Mencía eneldo@ke.tu-darmstadt.de Knowledge Engineering Group, TU Darmstadt International Week 2019,

More information

数据挖掘 Introduction to Data Mining

数据挖掘 Introduction to Data Mining 数据挖掘 Introduction to Data Mining Philippe Fournier-Viger Full professor School of Natural Sciences and Humanities philfv8@yahoo.com Spring 2019 S8700113C 1 Introduction Last week: Association Analysis

More information

SCHEME OF TEACHING AND EXAMINATION B.E. (ISE) VIII SEMESTER (ACADEMIC YEAR )

SCHEME OF TEACHING AND EXAMINATION B.E. (ISE) VIII SEMESTER (ACADEMIC YEAR ) SCHEME OF TEACHING AND EXAMINATION B.E. (ISE) VIII SEMESTER (ACADEMIC YEAR 2016-17) Sl Subject Code Subject Credits Hours/Week Examination Marks No Lecture Tutorial Practical CIE SEE Total 1 UIS00XX Elective

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 19 th, 2007 2005-2007 Carlos Guestrin 1 Why not just use Linear Regression? 2005-2007 Carlos Guestrin

More information

2. (a) Briefly discuss the forms of Data preprocessing with neat diagram. (b) Explain about concept hierarchy generation for categorical data.

2. (a) Briefly discuss the forms of Data preprocessing with neat diagram. (b) Explain about concept hierarchy generation for categorical data. Code No: M0502/R05 Set No. 1 1. (a) Explain data mining as a step in the process of knowledge discovery. (b) Differentiate operational database systems and data warehousing. [8+8] 2. (a) Briefly discuss

More information

Data Mining Download or Read Online ebook data mining in PDF Format From The Best User Guide Database

Data Mining Download or Read Online ebook data mining in PDF Format From The Best User Guide Database Free PDF ebook Download: Download or Read Online ebook data mining in PDF Format From The Best User Guide Database Vipin Kumar, Data mining course at University of Minnesota. Jiawei Han, slides of the

More information

Mine Blood Donors Information through Improved K- Means Clustering Bondu Venkateswarlu 1 and Prof G.S.V.Prasad Raju 2

Mine Blood Donors Information through Improved K- Means Clustering Bondu Venkateswarlu 1 and Prof G.S.V.Prasad Raju 2 Mine Blood Donors Information through Improved K- Means Clustering Bondu Venkateswarlu 1 and Prof G.S.V.Prasad Raju 2 1 Department of Computer Science and Systems Engineering, Andhra University, Visakhapatnam-

More information

Introduction to Clustering

Introduction to Clustering Introduction to Clustering Ref: Chengkai Li, Department of Computer Science and Engineering, University of Texas at Arlington (Slides courtesy of Vipin Kumar) What is Cluster Analysis? Finding groups of

More information

Introduction to Machine Learning Prof. Anirban Santara Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Introduction to Machine Learning Prof. Anirban Santara Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Introduction to Machine Learning Prof. Anirban Santara Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture 14 Python Exercise on knn and PCA Hello everyone,

More information

CISC 4631 Data Mining

CISC 4631 Data Mining CISC 4631 Data Mining Lecture 03: Introduction to classification Linear classifier Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) Eamonn Koegh (UC Riverside) 1 Classification:

More information

Domain Independent Prediction with Evolutionary Nearest Neighbors.

Domain Independent Prediction with Evolutionary Nearest Neighbors. Research Summary Domain Independent Prediction with Evolutionary Nearest Neighbors. Introduction In January of 1848, on the American River at Coloma near Sacramento a few tiny gold nuggets were discovered.

More information

Unsupervised Learning

Unsupervised Learning Outline Unsupervised Learning Basic concepts K-means algorithm Representation of clusters Hierarchical clustering Distance functions Which clustering algorithm to use? NN Supervised learning vs. unsupervised

More information

Jarek Szlichta

Jarek Szlichta Jarek Szlichta http://data.science.uoit.ca/ Approximate terminology, though there is some overlap: Data(base) operations Executing specific operations or queries over data Data mining Looking for patterns

More information

Keywords- Classification algorithm, Hypertensive, K Nearest Neighbor, Naive Bayesian, Data normalization

Keywords- Classification algorithm, Hypertensive, K Nearest Neighbor, Naive Bayesian, Data normalization GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES APPLICATION OF CLASSIFICATION TECHNIQUES TO DETECT HYPERTENSIVE HEART DISEASE Tulasimala B. N* 1, Elakkiya S 2 & Keerthana N 3 *1 Assistant Professor,

More information

Missing Data. Where did it go?

