Design of Controller for Crawling to Sitting Behavior of Infants

Size: px
Start display at page:

Download "Design of Controller for Crawling to Sitting Behavior of Infants"

Transcription

1 Design of Controller for Crawling to Sitting Behavior of Infants A Report submitte for the Semester Project To be accepte on: 29 June 2007 by Neha Priyaarshini Garg Supervisors: Luovic Righetti Prof. Auke J. Ijspeert Biologically Inspire Group of Robotics Department of Computer Science Swiss Feeral Institute of Technology Lausanne, Switzerlan

2 Acknowlegements First an foremost, I woul like to thanks Luovic Righetti for his help throughout this project, particularly in constructing equations of Dynamical system an feeback on the report. I am also thankful to Professor Auke Jan Ijspeert for allowing me to o my semester project with BIRG, motivating me by showing interest in the project an giving useful suggestions for the project. 2 7/2/2007

3 TABLE OF CONTENTS 1 INTRODUCTION PROBLEM DESCRIPTION AND MAIN OBJECTIVES PROPOSED SOLUTION THE ROBOT ORGANIZATION OF THE REPORT DEVELOPMENT OF HAND MADE TRAJECTORY OBSERVATIONS FROM REAL INFANTS THE HAND-MADE TRAJECTORY ANALYSIS OF MAIN CHARACTERISTICS OF TRAJECTORY DIVISION INTO TWO PHASES ROBUSTNESS OF SITTING TRANSITION POSITION OF CENTER OF MASS AS STABILITY CRITERION SIGNIFICANCE OF SPEED OF TORSO CONCLUSION OF ANALYSIS DYNAMICAL SYSTEM FOR SITTING NEED OF DYNAMICAL SYSTEM AND MAIN CHALLENGES MATHEMATICAL SYSTEM FOR SITTING TRAJECTORY SWITCHING FROM CRAWLING TO SITTING CONCLUSION AND FUTURE WORK REFERENCES /2/2007

4 Chapter 1 Introuction 1.1 Problem Description an Main Objectives The RobotCUB European project [1] aims to stuy cognitive abilities of a chil by builing a 2 year ol infant-like humanoi robot name icub. The project has two main goals: first, to create an open an freely available humanoi platform for research in emboie cognition, an secon, to stuy cognitive evelopment. To achieve the goal of cognitive evelopment, it is essential that the robot is able to explore its environment by crawling an sitting just like infants. Therefore, as a part of RobotCUB project, BIRG, EPFL is esigning a controller for the locomotion of the robot so that it is able to crawl on its hans an knees just like an infant an shoul be able to make transition from crawling to sitting position an vise versa. Controller for locomotion of robot in unpreictable environments is quite a challenging task. The main strength of locomotion of infants lies in the fact that infants are able to o locomotion robustly in almost any kin of environment. It may be possible to esign very efficient controllers for locomotion when the external environment is known but such controllers o not have the capability of robust locomotion in new an unpreictable environment. Therefore, unerstaning the biological mechanisms of locomotion is the key for evelopment of controllers for robust locomotion of autonomous robots. The unerlying biological mechanisms by which infants are able to crawl an sit in almost any kin of environment can be learne by moeling the behavior of infants. A controller for crawling behavior of robot has alreay been evelope in [2] by observation of crawling in real infants. It is base on CPGs which are neural circuits responsible for locomotion foun in spinal cor of animals. To esign the controller first the crawling behavior of infants was stuie an important characteristics of the trajectory were extracte. Then a mathematical moel of CPGs base on couple nonlinear oscillators was evelope to reprouce the crawling gait of infants. The goal of this project is to stuy the transition from crawling to sitting in infants an to finally esign a controller for the robot that woul enable it to perform this transition in the same way as infants. All the experiments on the robot are one in Webots, a simulation software [3]. 1.2 Propose Solution For esigning a controller for crawling to sitting, a biologically inspire approach is followe. - First, the transition from crawling to sitting in real infants is stuie qualitatively. - From the qualitative observation of real infants sitting, a han-mae trajectory for the DOFs of the robot is esigne such that the robot can sit. 4 7/2/2007

5 - Then the main characteristics of the trajectory are stuie. For example: Is the position of the projection of the center of mass of the robot on the groun, always in the support polygon? When is the robot unstable? What is the state of the robot when entering these instability regions? What are the critical times of the movement? - After this, the trajectories are optimize to increase the stability of the transition - After an optimum trajectory is mae, a ynamical system can be implemente for the transition from crawling to sitting by integrating it with the previously esigne controller for crawling [2]. 1.3 The Robot The etaile specifications of the real ICUB robot have been given in [4]. The Webots moel of ICUB has 27 egrees of freeom: 6 in the hea (3 in the neck for tilt, swing an pan an 3 in the eyes), 5 in each leg (3 in hip joint for flexion/extension, abuction/auction an rotation an one each in knee an ankle for flexion/extension), 4 in each arm (3 in shouler for flexion/extension, abuction/auction an rotation an one in elbow for flexion/extension) an 3 in the torso (roll, pitch an yaw) (Fig 1.1). The real ICUB has 53 egrees of freeom with extra egrees of freeom in han an wrist but for simulation of crawling an sitting behaviors the 27 egrees of freeom in the Webots moel of ICUB are sufficient. Shouler Joint: 3 DOF Torso Joint: 3 DOF Hip Joint: 3 DOF Elbow Joint: 1 DOF (Flexion / Extension) Knee Joint: 1 DOF (Flexion / Extension) Y Z Ankle Joint: 1 DOF (Flexion / Extension) X Figure 1.1: The egrees of freeom in the Webots moel of the ICUB 5 7/2/2007

6 The range of motion of joint angles (in raians) use for sitting an crawling along with the names use for those angles in the report is shown in Figure1.2. DOF: Shouler (Flex/Ext.) Angle name: Right_arm_1 /Left_arm_1 Angle range: to 4.01 DOF: Torso Roll Angle name: Torso_1 Angle range: to 1.57 DOF: Hip (Flex/Ext) Angle name: Right_leg_1 / Left_leg_1 Angle range: to 1.75 DOF: Elbow (Flex/Ext) Angle name: Right_elbow / Left_elbow Angle range: 0.0 to _ + _ DOF: Ankle (Flex/Ext) Angle name: Right_ankle / Left_ankle Angle range: to DOF: Knee (Flex/Ext) Angle name: Right_knee / Left_knee Angle range: to Back View Left Right DOF: Shouler Abuc/Auc Angle name: Left_arm_2 Angle range: to DOF: Shouler Rotation Angle name: Left_arm_3 Angle range: to 1.57 DOF: HipAbuc/Auc Angle name: Left_leg_2 Angle range: to DOF: Hip Rotation Angle name: Left_leg_3 Angle range: to _ + + DOF: Torso Pitch Angle name: Torso_2 Angle range: to 1.22 DOF: Shouler Abuc/Auc Angle name: Right_arm_2 Angle range: to 2.62 DOF: Shouler Rotation Angle name: Right_arm_3 Angle range: to 1.57 DOF: HipAbuc/Auc Angle name: Right_leg_2 Angle range: to 0.82 DOF: Hip Rotation Angle name: Right_leg_3 Angle range: -1.4 to Figure 1.2: Names an range of motion of joint angles of Webots moel of the ICUB 6 7/2/2007

7 1.4 Organization of the report In chapter 2, I will escribe the qualitative characteristics of the transition from crawling to sitting observe in real infants an compare the han-mae trajectory evelope for the robot with the trajectory followe by real infants. Then, I will analyze the main characteristics of the han-mae trajectory an explore the various stability criteria for the trajectory. In chapter 3, I will escribe how we can switch from crawling to sitting controller when an external signal is provie an how we can generate the trajectories for sitting from a ynamical system. Chapter 2 Development of han-mae trajectory 2.1 Observations from real infants The stuy of crawling to sitting in real infants was one on the kinematical ata of crawling babies provie by Uppsala University (Sween) to BIRG, EPFL. The ata contains recore vieos of about 1 year ol infants crawling on the groun, shifting to sitting from crawling an from crawling to sitting. From the vieos, it was observe that infants generally sit in two ways as shown in Figure 2.1. In the first way (Figure 2.1a), infants sit on their legs while in the secon way (Figure 2.1 b), infants sit on their hips. The first metho of sitting is not aequate for robots as it puts lot of pressure on knee an ankle joints. Also the knee nees to be flexe towars hip to a large extent which is not achievable in the real icub robot. Therefore, the secon metho of sitting has been stuie for the evelopment of han-mae trajectory. (a) (b) Figure 2.1: The two ways in which infants generally sit When infants sit on their hips, two main characteristics of the transition can be notice: 7 7/2/2007

8 (i) (ii) First, infants bring one of their leg forwar using the other leg an arms as a support (First 3 snapshots of real infants in Figure 2.2) Then they move their arm back an finally sit on their hip(last 3 snapshots of real infants in Figure2.2) Figure 2.2: Infants oing transition from crawling to sitting The main focus while eveloping han-mae trajectory has been on the capturing of these two main characteristics of the transition from crawling to sitting in infants. In Section 2.2, I will escribe the han-mae trajectory evelope for the ICUB. 2.2 The han-mae trajectory The trajectory is evelope by specifying the angles for Relevant DOFs after 5 TimeSteps (1 Time Step = 64 ms) an then interpolating between these angles for every TimeStep using PCHIP (Piecewise Cubic Hermite Interpolating Polynomial) [5]. This interpolation metho gives an interpolating polynomial whose first orer erivative is continuous. Unlike spline interpolation, the secon orer erivative is not continuous but the shape of ata is preserve by this interpolation i.e the interval where the ata is monotonic, interpolating polynomial is also monotonic (Figure 2.3). The sitting metho of the robot using the han-mae trajectory has been compare with the sitting metho of real infant in Figure 2.4. The two main characteristics of the sitting metho that were observe in real infants have been capture in the han mae trajectory also. To bring one of the legs forwar (left leg in this case) first the DOF Torso Pitch is move which shifts the weight of the boy to the right sie (Fig 2.5 :First snapshot) Then the DOF right leg (Abuction / Auction an Rotation) move which broaens support polygon i.e right half of the boy starts supporting the boy (Fig 2.5 :Secon snapshot). Also simultaneously left knee starts extening so that it can come forwar. While the left 8 7/2/2007

9 knee is extening, DOF left leg (Abuction/Auction an Rotation) move. This movement of left leg helps in extension of left knee without putting much pressure on the right half of the boy. If the DOF left leg (Abuction / Auction an Rotation) o not move, the extension of knee will increase the height of left half of the boy an robot may fall towars the right sie. After the extension of left knee is one the DOF left leg (Abuction / Auction an Rotation) move back to their original state an the first phase of bringing left leg forwar is complete (Fig 2.5 :thir snapshot). Then the right arm moves so that the robot is able to sit on the hip (Fig 2.5 : Last 3 snapshots). Figure 2.3: Comparison of interpolation of ata using Pchip an spline interpolation Figure 2.4: Han mae trajectory of the robot compare with real infant 9 7/2/2007

10 Figure 2.5: Main actions of robot while sitting. The re lines shown the support polygon an the green box shows the projection of center of mass on the groun. Though the main characteristics of sitting transition in infants have been capture, there are some visible ifferences in the sitting metho of infant an the robot because of the constraints on the maximum angle up to which hip joint of the robot can be extene. Real infant exten their legs to a large extent while moving one of their leg forwar (Angles right_leg_1 an left_leg_1 as efine in Figure 1.2 are at least 2 raians). Because of this, the hips of the infant are almost touching the groun when the infant has brought its leg forwar (First 3 snapshots of real infant in Figure 2.4) but the robot cannot exten its legs to such a large extent. The maximum range of angles right_leg_1 an left_leg_1 is 1.75 raians. Due to this constraint, hips of the robot are quite above from the groun level when it starts moving its arm back (last 3 snapshots of the robot in Figure 2.4) as compare to the real infant. This makes the robot more unstable in the secon part of the transition. In the next section, I will analyze the main characteristics of the han-mae trajectory like its stability, robustness, position of projection of center of mass etc. 2.3 Analysis of main characteristics of trajectory Division into two phases As observe in the real infant, the transition from crawling to sitting can be ivie into two parts. In the first part, chil brings one of its legs to the front by using secon an thir egrees of freeom of leg. After that, chil moves its arm backwar in orer to sit on the groun. The variations of joint angles of relevant DOFs of robot while sitting are shown in Figure2.6. The yellow line (left most) in the plots correspons to the point when robot starts rotation of its leg in orer to bring it forwar (left leg in this case). The orange line (mile) correspons to the point when robot has complete the rotation of its left leg an starts moving its right arm so that it can sit. The re line (right most) correspons to the point when robot sits on the groun. If the trajectory is specifie only until orange line (mile), then robot oes not sit but is stable at its position an right arm can be move at any time to make the robot sit. Therefore there is a clear istinction between two phases. The projection on the groun of the center of mass of robot is insie the support polygon uring the first phase an goes outsie the support polygon uring the secon phase. We can say that the secon phase is the critical perio while making transition from crawling to sitting because uring this perio the robot is unstable. This is also inicate by the 10 7/2/2007

11 torso spee of the robot (plotte in soli black line with the variation of joint angles with time in Figure 2.6) which goes to its maximum value uring the secon phase. In the next section, I will explain the metho of checking the robustness of the sitting transition using the critical perio to limit the parameter space an analyze the robustness of the current trajectory Robustness of sitting transition The transition from crawling to sitting has to be robust to perturbation as robots eviate from the specifie trajectories very often. The robustness of the trajectory cannot be checke by just varying the points specifie for the trajectory of a egree of freeom of the robot one at a time an seeing whether robot falls or not because trajectory points are interepenent. The robot may or may not fall for a given value of a trajectory point of a egree of freeom epening upon the values specifie for the other trajectory points. Varying a trajectory point for all possible values of other trajectory points is not possible because the number of possible combinations grow exponentially with the number of trajectory points. Therefore we nee to limit the trajectory points that we nee to vary. The notion of critical perio in the sitting transition efine in section can be use for this purpose. The robot is very stable in the first phase of the transition as one of its legs an both of its arms are touching the groun an center of mass is well insie the support polygon. Therefore we can check robustness of the trajectory only in the critical perio when the robot is unstable. The egrees of freeom which move uring the critical perio are: Right arm (Flexion / Extension an Abuction / Auction ) Torso (Roll an Pitch) To check the robustness of the sitting transition, I varie the trajectories of these DOFs (one at a time) in the critical perio i.e. I varie the two specifie trajectory points(point no. 6 an 7, Figure 2.7(left)) that fall between orange an re line. Angle (raians)/ Spee (m/s) Angle (raians)/ Spee (m/s) Time (in sec) Time (in sec) 11 7/2/2007

12 Angle (raians)/ Spee (m/s) Angle (raians)/ Spee (m/s) Time (in sec) Time (in sec) Angle (raians)/ Spee (m/s) Time (in sec) Figure 2.6: Variation of joint angles of relevant egrees of freeom an torso spee (vertical in soli black line an absolute in otte black line) with time. (Top left) Variation of angles Right_arm_1 an Right_arm_2. (Top Right) Variation of angles Left_arm_1 an Left_arm_2. (Mile Left) Variation of angles Right_leg_1, Right_leg_2, Right_leg_3 an Right_knee. (Mile Right) Variation of angles Left_leg_1, Left_leg_2, Left_leg_3 an Left_knee. (Bottom) Variation of angles Torso_1 an Torso_2. The yellow vertical line (leftmost) is rawn at the time when robot starts moving its left leg. The orange vertical line (mile) is rawn at the time when robot has brought its left leg forwar an starts moving its right arm. The re line (rightmost) is rawn at the time when robot sits on the groun. The names of the angles whose variations are plotte are efine in Figure 1.2. The legs remain almost static uring the critical perio. Therefore, for right leg (Abuction / Auction an Rotation) the constant value which these DOFs have uring 12 7/2/2007

13 critical perio is varie by varying Point no. 3 (Fig. 2.7 (right)) in the trajectory of right leg (Abuction/ auction, angle name right_leg_2) an Point no. 4 (Fig. 2.7 (right)) in the trajectory of right leg (Rotation, angle name right_leg_3). Other DOFs like right leg (Flexion /Extension), right knee, left leg (Flexion / Extension) an left knee have not been varie because by varying these DOFs, robot is able to sit but uring transition there is lot of pressure on the ankles as knees o not touch the groun in most of the cases. The left leg (Abuction / Auction an Rotation) have also not been varie because their value has to be near zero i.e. left leg has to come forwar for the first phase to en, only then we can enter critical perio by moving right arm backwars. After the selection of the trajectory points that have to be varie, next important thing that nees to be etermine is the etection of robot fall. The robot is consiere to have fallen when: (i) (ii) the hea of the robot touches the groun. The angle of the line joining torso an hea with the vertical axis is greater than 45 after the hips have touche the groun. The secon criterion is useful because sometimes robot oes not fall with hea touching the groun but is sitting in very unstable position from where a small perturbation may make the robot fall. Figure show the range of angles of the trajectory points over which robot oes not fall for relevant DOFs. From Figure , we can observe that there is a well efine an quite large region for all the DOFs in which robot is able to sit with stability. The specifie points in the trajectory shoul lie in the center of that region so that sitting proceure is least affecte by perturbations. This is true for the specifie trajectory points of the han mae trajectory. In the next section, I will analyze the use of projection of center of mass as a criterion for eciing the stability of sitting transition. Point 6 Point 3 Point 7 Point 4 Time (in sec) Figure 2.7: The points of trajectory that are varie Time (in sec) 13 7/2/2007

14 Figure 2.8: Falling behavior of robot on varying the points of trajectory specifie for right arm in the critical region (left: right arm Flexion / Extension (angle name: right_arm_1), right: right arm Abuc / Auc (angle name right_arm_2)) ( Falls = 1 when robot falls) Figure 2.9: Falling behavior of robot on varying the points of trajectory specifie for torso in the critical region ( left : torso Roll (Angle name torso_1), right: torso Pitch (Angle name torso_2)) (( Falls > 0 when robot falls) For torso_2, when the robot falls on the hea, falls has been given value 2 an when the sitting is not stable, falls has been given value 1. Figure 2.10: Falling behavior of robot on varying the constant value of trajectory specifie for right leg in the critical region (Left: right leg Abuction / Auction (angle name: right_leg_2), Right: Right leg Rotation (angle name: right_leg_3)) ( Fall = 1 when robot falls) 14 7/2/2007