Missing Data. Where did it go? Missing Data Where did it go? 1 Learning Objectives High-level discussion of some techniques Identify type of missingness Single vs Multiple Imputation My favourite technique 2 Problem Uh data are missing

More information

DBSCAN. Presented by: Garrett Poppe

DBSCAN. Presented by: Garrett Poppe DBSCAN Presented by: Garrett Poppe A density-based algorithm for discovering clusters in large spatial databases with noise by Martin Ester, Hans-peter Kriegel, Jörg S, Xiaowei Xu Slides adapted from resources

More information

Supervised Learning: Nearest Neighbors

Supervised Learning: Nearest Neighbors CS 2750: Machine Learning Supervised Learning: Nearest Neighbors Prof. Adriana Kovashka University of Pittsburgh February 1, 2016 Today: Supervised Learning Part I Basic formulation of the simplest classifier:

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 3

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 3 Data Mining: Concepts and Techniques (3 rd ed.) Chapter 3 Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University 2011 Han, Kamber & Pei. All rights

More information

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler BBS654 Data Mining Pinar Duygulu Slides are adapted from Nazli Ikizler 1 Classification Classification systems: Supervised learning Make a rational prediction given evidence There are several methods for

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu [Kumar et al. 99] 2/13/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

More information

International Journal of Computer Engineering and Applications, Volume VIII, Issue III, Part I, December 14

International Journal of Computer Engineering and Applications, Volume VIII, Issue III, Part I, December 14 International Journal of Computer Engineering and Applications, Volume VIII, Issue III, Part I, December 14 DESIGN OF AN EFFICIENT DATA ANALYSIS CLUSTERING ALGORITHM Dr. Dilbag Singh 1, Ms. Priyanka 2

More information

Olmo S. Zavala Romero. Clustering Hierarchical Distance Group Dist. K-means. Center of Atmospheric Sciences, UNAM.

Olmo S. Zavala Romero. Clustering Hierarchical Distance Group Dist. K-means. Center of Atmospheric Sciences, UNAM. Center of Atmospheric Sciences, UNAM November 16, 2016 Cluster Analisis Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster)

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

Lecture Notes for Chapter 5

Lecture Notes for Chapter 5 Classifcation - Alternative Techniques Lecture Notes for Chapter 5 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Look for accompanying R code on the course web site. Topics Rule-Based Classifier

More information

Cluster Analysis. Ying Shen, SSE, Tongji University

Cluster Analysis. Ying Shen, SSE, Tongji University Cluster Analysis Ying Shen, SSE, Tongji University Cluster analysis Cluster analysis groups data objects based only on the attributes in the data. The main objective is that The objects within a group

More information

Unsupervised Learning I: K-Means Clustering

Unsupervised Learning I: K-Means Clustering Unsupervised Learning I: K-Means Clustering Reading: Chapter 8 from Introduction to Data Mining by Tan, Steinbach, and Kumar, pp. 487-515, 532-541, 546-552 (http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf)

More information

CHAPTER 4 DETECTION OF DISEASES IN PLANT LEAF USING IMAGE SEGMENTATION

CHAPTER 4 DETECTION OF DISEASES IN PLANT LEAF USING IMAGE SEGMENTATION CHAPTER 4 DETECTION OF DISEASES IN PLANT LEAF USING IMAGE SEGMENTATION 4.1. Introduction Indian economy is highly dependent of agricultural productivity. Therefore, in field of agriculture, detection of

More information

Announcements:$Rough$Plan$$

Announcements:$Rough$Plan$$ UVACS6316 Fall2015Graduate: MachineLearning Lecture16:K@nearest@neighbor Classifier/Bias@VarianceTradeoff 10/27/15 Dr.YanjunQi UniversityofVirginia Departmentof ComputerScience 1 Announcements:RoughPlan