15 2.3.3 Stability criterion base on center of mass To classify which sitting transitions are goo an which are ba, a criterion is neee to measure the stability of the sitting transition. The position projection of center of mass on the groun provies goo information about the stability of the robot. If the projection of center of mass on the groun is outsie the support polygon, the robot is unstable at that moment otherwise we can consier it stable when the spee of center of mass is not very high which is generally the case in sitting transition. Also if the istance of projection of center of mass from support polygon is larger, the instability is higher. Thus both the time for which center of mass is outsie support polygon an the istance of center of mass from the support polygon, inicate the stability of the robot. To capture both these quantities, I efine stability measure as integration of istance of center of mass from support polygon with time uring sitting. The istance of center of mass from support polygon is taken as perpenicular istance of center of mass from the closest ege of support polygon when center of mass is outsie support polygon an zero when the center of mass is insie support polygon. Figure show the variation in this stability measure when the trajectory points of the egrees of freeom are varie like in Section The stability measure has been name CM Distance in the plots. As can be seen from the plots, the CM Distance cannot be use to istinguish between the regions of robot falling an not falling. This means that for sitting the center of mass always goes outsie the support polygon. Also, there is not much variation in this quantity for the region in which robot oes not fall. Therefore this criterion cannot be use to classify sitting transitions as goo or ba. Figure 2.11: The left plot shows the region where robot falls (/ oes not fall ) an the right plot shows the variation in CM_Distance on varying the Points 6 an 7 of the trajectory of Right Arm Flexion / Extension. 15 7/2/2007

16 Figure 2.12: The left plot shows the region where robot falls (/ oes not fall) an the right plot shows the variation in CM_Distance on varying the Points 6 an 7 of the trajectory of Right Arm Abuction / Auction. Figure 2.13: The left plot shows the region where robot falls (/ oes not fall) an the right plot shows the variation in CM_Distance on varying the Points 6 an 7 of the trajectory of Torso Roll (angle name Torso 1). Figure 2.14: The left plot shows the region where robot falls (/ oes not fall) an the right plot shows the variation in CM_Distance on varying the Points 6 an 7 of the trajectory of Torso Pitch ( angle name Torso 2). 16 7/2/2007

17 Figure 2.15: The CM Distance on varying Point 3 of the trajectory of Right Leg Abuction/ Auction (angle name right leg 2) (left) an Point 4 of the trajectory of Right Leg Rotation (angle name right leg 3) (right) with the re line(bottom) showing the region in which robot falls / oes not fall. The range for which the fall is zero is the range in which robot oes not fall. In the next section we will see whether it is necessary to attain a certain amount of torso spee for sitting or not Effect of spee of torso If we see the variation of actual torso spee an vertical torso spee in trajectory plots of Figure 2.6, the torso spee starts builing up from the start of orange line. There coul be a possibility that if a minimum amount of torso spee it achieve at the start of the critical perio, the robot will always sit. If this is the case then we can easily preict whether robot will sit or not at the start of the critical perio. To stuy the effect of spee of torso on the sitting of robot, I varie the time of moving right arm (Flexion /Extension) DOF from just 1 TimeStep (64 ms) to 60 Time Steps. This time is 5 Time Steps in the original trajectory. By increasing the time of moving right arm (Flexion / Extension) DOF, torso spee can be ecrease. Therefore we can stuy whether a minimum amount of torso spee is require to make robot sit or not. Figure 2.16 shows the torso spee profiles on varying the time of moving right arm (Flexion / Extension) DOF over (1, 2, 5, 10, 15, 30 an 60) Time Steps. Also for comparison, the torso spee profile for a trajectory when robot falls has been plotte in re color. The robot was able to sit even when the time of moving right arm was 60 Time Steps. As can be seen in the plot, when the time of moving right arm is 60 Time Steps, torso spee starts builing up from zero spee. Therefore we can infer that we nee not achieve a minimum amount of torso spee for sitting. 17 7/2/2007

18 Spee (in m/s) Robot Falls Time (in sec) Figure 2.16: Torso Spee Profiles for ifferent time steps of moving right_arm_1 in critical region. The re plot (bottom most) is the one when robot falls. Torso_1 is set to 0.16 raians for this plot Conclusion of analysis From the analysis of the han-mae trajectory, following points can be note: (i) The sitting transition is ivie into 2 phases. (ii) The robot is unstable in the secon phase. (iii) The trajectory can be qualifie as goo or ba on the basis of its robustness. (iv) From the position of center of mass we are not able to istinguish between the trajectories which make robot sit an which make robot fall. This means that uring sitting robot always becomes unstable. Also there is not much variation in stability on the basis of position of center of mass. (v) The torso spee cannot be use to preict the sitting of the robot. Infact, it was notice that the trajectories in which arm oes not loose the contact of the groun in the critical perio, robot was able to sit. 18 7/2/2007

19 Overall we can say that robustness is more important than the stability of the sitting transition an some amount of instability is require to make the robot sit. The robustness has been achieve in the current han-mae trajectory. After the han mae trajectory has been analyze an optimize, I will escribe how we can make a ynamical controller for the trajectory. Chapter 3 Dynamical System for Sitting 3.1 Nee of Dynamical System an Main challenges The controller base on ynamical system is avantageous because the trajectories can be easily moulate by controlling only a few parameters of ynamical system. In case of eviation from the trajectory, system smoothly returns to the trajectory an aition of sensory feeback can also be one very easily using the stability properties of the system. To esign the ynamical system for the controller of crawling to sitting transitions, two major problems nee to be hanle that are: 1) Designing mathematical equations for sitting trajectories 2) Switching from crawling to sitting when a signal S is given By solving the first problem, we woul be able to moulate sitting transition by using only few parameters an by solving the secon problem we woul be able to make robot sit whenever we wish to, by controlling a signal S. In the next sections, I will escribe the ynamical systems for the above two problems. 3.2 Mathematical moel for sitting trajectories The sitting transition is ivie into two phases as explaine above. Therefore, first we create a ynamical system for the first phase. If we see the plots of variation of joint angles (Fig. 2.5), the egrees of freeom that move in the first phase are: Torso Pitch (Angle name: Torso_2) Right Leg Abuc / Auc (Angle name: Right_leg_2) Right Leg Rotation (Angle name: Right_leg_3) Left Knee (Angle name: Left_Knee) Left Leg Abuc / Auc (Angle name: Left_leg_2) Left Leg Rotation (Angle name: Left_leg_3) Also the egrees of freeom like: Right Arm Flex/Ext (Angle name: Right_Arm_1) Right Arm Abuc /Auc (Angle name: Right_Arm_2) Right Elbow (Angle name: Right_elbow) 19 7/2/2007

20 Left Arm Flex / Ext (Angle name : Left_arm_1) Left Arm Abuc /Auc (Angle name: Left_arm_2) Left Elbow (Angle name: Left_elbow) Right Leg Flex / Ext (Angle name: Right_leg_1) Left Leg Flex /Ext (Angle name; Left_leg_1) that were moving while crawling become constant while sitting. The equation for the egrees of freeom that were moving while crawling using x to enote the value of angle name can be written as follows: = y x y = α ( x x0 ) + β y Eq(1) where can be right_arm_1, right_arm_2, right_elbow, left_arm_1, left_arm_2, left_elbow, right_leg_1, left_leg_1 α x0 an β are constants whose values are same for all the DOFs is the constant value of the angle name ' ' uring first phase Among the egrees of freeom that start moving uring the first phase of sitting, first Torso Pitch starts moving as escribe in section 2.2. The equation for the movement of torso pitch using to enote the value of angle torso_2, can be written as follows: x x y β α = y = α = 160 = β ( x * β x0 / 32 ) + β y Eq(2) With this equation the angle torso_2 will move towars x0 which is the behavior we wish to have. The spee of the movement can be controlle by α an β. Then the movement of right leg an left leg is starte. The equation for the movement of right leg an left knee can be written in the same way as for torso pitch with an aitional factor that ensures that right leg an left knee start moving only after torso has starte moving. The equations are as follows: x = T ( y y = T ( α ( x T = 1+ e ) 1 x0 ) + β y 100 ( x 0.8 x0 ) ) Eq(3) 20 7/2/2007

21 where α α α right _ leg _ 2 right _ leg _ 3 left _ knee can be right _ leg _ 2, right _ leg _ 3, left _ knee = α = α = α / 2 / 2 β right _ leg _ 2 β β right _ leg _ 3 left _ knee = β = β = β / 2 / 2 / 2 x0 The value of T will be very small until the value of angle torso_2 is not 0.8*. Thus right leg an left knee will not move until the value of angle torso_2 is 0.8* x0. This ensures that when right leg an left knee start moving, weight of the boy is supporte mostly by right half of the boy. The T can also be multiplie by an external sensory signal which makes T approach 1 only when the boy weight is supporte by right half of the boy. Also as explaine in section 2.2, the movement of left leg (Abuc/Auc an Rotation) has to be synchronize with the movement of left knee. This is one using the following equations: x = T ( K c1 x where T is the same as in Eq(2) 1 K = 100 y left _ knee y left _ knee 1+ e can be left _ leg _ 3, left _ leg _ 2 c c 2 1 = β = 8 left _ knee + /10 c 2 ( x left _ knee x0 left _ knee ) ( x x0 )) Eq(4) When the left knee is extening, value of K is very small. Therefore the secon half of the equation will make x ecrease until either left knee stops extening or x becomes equal to x0. When the extension of left knee will complete, secon half of the equation will become zero as x left _ knee will become equal to x 0left _ knee, first half will become active as y left _ knee will become zero an will move x to zero. This completes the first phase of the sitting transition. The egrees of freeom that move in the secon phase are: Torso Pitch (Angle name: torso_2) Torso Roll (Angle name: torso_1) Right Arm Flex. / Ext. (Angle name: right_arm_1) Right Arm Abuc / Auc (Angle name: right_arm_2) The egree of freeom Torso Roll was not moving uring crawling or uring the first phase of sitting. Therefore its equation can be written as: 21 7/2/2007

22 x torso _1 y torso _1 α rtorso _1 e P = 1+ e P1 = 1+ e = P ( y = P ( α = α 1000*( P1 0.2) torso _1 torso _1 / *( P1 0.2) 1 ) ( x β torso _1 torso _1 100 ( x left _ leg _ 3 ) ( x left _ leg _ 3 ) x0 = β torso _1 1+ e ) + β / 4 torso _1 y torso _ ( x left _ knee x0 left _ knee ) ( x left _ knee x0 left _ knee ) ) Eq(5) The value of P will be very small uring the first phase of sitting an will become 1 when the first phase will en i.e when left leg (Rotation) becomes zero an extension of left knee is complete. Like variable T, variable P can also be multiplie by external sensory signal by which we can control the start of the critical phase of sitting. The DOF Torso Roll will start moving only when the first phase will en an P will become 1. The equations of egrees of freeom Torso Pitch, Right Arm Flex/Ext an Right Arm Abuc/Auc that were moving before also can be moifie by replacing x0 with ( x0 + P x1 x0 )). ( This will make these egrees of freeom move towars x1 when the secon phase of sitting transition will start. Similarly, when sitting is over i.e. hips touch the groun, we can change the attractor of left arm (Abuction / Auction) an right leg (Rotation) to make the sitting pose stable. The trajectories for relevant DOFs obtaine using above equations are shown in figure 3.1. As before, the robot starts sitting after yellow line (secon vertical line from the left), the orange line (thir vertical line from left) marks the en of first phase i.e P = 1 at this point. The re line (right most vertical line) is rawn when robot sits. Before the yellow line (secon vertical line from the left), robot is crawling an the black line (leftmost vertical line) is rawn at the time when signal for sitting is sent. The switching from crawling to sitting has been explaine in the next section. From the plots we can notice, that the trajectories similar to han mae trajectories have been obtaine until the re line (right most vertical line). The trajectory after this line only helps the robot sit in a proper position. So the trajectories nee not be same as han mae trajectory after re line (right most vertical line). 22 7/2/2007

23 Angle (raians)/ Spee (m/s) Angle (raians)/ Spee (m/s) Time (in sec) Time (in sec) Angle (raians)/ Spee (m/s) Time (in sec) 23 7/2/2007

24 Angle (raians)/ Spee (m/s) Time (in sec) Angle (raians)/ Spee (m/s) Time (in sec) Figure 3.1: Variation of joint angles of relevant egrees of freeom an torso spee (vertical in soli black line an absolute in otte black line) with time. (Top ) Variation of angles Right_arm_1 an Right_arm_2. (Secon from Top) Variation of angles Left_arm_1 an Left_arm_2.. (Thir from Top) Variation of angles Torso_1 an Torso_2. (Fourth from Top) Variation of angles Right_leg_1, Right_leg_2, Right_leg_3 an Right_knee. (Bottom) Variation of angles Left_leg_1, Left_leg_2, Left_leg_3 an Left_knee. Till black line (leftmost vertical line) robot is crawling. Then it gets signal for sitting at black line. At yellow vertical line (secon from left) robot starts sitting by moving its torso first. The orange vertical line(secon from left) is rawn at the time when robot has brought its left leg forwar an starts moving its right arm. The re line(right most) is rawn at the time when robot sits on the groun. The names of the angles whose variations are plotte are efine in Figure 1.2. In the next section I will escribe how we can smoothly switch from crawling to sitting. 24 7/2/2007

25 3.3 Switching from crawling to sitting While crawling, infants have a trot like gait, which is a perioic gait. The equations of the CPG that generates the trajectories for the hip an shouler joints for crawling as escribe in [2] are: xi= yi yi= α i yi ( K i K = ( e α = ν (1 + βe i i by i 2 ( μ x k s tan ce ky j + 1)( e σ x 2 i ) 2 i ) y ) K x 2 i k + + 1) ( e swing by i i i + 1) c 1 y j + c 2 y k Eq(6) where i = 1 4 enotes the ith oscillator, j the opposite oscillator an k the iagonal oscillator, c1 an c2 are positive coupling constants for the CPG architecture shown in figure 3.2 below. Figure 3.2: The architecture of CPG (Source [2]) We want when we switch S from 0 to 1, we shoul get sitting controller. For this, we can get a combine signal from the oscillator as well as from the ynamical system for sitting an use the signal S to shut off the oscillator or the ynamical system for sitting by moifying their equations as shown below: For oscillator = (1 S) f 1 ox = (1 S) f 2 oy Combine Signal ( ox ( ox, oy, oy ) ) cx = ox + sx For DynamicalSystem = sx = sy Eq(7) S f S f 3 4 ( sx ( sx, sy, sy The problem with this equation is that the controller will shift abruptly from crawling to sitting on switching S from 0 to 1. By abruptness I mean that even if the leg is moving backwar, it will immeiately start moving forwars without completing its cycle as shown in Figure 3.3. This will require large amount of acceleration. Therefore we wish ) ) 25 7/2/2007

26 that after the signal S is change from 0 to 1, switching from crawling to sitting controller shoul occur only when while crawling hip an shouler joints are moving in the same irection as they will move after shifting from crawling to sitting. During sitting, hip an shouler joints are extene to large extent, therefore it is esirable that switching from crawling to sitting takes place when hip an shouler joints start extening. This can be achieve by substituting S by ' efine as: Si ' = S e ' i D osy i S i S will become 1 only when S is 1 an osyi is positive i.e osxi is increasing. For the egrees of freeom relate to Left Arm, S will be substitute by S 1 ', for Right Arm by S ' 2, for Right Leg by S 3 ' an for left leg by S 4 '. For Torso, S is substitute by S 3 ' as movement of torso results in increase pressure on right leg. The effect of this substitution is shown in the figure 3.3 below. Also in Fig. 3.1, the black line (left most vertical line) correspons to signal S an yellow line (secon vertical line from left) correspons to signal S 3 '. Figure 3.4 shows snapshots of the robot switching from crawling to sitting when following the trajectories shown in Fig 3.1. Figure 3.3: Switching from crawling to sitting. Effect of replacing switching signal S by S 26 7/2/2007

27 Figure 3.4: Robot switching from crawling to sitting. In the first 3 snapshots, robot is crawling. The signal for sitting is given at the time of thir snapshot but torso starts moving only by 6 th snapshot as right leg is going backwars in thir snapshot. Left leg an arms become constant after thir snapshot. The snapshots have been taken from vieo: Craling_2_sitting_right Thus smooth switching from crawling to sitting oscillator is achieve. Conclusion an Future Work A controller for sitting of the robot in the same way as infants has been successfully implemente. The sensory feeback can easily be integrate into this controller by moifying the values of variable T (efine in Eq(3)) an P (efine in Eq(5)) accoring to the sensory input. The robot can be switche from crawling to sitting smoothly at anytime by proviing an external signal S. Also the main characteristics of the sitting behavior of infants an the perio of instability have been ientifie. The future work that can be one is: 1) Aition of sensory feeback while sitting. This will be particularly useful when robot is in critical perio. It was observe that robot falls in the critical perio when arm looses contact of the groun. Sensory feeback might be very helpful in preventing the fall. 27 7/2/2007

28 2) Collection of biological ata to know that when infants enter the critical perio of sitting phase, their movements are controlle by signals from brain or signals from spinal cor. 3) Development of controller for transition from sitting to crawling 4) Increase in the limit up to which hip joints can be flexe / extene. References [1] G. Sanini, G. Metta, an D. Vernon, Robotcub: an open framework for research in emboie cognition, 2004, paper presente at the IEEE-RAS/RJS International Conference on Humanoi Robotics, Santa Monica, CA. [2] L. Righetti an A.J. Ijspeert. Design methoologies for central pattern generators: an application to crawling humanois, Proceeings of Robotics: Science an Systems 2006, Philaelphia, USA [3] Michel, O. Webots:Professional Mobile Robot Simulation. Int. J. of Avances Robotic Systems, 2004, pages:39-42,vol.1 [4] G. Metta, G. Sanini, D. Vernon, D. Calwell, N. Tsagarakis, R. Beira, J. Santos-Victor, A. Ijspeert, L. Righetti, G. Cappiello, G. Stellin, F. an Becchi. The RobotCub project - an open framework for research in emboie cognition, Humanois Workshop, Proceeings of the IEEE -RAS International Conference on Humanoi Robots, December 2005 [5] MATLAB Function pchip: Fritsch, F. N. an R. E. Carlson, "Monotone Piecewise Cubic Interpolation," SIAM J. Numerical Analysis, Vol. 17, 1980, pp /2/2007

Bends, Jogs, And Wiggles for Railroad Tracks and Vehicle Guide Ways

Bends, Jogs, And Wiggles for Railroad Tracks and Vehicle Guide Ways Ben, Jogs, An Wiggles for Railroa Tracks an Vehicle Guie Ways Louis T. Klauer Jr., PhD, PE. Work Soft 833 Galer Dr. Newtown Square, PA 19073 lklauer@wsof.com Preprint, June 4, 00 Copyright 00 by Louis

More information

Dual Arm Robot Research Report

Dual Arm Robot Research Report Dual Arm Robot Research Report Analytical Inverse Kinematics Solution for Moularize Dual-Arm Robot With offset at shouler an wrist Motivation an Abstract Generally, an inustrial manipulator such as PUMA

More information

Coupling the User Interfaces of a Multiuser Program

Coupling the User Interfaces of a Multiuser Program Coupling the User Interfaces of a Multiuser Program PRASUN DEWAN University of North Carolina at Chapel Hill RAJIV CHOUDHARY Intel Corporation We have evelope a new moel for coupling the user-interfaces