More information

Supervised Learning: K-Nearest Neighbors and Decision Trees

Supervised Learning: K-Nearest Neighbors and Decision Trees Supervised Learning: K-Nearest Neighbors and Decision Trees Piyush Rai CS5350/6350: Machine Learning August 25, 2011 (CS5350/6350) K-NN and DT August 25, 2011 1 / 20 Supervised Learning Given training

More information

Data Mining. Introduction. Piotr Paszek. (Piotr Paszek) Data Mining DM KDD 1 / 44

Data Mining. Introduction. Piotr Paszek. (Piotr Paszek) Data Mining DM KDD 1 / 44 Data Mining Piotr Paszek piotr.paszek@us.edu.pl Introduction (Piotr Paszek) Data Mining DM KDD 1 / 44 Plan of the lecture 1 Data Mining (DM) 2 Knowledge Discovery in Databases (KDD) 3 CRISP-DM 4 DM software

More information

A Program demonstrating Gini Index Classification

A Program demonstrating Gini Index Classification A Program demonstrating Gini Index Classification Abstract In this document, a small program demonstrating Gini Index Classification is introduced. Users can select specified training data set, build the

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 9 Classification: Advanced Methods

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 9 Classification: Advanced Methods Data Mining: Concepts and Techniques (3 rd ed.) Chapter 9 Classification: Advanced Methods Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat K Nearest Neighbor Wrap Up K- Means Clustering Slides adapted from Prof. Carpuat K Nearest Neighbor classification Classification is based on Test instance with Training Data K: number of neighbors that

More information

An Improvement of Centroid-Based Classification Algorithm for Text Classification

An Improvement of Centroid-Based Classification Algorithm for Text Classification An Improvement of Centroid-Based Classification Algorithm for Text Classification Zehra Cataltepe, Eser Aygun Istanbul Technical Un. Computer Engineering Dept. Ayazaga, Sariyer, Istanbul, Turkey cataltepe@itu.edu.tr,

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday.

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday. CS 188: Artificial Intelligence Spring 2011 Lecture 21: Perceptrons 4/13/2010 Announcements Project 4: due Friday. Final Contest: up and running! Project 5 out! Pieter Abbeel UC Berkeley Many slides adapted

More information

Data Mining Classification: Alternative Techniques. Imbalanced Class Problem

Data Mining Classification: Alternative Techniques. Imbalanced Class Problem Data Mining Classification: Alternative Techniques Imbalanced Class Problem Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Class Imbalance Problem Lots of classification problems

More information

Supervised Learning (contd) Linear Separation. Mausam (based on slides by UW-AI faculty)

Supervised Learning (contd) Linear Separation. Mausam (based on slides by UW-AI faculty) Supervised Learning (contd) Linear Separation Mausam (based on slides by UW-AI faculty) Images as Vectors Binary handwritten characters Treat an image as a highdimensional vector (e.g., by reading pixel

More information

Statistical Methods in AI

Statistical Methods in AI Statistical Methods in AI Distance Based and Linear Classifiers Shrenik Lad, 200901097 INTRODUCTION : The aim of the project was to understand different types of classification algorithms by implementing

More information

Fall Principles of Knowledge Discovery in Databases. University of Alberta

Fall Principles of Knowledge Discovery in Databases. University of Alberta Principles of Knowledge Discovery in Databases Fall 1999 Dr. Osmar R. Zaïane 2 1 Class and Office Hours Class: Mondays, Wednesdays and Fridays from 10:00 to 10:50 Office Hours: Tuesdays from 11:00 to 11:55

More information

Decision Tree (Continued) and K-Nearest Neighbour. Dr. Xiaowei Huang

Decision Tree (Continued) and K-Nearest Neighbour. Dr. Xiaowei Huang Decision Tree (Continued) and K-Nearest Neighbour Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Recap basic knowledge Decision tree learning How to split Identify the best feature to