More information

Classical Mechanics Examples (Lagrange Multipliers)

Classical Mechanics Examples (Lagrange Multipliers) Classical Mechanics Examples (Lagrange Multipliers) Dipan Kumar Ghosh Physics Department, Inian Institute of Technology Bombay Powai, Mumbai 400076 September 3, 015 1 Introuction We have seen that the

More information

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles 2D Kinematics Consier a robotic arm. We can sen it commans like, move that joint so it bens at an angle θ. Once we ve set each joint, that s all well an goo. More interesting, though, is the question of

More information

Automation of Bird Front Half Deboning Procedure: Design and Analysis

Automation of Bird Front Half Deboning Procedure: Design and Analysis Automation of Bir Front Half Deboning Proceure: Design an Analysis Debao Zhou, Jonathan Holmes, Wiley Holcombe, Kok-Meng Lee * an Gary McMurray Foo Processing echnology Division, AAS Laboratory, Georgia

More information

Kinematic Analysis of a Family of 3R Manipulators

Kinematic Analysis of a Family of 3R Manipulators Kinematic Analysis of a Family of R Manipulators Maher Baili, Philippe Wenger an Damien Chablat Institut e Recherche en Communications et Cybernétique e Nantes, UMR C.N.R.S. 6597 1, rue e la Noë, BP 92101,

More information

Local Path Planning with Proximity Sensing for Robot Arm Manipulators. 1. Introduction

Local Path Planning with Proximity Sensing for Robot Arm Manipulators. 1. Introduction Local Path Planning with Proximity Sensing for Robot Arm Manipulators Ewar Cheung an Vlaimir Lumelsky Yale University, Center for Systems Science Department of Electrical Engineering New Haven, Connecticut

More information

THE BAYESIAN RECEIVER OPERATING CHARACTERISTIC CURVE AN EFFECTIVE APPROACH TO EVALUATE THE IDS PERFORMANCE

THE BAYESIAN RECEIVER OPERATING CHARACTERISTIC CURVE AN EFFECTIVE APPROACH TO EVALUATE THE IDS PERFORMANCE БСУ Международна конференция - 2 THE BAYESIAN RECEIVER OPERATING CHARACTERISTIC CURVE AN EFFECTIVE APPROACH TO EVALUATE THE IDS PERFORMANCE Evgeniya Nikolova, Veselina Jecheva Burgas Free University Abstract:

More information

Lecture 1 September 4, 2013

Lecture 1 September 4, 2013 CS 84r: Incentives an Information in Networks Fall 013 Prof. Yaron Singer Lecture 1 September 4, 013 Scribe: Bo Waggoner 1 Overview In this course we will try to evelop a mathematical unerstaning for the

More information

Chapter 5 Proposed models for reconstituting/ adapting three stereoscopes

Chapter 5 Proposed models for reconstituting/ adapting three stereoscopes Chapter 5 Propose moels for reconstituting/ aapting three stereoscopes - 89 - 5. Propose moels for reconstituting/aapting three stereoscopes This chapter offers three contributions in the Stereoscopy area,

More information

A Classification of 3R Orthogonal Manipulators by the Topology of their Workspace

A Classification of 3R Orthogonal Manipulators by the Topology of their Workspace A Classification of R Orthogonal Manipulators by the Topology of their Workspace Maher aili, Philippe Wenger an Damien Chablat Institut e Recherche en Communications et Cybernétique e Nantes, UMR C.N.R.S.

More information

Shift-map Image Registration

Shift-map Image Registration Shift-map Image Registration Svärm, Linus; Stranmark, Petter Unpublishe: 2010-01-01 Link to publication Citation for publishe version (APA): Svärm, L., & Stranmark, P. (2010). Shift-map Image Registration.

More information

Animated Surface Pasting

Animated Surface Pasting Animate Surface Pasting Clara Tsang an Stephen Mann Computing Science Department University of Waterloo 200 University Ave W. Waterloo, Ontario Canaa N2L 3G1 e-mail: clftsang@cgl.uwaterloo.ca, smann@cgl.uwaterloo.ca

More information

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015)

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) 5th International Conference on Avance Design an Manufacturing Engineering (ICADME 25) Research on motion characteristics an application of multi egree of freeom mechanism base on R-W metho Xiao-guang

More information

Loop Scheduling and Partitions for Hiding Memory Latencies

Loop Scheduling and Partitions for Hiding Memory Latencies Loop Scheuling an Partitions for Hiing Memory Latencies Fei Chen Ewin Hsing-Mean Sha Dept. of Computer Science an Engineering University of Notre Dame Notre Dame, IN 46556 Email: fchen,esha @cse.n.eu Tel:

More information

Parts Assembly by Throwing Manipulation with a One-Joint Arm

Parts Assembly by Throwing Manipulation with a One-Joint Arm 21 IEEE/RSJ International Conference on Intelligent Robots an Systems, Taipei, Taiwan, October, 21. Parts Assembly by Throwing Manipulation with a One-Joint Arm Hieyuki Miyashita, Tasuku Yamawaki an Masahito

More information

Yet Another Parallel Hypothesis Search for Inverse Entailment Hiroyuki Nishiyama and Hayato Ohwada Faculty of Sci. and Tech. Tokyo University of Scien

Yet Another Parallel Hypothesis Search for Inverse Entailment Hiroyuki Nishiyama and Hayato Ohwada Faculty of Sci. and Tech. Tokyo University of Scien Yet Another Parallel Hypothesis Search for Inverse Entailment Hiroyuki Nishiyama an Hayato Ohwaa Faculty of Sci. an Tech. Tokyo University of Science, 2641 Yamazaki, Noa-shi, CHIBA, 278-8510, Japan hiroyuki@rs.noa.tus.ac.jp,

More information

Generalized Edge Coloring for Channel Assignment in Wireless Networks

Generalized Edge Coloring for Channel Assignment in Wireless Networks Generalize Ege Coloring for Channel Assignment in Wireless Networks Chun-Chen Hsu Institute of Information Science Acaemia Sinica Taipei, Taiwan Da-wei Wang Jan-Jan Wu Institute of Information Science

More information

Controlling formations of multiple mobile robots. Jaydev P. Desai Jim Ostrowski Vijay Kumar

Controlling formations of multiple mobile robots. Jaydev P. Desai Jim Ostrowski Vijay Kumar Controlling formations of multiple mobile robots Jayev P. Desai Jim Ostrowski Vijay Kumar General Robotics an Active Sensory Perception (GRASP) Laboratory, University of Pennsylvania 340 Walnut Street,

More information

Comparison of Methods for Increasing the Performance of a DUA Computation

Comparison of Methods for Increasing the Performance of a DUA Computation Comparison of Methos for Increasing the Performance of a DUA Computation Michael Behrisch, Daniel Krajzewicz, Peter Wagner an Yun-Pang Wang Institute of Transportation Systems, German Aerospace Center,

More information

Image Segmentation using K-means clustering and Thresholding

Image Segmentation using K-means clustering and Thresholding Image Segmentation using Kmeans clustering an Thresholing Preeti Panwar 1, Girhar Gopal 2, Rakesh Kumar 3 1M.Tech Stuent, Department of Computer Science & Applications, Kurukshetra University, Kurukshetra,

More information

Modifying ROC Curves to Incorporate Predicted Probabilities

Modifying ROC Curves to Incorporate Predicted Probabilities Moifying ROC Curves to Incorporate Preicte Probabilities Cèsar Ferri DSIC, Universitat Politècnica e València Peter Flach Department of Computer Science, University of Bristol José Hernánez-Orallo DSIC,

More information

Offloading Cellular Traffic through Opportunistic Communications: Analysis and Optimization

Offloading Cellular Traffic through Opportunistic Communications: Analysis and Optimization 1 Offloaing Cellular Traffic through Opportunistic Communications: Analysis an Optimization Vincenzo Sciancalepore, Domenico Giustiniano, Albert Banchs, Anreea Picu arxiv:1405.3548v1 [cs.ni] 14 May 24

More information

AnyTraffic Labeled Routing

AnyTraffic Labeled Routing AnyTraffic Labele Routing Dimitri Papaimitriou 1, Pero Peroso 2, Davie Careglio 2 1 Alcatel-Lucent Bell, Antwerp, Belgium Email: imitri.papaimitriou@alcatel-lucent.com 2 Universitat Politècnica e Catalunya,

More information

Figure 1: Schematic of an SEM [source: ]

Figure 1: Schematic of an SEM [source:   ] EECI Course: -9 May 1 by R. Sanfelice Hybri Control Systems Eelco van Horssen E.P.v.Horssen@tue.nl Project: Scanning Electron Microscopy Introuction In Scanning Electron Microscopy (SEM) a (bunle) beam

More information

Lakshmish Ramanna University of Texas at Dallas Dept. of Electrical Engineering Richardson, TX

Lakshmish Ramanna University of Texas at Dallas Dept. of Electrical Engineering Richardson, TX Boy Sensor Networks to Evaluate Staning Balance: Interpreting Muscular Activities Base on Inertial Sensors Rohith Ramachanran Richarson, TX 75083 rxr057100@utallas.eu Gaurav Prahan Dept. of Computer Science

More information

A Versatile Model-Based Visibility Measure for Geometric Primitives

A Versatile Model-Based Visibility Measure for Geometric Primitives A Versatile Moel-Base Visibility Measure for Geometric Primitives Marc M. Ellenrieer 1,LarsKrüger 1, Dirk Stößel 2, an Marc Hanheie 2 1 DaimlerChrysler AG, Research & Technology, 89013 Ulm, Germany 2 Faculty

More information

Refinement of scene depth from stereo camera ego-motion parameters

Refinement of scene depth from stereo camera ego-motion parameters Refinement of scene epth from stereo camera ego-motion parameters Piotr Skulimowski, Pawel Strumillo An algorithm for refinement of isparity (epth) map from stereoscopic sequences is propose. The metho

More information

A new fuzzy visual servoing with application to robot manipulator

A new fuzzy visual servoing with application to robot manipulator 2005 American Control Conference June 8-10, 2005. Portlan, OR, USA FrA09.4 A new fuzzy visual servoing with application to robot manipulator Marco A. Moreno-Armenariz, Wen Yu Abstract Many stereo vision

More information

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Seconary Eucation MARK SCHEME for the May/June 03 series 0607 CAMBRIDGE INTERNATIONAL MATHEMATICS 0607/4 Paper 4 (Extene), maximum

More information

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS PAPA CAMBRIDGE CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Seconary Eucation MARK SCHEME for the May/June 0 series CAMBRIDGE INTERNATIONAL MATHEMATICS /4 4 (Extene), maximum

More information

Shift-map Image Registration

Shift-map Image Registration Shift-map Image Registration Linus Svärm Petter Stranmark Centre for Mathematical Sciences, Lun University {linus,petter}@maths.lth.se Abstract Shift-map image processing is a new framework base on energy

More information

Classifying Facial Expression with Radial Basis Function Networks, using Gradient Descent and K-means

Classifying Facial Expression with Radial Basis Function Networks, using Gradient Descent and K-means Classifying Facial Expression with Raial Basis Function Networks, using Graient Descent an K-means Neil Allrin Department of Computer Science University of California, San Diego La Jolla, CA 9237 nallrin@cs.ucs.eu

More information

Particle Swarm Optimization Based on Smoothing Approach for Solving a Class of Bi-Level Multiobjective Programming Problem

Particle Swarm Optimization Based on Smoothing Approach for Solving a Class of Bi-Level Multiobjective Programming Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 17, No 3 Sofia 017 Print ISSN: 1311-970; Online ISSN: 1314-4081 DOI: 10.1515/cait-017-0030 Particle Swarm Optimization Base

More information

NEW METHOD FOR FINDING A REFERENCE POINT IN FINGERPRINT IMAGES WITH THE USE OF THE IPAN99 ALGORITHM 1. INTRODUCTION 2.

NEW METHOD FOR FINDING A REFERENCE POINT IN FINGERPRINT IMAGES WITH THE USE OF THE IPAN99 ALGORITHM 1. INTRODUCTION 2. JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 13/009, ISSN 164-6037 Krzysztof WRÓBEL, Rafał DOROZ * fingerprint, reference point, IPAN99 NEW METHOD FOR FINDING A REFERENCE POINT IN FINGERPRINT IMAGES

More information

Generalized Edge Coloring for Channel Assignment in Wireless Networks

Generalized Edge Coloring for Channel Assignment in Wireless Networks TR-IIS-05-021 Generalize Ege Coloring for Channel Assignment in Wireless Networks Chun-Chen Hsu, Pangfeng Liu, Da-Wei Wang, Jan-Jan Wu December 2005 Technical Report No. TR-IIS-05-021 http://www.iis.sinica.eu.tw/lib/techreport/tr2005/tr05.html

More information

Transient analysis of wave propagation in 3D soil by using the scaled boundary finite element method

Transient analysis of wave propagation in 3D soil by using the scaled boundary finite element method Southern Cross University epublications@scu 23r Australasian Conference on the Mechanics of Structures an Materials 214 Transient analysis of wave propagation in 3D soil by using the scale bounary finite

More information

4.2 Implicit Differentiation

4.2 Implicit Differentiation 6 Chapter 4 More Derivatives 4. Implicit Differentiation What ou will learn about... Implicitl Define Functions Lenses, Tangents, an Normal Lines Derivatives of Higher Orer Rational Powers of Differentiable

More information

Tracking and Regulation Control of a Mobile Robot System With Kinematic Disturbances: A Variable Structure-Like Approach

Tracking and Regulation Control of a Mobile Robot System With Kinematic Disturbances: A Variable Structure-Like Approach W. E. Dixon e-mail: wixon@ces.clemson.eu D. M. Dawson e-mail: awson@ces.clemson.eu E. Zergeroglu e-mail: ezerger@ces.clemson.eu Department of Electrical & Computer Engineering, Clemson University, Clemson,

More information

BIJECTIONS FOR PLANAR MAPS WITH BOUNDARIES

BIJECTIONS FOR PLANAR MAPS WITH BOUNDARIES BIJECTIONS FOR PLANAR MAPS WITH BOUNDARIES OLIVIER BERNARDI AND ÉRIC FUSY Abstract. We present bijections for planar maps with bounaries. In particular, we obtain bijections for triangulations an quarangulations

More information

CS 106 Winter 2016 Craig S. Kaplan. Module 01 Processing Recap. Topics

CS 106 Winter 2016 Craig S. Kaplan. Module 01 Processing Recap. Topics CS 106 Winter 2016 Craig S. Kaplan Moule 01 Processing Recap Topics The basic parts of speech in a Processing program Scope Review of syntax for classes an objects Reaings Your CS 105 notes Learning Processing,

More information

A Plane Tracker for AEC-automation Applications

A Plane Tracker for AEC-automation Applications A Plane Tracker for AEC-automation Applications Chen Feng *, an Vineet R. Kamat Department of Civil an Environmental Engineering, University of Michigan, Ann Arbor, USA * Corresponing author (cforrest@umich.eu)

More information

Non-homogeneous Generalization in Privacy Preserving Data Publishing

Non-homogeneous Generalization in Privacy Preserving Data Publishing Non-homogeneous Generalization in Privacy Preserving Data Publishing W. K. Wong, Nios Mamoulis an Davi W. Cheung Department of Computer Science, The University of Hong Kong Pofulam Roa, Hong Kong {wwong2,nios,cheung}@cs.hu.h

More information

Preamble. Singly linked lists. Collaboration policy and academic integrity. Getting help

Preamble. Singly linked lists. Collaboration policy and academic integrity. Getting help CS2110 Spring 2016 Assignment A. Linke Lists Due on the CMS by: See the CMS 1 Preamble Linke Lists This assignment begins our iscussions of structures. In this assignment, you will implement a structure

More information

Fuzzy Learning Variable Admittance Control for Human-Robot Cooperation

Fuzzy Learning Variable Admittance Control for Human-Robot Cooperation Fuzzy Learning ariable Amittance Control for Human-Robot Cooperation Fotios Dimeas an Nikos Aspragathos Abstract This paper presents a metho for variable amittance control in human-robot cooperation tasks,

More information

Additional Divide and Conquer Algorithms. Skipping from chapter 4: Quicksort Binary Search Binary Tree Traversal Matrix Multiplication

Additional Divide and Conquer Algorithms. Skipping from chapter 4: Quicksort Binary Search Binary Tree Traversal Matrix Multiplication Aitional Divie an Conquer Algorithms Skipping from chapter 4: Quicksort Binary Search Binary Tree Traversal Matrix Multiplication Divie an Conquer Closest Pair Let s revisit the closest pair problem. Last

More information

Online Appendix to: Generalizing Database Forensics

Online Appendix to: Generalizing Database Forensics Online Appenix to: Generalizing Database Forensics KYRIACOS E. PAVLOU an RICHARD T. SNODGRASS, University of Arizona This appenix presents a step-by-step iscussion of the forensic analysis protocol that

More information

An Algorithm for Building an Enterprise Network Topology Using Widespread Data Sources

An Algorithm for Building an Enterprise Network Topology Using Widespread Data Sources An Algorithm for Builing an Enterprise Network Topology Using Wiesprea Data Sources Anton Anreev, Iurii Bogoiavlenskii Petrozavosk State University Petrozavosk, Russia {anreev, ybgv}@cs.petrsu.ru Abstract

More information

1 Surprises in high dimensions

1 Surprises in high dimensions 1 Surprises in high imensions Our intuition about space is base on two an three imensions an can often be misleaing in high imensions. It is instructive to analyze the shape an properties of some basic

More information

Using Vector and Raster-Based Techniques in Categorical Map Generalization

Using Vector and Raster-Based Techniques in Categorical Map Generalization Thir ICA Workshop on Progress in Automate Map Generalization, Ottawa, 12-14 August 1999 1 Using Vector an Raster-Base Techniques in Categorical Map Generalization Beat Peter an Robert Weibel Department

More information

Software Reliability Modeling and Cost Estimation Incorporating Testing-Effort and Efficiency

Software Reliability Modeling and Cost Estimation Incorporating Testing-Effort and Efficiency Software Reliability Moeling an Cost Estimation Incorporating esting-effort an Efficiency Chin-Yu Huang, Jung-Hua Lo, Sy-Yen Kuo, an Michael R. Lyu -+ Department of Electrical Engineering Computer Science

More information

Skyline Community Search in Multi-valued Networks

Skyline Community Search in Multi-valued Networks Syline Community Search in Multi-value Networs Rong-Hua Li Beijing Institute of Technology Beijing, China lironghuascut@gmail.com Jeffrey Xu Yu Chinese University of Hong Kong Hong Kong, China yu@se.cuh.eu.h

More information

Computer Organization

Computer Organization Computer Organization Douglas Comer Computer Science Department Purue University 250 N. University Street West Lafayette, IN 47907-2066 http://www.cs.purue.eu/people/comer Copyright 2006. All rights reserve.