More information

Distance based Clustering for Categorical Data

Distance based Clustering for Categorical Data Distance based Clustering for Categorical Data Extended Abstract Dino Ienco and Rosa Meo Dipartimento di Informatica, Università di Torino Italy e-mail: {ienco, meo}@di.unito.it Abstract. Learning distances

More information

Data Mining Course Overview

Data Mining Course Overview Data Mining Course Overview 1 Data Mining Overview Understanding Data Classification: Decision Trees and Bayesian classifiers, ANN, SVM Association Rules Mining: APriori, FP-growth Clustering: Hierarchical

More information

Data Mining. Chapter 1: Introduction. Adapted from materials by Jiawei Han, Micheline Kamber, and Jian Pei

Data Mining. Chapter 1: Introduction. Adapted from materials by Jiawei Han, Micheline Kamber, and Jian Pei Data Mining Chapter 1: Introduction Adapted from materials by Jiawei Han, Micheline Kamber, and Jian Pei 1 Any Question? Just Ask 3 Chapter 1. Introduction Why Data Mining? What Is Data Mining? A Multi-Dimensional

More information

Study on Classifiers using Genetic Algorithm and Class based Rules Generation

Study on Classifiers using Genetic Algorithm and Class based Rules Generation 2012 International Conference on Software and Computer Applications (ICSCA 2012) IPCSIT vol. 41 (2012) (2012) IACSIT Press, Singapore Study on Classifiers using Genetic Algorithm and Class based Rules

More information

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Data Mining Introduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1395 1 / 21 Table of contents 1 Introduction 2 Data mining

More information

Oliver Dürr. Statistisches Data Mining (StDM) Woche 12. Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften

Oliver Dürr. Statistisches Data Mining (StDM) Woche 12. Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften Statistisches Data Mining (StDM) Woche 12 Oliver Dürr Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften oliver.duerr@zhaw.ch Winterthur, 6 Dezember 2016 1 Multitasking

More information

Lecture 6 Classification and Prediction

Lecture 6 Classification and Prediction Lecture 6 Classification and Prediction (Part B) Zhou Shuigeng April 9, 2006 2006-4-16 Data Mining: Tech. & Appl. 1 Outline Instance-Based Method Classification based on concepts from association rule

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Supervised Learning Measuring performance Nearest Neighbor Distance Metrics Readings: Barber 14 (knn) Stefan Lee Virginia Tech Administrative Course add

More information

Based on Raymond J. Mooney s slides

Based on Raymond J. Mooney s slides Instance Based Learning Based on Raymond J. Mooney s slides University of Texas at Austin 1 Example 2 Instance-Based Learning Unlike other learning algorithms, does not involve construction of an explicit

More information

Figure (5) Kohonen Self-Organized Map

Figure (5) Kohonen Self-Organized Map 2- KOHONEN SELF-ORGANIZING MAPS (SOM) - The self-organizing neural networks assume a topological structure among the cluster units. - There are m cluster units, arranged in a one- or two-dimensional array;

More information

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1394

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1394 Data Mining Introduction Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1394 1 / 20 Table of contents 1 Introduction 2 Data mining

More information

Machine Learning using MapReduce

Machine Learning using MapReduce Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous

More information

STUDY PAPER ON CLASSIFICATION TECHIQUE IN DATA MINING

STUDY PAPER ON CLASSIFICATION TECHIQUE IN DATA MINING Journal of Analysis and Computation (JAC) (An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861 International Conference on Emerging Trends in IOT & Machine Learning, 2018 STUDY

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Collaborative Filtering Nearest es Neighbor Approach Jeff Howbert Introduction to Machine Learning Winter 2012 1 Bad news Netflix Prize data no longer available to public. Just after contest t ended d

More information

10/5/2017 MIST.6060 Business Intelligence and Data Mining 1. Nearest Neighbors. In a p-dimensional space, the Euclidean distance between two records,

10/5/2017 MIST.6060 Business Intelligence and Data Mining 1. Nearest Neighbors. In a p-dimensional space, the Euclidean distance between two records, 10/5/2017 MIST.6060 Business Intelligence and Data Mining 1 Distance Measures Nearest Neighbors In a p-dimensional space, the Euclidean distance between two records, a = a, a,..., a ) and b = b, b,...,

More information