More information

FINDING OPTICAL DISPERSION OF A PRISM WITH APPLICATION OF MINIMUM DEVIATION ANGLE MEASUREMENT METHOD

FINDING OPTICAL DISPERSION OF A PRISM WITH APPLICATION OF MINIMUM DEVIATION ANGLE MEASUREMENT METHOD Warsaw University of Technology Faculty of Physics Physics Laboratory I P Joanna Konwerska-Hrabowska 6 FINDING OPTICAL DISPERSION OF A PRISM WITH APPLICATION OF MINIMUM DEVIATION ANGLE MEASUREMENT METHOD.

More information

A Neural Network Model Based on Graph Matching and Annealing :Application to Hand-Written Digits Recognition

A Neural Network Model Based on Graph Matching and Annealing :Application to Hand-Written Digits Recognition ITERATIOAL JOURAL OF MATHEMATICS AD COMPUTERS I SIMULATIO A eural etwork Moel Base on Graph Matching an Annealing :Application to Han-Written Digits Recognition Kyunghee Lee Abstract We present a neural

More information

Intensive Hypercube Communication: Prearranged Communication in Link-Bound Machines 1 2

Intensive Hypercube Communication: Prearranged Communication in Link-Bound Machines 1 2 This paper appears in J. of Parallel an Distribute Computing 10 (1990), pp. 167 181. Intensive Hypercube Communication: Prearrange Communication in Link-Boun Machines 1 2 Quentin F. Stout an Bruce Wagar

More information

Estimating Velocity Fields on a Freeway from Low Resolution Video

Estimating Velocity Fields on a Freeway from Low Resolution Video Estimating Velocity Fiels on a Freeway from Low Resolution Vieo Young Cho Department of Statistics University of California, Berkeley Berkeley, CA 94720-3860 Email: young@stat.berkeley.eu John Rice Department

More information

Video-based Characters Creating New Human Performances from a Multi-view Video Database

Video-based Characters Creating New Human Performances from a Multi-view Video Database Vieo-base Characters Creating New Human Performances from a Multi-view Vieo Database Feng Xu Yebin Liu? Carsten Stoll? James Tompkin Gaurav Bharaj? Qionghai Dai Hans-Peter Seiel? Jan Kautz Christian Theobalt?

More information

Threshold Based Data Aggregation Algorithm To Detect Rainfall Induced Landslides

Threshold Based Data Aggregation Algorithm To Detect Rainfall Induced Landslides Threshol Base Data Aggregation Algorithm To Detect Rainfall Inuce Lanslies Maneesha V. Ramesh P. V. Ushakumari Department of Computer Science Department of Mathematics Amrita School of Engineering Amrita

More information

THE APPLICATION OF ARTICLE k-th SHORTEST TIME PATH ALGORITHM

THE APPLICATION OF ARTICLE k-th SHORTEST TIME PATH ALGORITHM International Journal of Physics an Mathematical Sciences ISSN: 2277-2111 (Online) 2016 Vol. 6 (1) January-March, pp. 24-6/Mao an Shi. THE APPLICATION OF ARTICLE k-th SHORTEST TIME PATH ALGORITHM Hua Mao

More information

Feedback Error Learning Neural Network Applied to a Scara Robot

Feedback Error Learning Neural Network Applied to a Scara Robot Feeback Error Learning Neural Network Applie to a Scara Robot Fernano Passol Dept. of Electrical Engineering University of Passo Funo Passo Funo, Brazil passol@upf.tche.br Abstract This paper escribes

More information

Inuence of Cross-Interferences on Blocked Loops: to know the precise gain brought by blocking. It is even dicult to determine for which problem

Inuence of Cross-Interferences on Blocked Loops: to know the precise gain brought by blocking. It is even dicult to determine for which problem Inuence of Cross-Interferences on Blocke Loops A Case Stuy with Matrix-Vector Multiply CHRISTINE FRICKER INRIA, France an OLIVIER TEMAM an WILLIAM JALBY University of Versailles, France State-of-the art

More information

Using Ray Tracing for Site-Specific Indoor Radio Signal Strength Analysis 1

Using Ray Tracing for Site-Specific Indoor Radio Signal Strength Analysis 1 Using Ray Tracing for Site-Specific Inoor Raio Signal Strength Analysis 1 Michael Ni, Stephen Mann, an Jay Black Computer Science Department, University of Waterloo, Waterloo, Ontario, NL G1, Canaa Abstract

More information

Approximation with Active B-spline Curves and Surfaces

Approximation with Active B-spline Curves and Surfaces Approximation with Active B-spline Curves an Surfaces Helmut Pottmann, Stefan Leopolseer, Michael Hofer Institute of Geometry Vienna University of Technology Wiener Hauptstr. 8 10, Vienna, Austria pottmann,leopolseer,hofer

More information

Queueing Model and Optimization of Packet Dropping in Real-Time Wireless Sensor Networks

Queueing Model and Optimization of Packet Dropping in Real-Time Wireless Sensor Networks Queueing Moel an Optimization of Packet Dropping in Real-Time Wireless Sensor Networks Marc Aoun, Antonios Argyriou, Philips Research, Einhoven, 66AE, The Netherlans Department of Computer an Communication

More information

Reconstructing the Nonlinear Filter Function of LILI-128 Stream Cipher Based on Complexity

Reconstructing the Nonlinear Filter Function of LILI-128 Stream Cipher Based on Complexity Reconstructing the Nonlinear Filter Function of LILI-128 Stream Cipher Base on Complexity Xiangao Huang 1 Wei Huang 2 Xiaozhou Liu 3 Chao Wang 4 Zhu jing Wang 5 Tao Wang 1 1 College of Engineering, Shantou

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my Calculus I course that I teach here at Lamar University. Despite the fact that these are my class notes, they shoul be accessible to anyone wanting to learn Calculus

More information

Impact of changing the position of the tool point on the moving platform on the dynamic performance of a 3RRR planar parallel manipulator

Impact of changing the position of the tool point on the moving platform on the dynamic performance of a 3RRR planar parallel manipulator IOSR Journal of Mechanical an Civil Engineering (IOSR-JMCE) e-issn: 78-84,p-ISSN: 0-4X, Volume, Issue 4 Ver. I (Jul. - Aug. 05), PP 7-8 www.iosrjournals.org Impact of changing the position of the tool

More information

Vision-based Multi-Robot Simultaneous Localization and Mapping

Vision-based Multi-Robot Simultaneous Localization and Mapping Vision-base Multi-Robot Simultaneous Localization an Mapping Hassan Hajjiab an Robert Laganière VIVA Research Lab School of Information Technology an Engineering University of Ottawa, Ottawa, Canaa, K1N

More information

Characterizing Decoding Robustness under Parametric Channel Uncertainty

Characterizing Decoding Robustness under Parametric Channel Uncertainty Characterizing Decoing Robustness uner Parametric Channel Uncertainty Jay D. Wierer, Wahee U. Bajwa, Nigel Boston, an Robert D. Nowak Abstract This paper characterizes the robustness of ecoing uner parametric

More information

Fast Window Based Stereo Matching for 3D Scene Reconstruction

Fast Window Based Stereo Matching for 3D Scene Reconstruction The International Arab Journal of Information Technology, Vol. 0, No. 3, May 203 209 Fast Winow Base Stereo Matching for 3D Scene Reconstruction Mohamma Mozammel Chowhury an Mohamma AL-Amin Bhuiyan Department

More information

Algorithm for Intermodal Optimal Multidestination Tour with Dynamic Travel Times

Algorithm for Intermodal Optimal Multidestination Tour with Dynamic Travel Times Algorithm for Intermoal Optimal Multiestination Tour with Dynamic Travel Times Neema Nassir, Alireza Khani, Mark Hickman, an Hyunsoo Noh This paper presents an efficient algorithm that fins the intermoal

More information

Random Clustering for Multiple Sampling Units to Speed Up Run-time Sample Generation

Random Clustering for Multiple Sampling Units to Speed Up Run-time Sample Generation DEIM Forum 2018 I4-4 Abstract Ranom Clustering for Multiple Sampling Units to Spee Up Run-time Sample Generation uzuru OKAJIMA an Koichi MARUAMA NEC Solution Innovators, Lt. 1-18-7 Shinkiba, Koto-ku, Tokyo,

More information

Study of Network Optimization Method Based on ACL

Study of Network Optimization Method Based on ACL Available online at www.scienceirect.com Proceia Engineering 5 (20) 3959 3963 Avance in Control Engineering an Information Science Stuy of Network Optimization Metho Base on ACL Liu Zhian * Department

More information

Research Article Inviscid Uniform Shear Flow past a Smooth Concave Body

Research Article Inviscid Uniform Shear Flow past a Smooth Concave Body International Engineering Mathematics Volume 04, Article ID 46593, 7 pages http://x.oi.org/0.55/04/46593 Research Article Invisci Uniform Shear Flow past a Smooth Concave Boy Abullah Mura Department of

More information

Problem Paper Atoms Tree. atoms.pas. atoms.cpp. atoms.c. atoms.java. Time limit per test 1 second 1 second 2 seconds. Number of tests

Problem Paper Atoms Tree. atoms.pas. atoms.cpp. atoms.c. atoms.java. Time limit per test 1 second 1 second 2 seconds. Number of tests ! " # %$ & Overview Problem Paper Atoms Tree Shen Tian Harry Wiggins Carl Hultquist Program name paper.exe atoms.exe tree.exe Source name paper.pas atoms.pas tree.pas paper.cpp atoms.cpp tree.cpp paper.c

More information

Top-down Connectivity Policy Framework for Mobile Peer-to-Peer Applications

Top-down Connectivity Policy Framework for Mobile Peer-to-Peer Applications Top-own Connectivity Policy Framework for Mobile Peer-to-Peer Applications Otso Kassinen Mika Ylianttila Junzhao Sun Jussi Ala-Kurikka MeiaTeam Department of Electrical an Information Engineering University

More information

Multi-camera tracking algorithm study based on information fusion

Multi-camera tracking algorithm study based on information fusion International Conference on Avance Electronic Science an Technolog (AEST 016) Multi-camera tracking algorithm stu base on information fusion a Guoqiang Wang, Shangfu Li an Xue Wen School of Electronic

More information

filtering LETTER An Improved Neighbor Selection Algorithm in Collaborative Taek-Hun KIM a), Student Member and Sung-Bong YANG b), Nonmember

filtering LETTER An Improved Neighbor Selection Algorithm in Collaborative Taek-Hun KIM a), Student Member and Sung-Bong YANG b), Nonmember 107 IEICE TRANS INF & SYST, VOLE88 D, NO5 MAY 005 LETTER An Improve Neighbor Selection Algorithm in Collaborative Filtering Taek-Hun KIM a), Stuent Member an Sung-Bong YANG b), Nonmember SUMMARY Nowaays,

More information

A shortest path algorithm in multimodal networks: a case study with time varying costs

A shortest path algorithm in multimodal networks: a case study with time varying costs A shortest path algorithm in multimoal networks: a case stuy with time varying costs Daniela Ambrosino*, Anna Sciomachen* * Department of Economics an Quantitative Methos (DIEM), University of Genoa Via

More information

Navigation Around an Unknown Obstacle for Autonomous Surface Vehicles Using a Forward-Facing Sonar

Navigation Around an Unknown Obstacle for Autonomous Surface Vehicles Using a Forward-Facing Sonar Navigation Aroun an nknown Obstacle for Autonomous Surface Vehicles sing a Forwar-Facing Sonar Patrick A. Plonski, Joshua Vaner Hook, Cheng Peng, Narges Noori, Volkan Isler Abstract A robotic boat is moving

More information

Message Transport With The User Datagram Protocol

Message Transport With The User Datagram Protocol Message Transport With The User Datagram Protocol User Datagram Protocol (UDP) Use During startup For VoIP an some vieo applications Accounts for less than 10% of Internet traffic Blocke by some ISPs Computer

More information

MORA: a Movement-Based Routing Algorithm for Vehicle Ad Hoc Networks

MORA: a Movement-Based Routing Algorithm for Vehicle Ad Hoc Networks : a Movement-Base Routing Algorithm for Vehicle A Hoc Networks Fabrizio Granelli, Senior Member, Giulia Boato, Member, an Dzmitry Kliazovich, Stuent Member Abstract Recent interest in car-to-car communications

More information

Formation Control of Small Unmanned Aerial Vehicles Using Virtual Leader and Point-to-Multipoint Communication

Formation Control of Small Unmanned Aerial Vehicles Using Virtual Leader and Point-to-Multipoint Communication Trans. Japan Soc. Aero. Space Sci. Vol. 5, No., pp. 3 9, Formation Control of Small Unmanne Aerial Vehicles Using Virtual Leaer an Point-to-Multipoint Communication y Takuma HINO an Takeshi TSUCHIYA Department

More information

Distributed Line Graphs: A Universal Technique for Designing DHTs Based on Arbitrary Regular Graphs

Distributed Line Graphs: A Universal Technique for Designing DHTs Based on Arbitrary Regular Graphs IEEE TRANSACTIONS ON KNOWLEDE AND DATA ENINEERIN, MANUSCRIPT ID Distribute Line raphs: A Universal Technique for Designing DHTs Base on Arbitrary Regular raphs Yiming Zhang an Ling Liu, Senior Member,

More information

Technical Report TR Navigation Around an Unknown Obstacle for Autonomous Surface Vehicles Using a Forward-Facing Sonar

Technical Report TR Navigation Around an Unknown Obstacle for Autonomous Surface Vehicles Using a Forward-Facing Sonar Technical Report Department of Computer Science an Engineering niversity of Minnesota 4-192 Keller Hall 2 nion Street SE Minneapolis, MN 55455-159 SA TR 15-5 Navigation Aroun an nknown Obstacle for Autonomous

More information

Considering bounds for approximation of 2 M to 3 N

Considering bounds for approximation of 2 M to 3 N Consiering bouns for approximation of to (version. Abstract: Estimating bouns of best approximations of to is iscusse. In the first part I evelop a powerseries, which shoul give practicable limits for

More information

On Effectively Determining the Downlink-to-uplink Sub-frame Width Ratio for Mobile WiMAX Networks Using Spline Extrapolation

On Effectively Determining the Downlink-to-uplink Sub-frame Width Ratio for Mobile WiMAX Networks Using Spline Extrapolation On Effectively Determining the Downlink-to-uplink Sub-frame With Ratio for Mobile WiMAX Networks Using Spline Extrapolation Panagiotis Sarigianniis, Member, IEEE, Member Malamati Louta, Member, IEEE, Member

More information

Almost Disjunct Codes in Large Scale Multihop Wireless Network Media Access Control

Almost Disjunct Codes in Large Scale Multihop Wireless Network Media Access Control Almost Disjunct Coes in Large Scale Multihop Wireless Network Meia Access Control D. Charles Engelhart Anan Sivasubramaniam Penn. State University University Park PA 682 engelhar,anan @cse.psu.eu Abstract

More information

Architecture Design of Mobile Access Coordinated Wireless Sensor Networks

Architecture Design of Mobile Access Coordinated Wireless Sensor Networks Architecture Design of Mobile Access Coorinate Wireless Sensor Networks Mai Abelhakim 1 Leonar E. Lightfoot Jian Ren 1 Tongtong Li 1 1 Department of Electrical & Computer Engineering, Michigan State University,

More information

Advanced method of NC programming for 5-axis machining

Advanced method of NC programming for 5-axis machining Available online at www.scienceirect.com Proceia CIRP (0 ) 0 07 5 th CIRP Conference on High Performance Cutting 0 Avance metho of NC programming for 5-axis machining Sergej N. Grigoriev a, A.A. Kutin

More information

Exercises of PIV. incomplete draft, version 0.0. October 2009

Exercises of PIV. incomplete draft, version 0.0. October 2009 Exercises of PIV incomplete raft, version 0.0 October 2009 1 Images Images are signals efine in 2D or 3D omains. They can be vector value (e.g., color images), real (monocromatic images), complex or binary

More information

1 Shortest Path Problems

1 Shortest Path Problems CS268: Geometric Algorithms Hanout #7 Design an Analysis Original Hanout #18 Stanfor University Tuesay, 25 February 1992 Original Lecture #8: 4 February 1992 Topics: Shortest Path Problems Scribe: Jim

More information

State Indexed Policy Search by Dynamic Programming. Abstract. 1. Introduction. 2. System parameterization. Charles DuHadway

State Indexed Policy Search by Dynamic Programming. Abstract. 1. Introduction. 2. System parameterization. Charles DuHadway State Inexe Policy Search by Dynamic Programming Charles DuHaway Yi Gu 5435537 503372 December 4, 2007 Abstract We consier the reinforcement learning problem of simultaneous trajectory-following an obstacle

More information

Interference and diffraction are the important phenomena that distinguish. Interference and Diffraction

Interference and diffraction are the important phenomena that distinguish. Interference and Diffraction C H A P T E R 33 Interference an Diffraction 33- Phase Difference an Coherence 33-2 Interference in Thin Films 33-3 Two-Slit Interference Pattern 33-4 Diffraction Pattern of a Single Slit * 33-5 Using

More information

Object. frame. Sensor. C(t) frame. y Mo. Mp t. Sensor frame at equilibrium (Absolute frame)

Object. frame. Sensor. C(t) frame. y Mo. Mp t. Sensor frame at equilibrium (Absolute frame) Position base visual servoing using a non-linear approach Philippe Martinet an Jean Gallice LSME, Université Blaise Pascal, UMR 662 u CNRS, 6377 ubi ere cee, France martinet@lasmea.univ-bpclermont.fr bstract

More information

Try It. Implicit and Explicit Functions. Video. Exploration A. Differentiating with Respect to x

Try It. Implicit and Explicit Functions. Video. Exploration A. Differentiating with Respect to x SECTION 5 Implicit Differentiation Section 5 Implicit Differentiation Distinguish between functions written in implicit form an eplicit form Use implicit ifferentiation to fin the erivative of a function

More information

The Reconstruction of Graphs. Dhananjay P. Mehendale Sir Parashurambhau College, Tilak Road, Pune , India. Abstract

The Reconstruction of Graphs. Dhananjay P. Mehendale Sir Parashurambhau College, Tilak Road, Pune , India. Abstract The Reconstruction of Graphs Dhananay P. Mehenale Sir Parashurambhau College, Tila Roa, Pune-4030, Inia. Abstract In this paper we iscuss reconstruction problems for graphs. We evelop some new ieas lie

More information

Quad-Rotor UAV: High-Fidelity Modeling and Nonlinear PID Control

Quad-Rotor UAV: High-Fidelity Modeling and Nonlinear PID Control AIAA Moeling an Simulation Technologies Conference - 5 August, Toronto, Ontario Canaa AIAA -86 Qua-Rotor UAV: High-ielity Moeling an Nonlinear PID Control Alaein Bani Milhim an Youmin Zhang Concoria University,

More information