2.3 Additional Relations

Size: px
Start display at page:

Download "2.3 Additional Relations"

Transcription

1 3 2.3 Additional Relations Figure 2.3 identiies additional relations, indicating te locations o te object and image, and te ratio o teir eigts (magniication) and orientations. Ray enters te lens parallel to te optical axis. Tereore, te point at wic it crosses te axis ater exiting te lens is te second ocal point F 2. Ray 2 passes troug te ront ocus F and leaves te lens parallel to te optical axis. Te two nodal points are special cardinal points because tey lie on te optical axis. A ray aiming at N leaves te lens rom N 2 in te same direction as it entered te lens, indicated wit ray 3. empty space (iatus) e ray d ray 2 d 2 ray 3 P P 2 optical axis F F 2 N N 2 P 3 P 4 l bl l l ront principal plane rear principal plane Figure 2.3 Positive lens and its cardinal points. Focal points, F and F 2. Nodal points, N and N 2. Principal points, P,P 2,P 3, and P 4.

2 4 Capter 2 Te principal planes are actually sperical suraces, but tey can be treated as planes in te paraxial region, wic is te region close to te optical axis, were te sine and tangent o te ray angles are close to eac oter, and to te angle expressed in radians. As a point o reerence, sin 5 deg ¼ , and tan 5 deg ¼ Five degrees also equals te 72t part o te 2p ull 360-deg circle. Tereore, 5 deg represents ð2p 360Þ 5¼ p 36 ¼ rad. It is a limit o acceptable accuracy in wat is termed te paraxial region. Tis paraxial treatment is useul even wen rays are ar rom te optical axis because, wit te assumption o te trigonometric unctions equality, te equations become linear wereby a simple scaling eect is acieved. Te caracteristic eature o te principal planes is tat te magniication between tem is unity, wic means tat te rays are transerred at te same eigt rom te ront principal plane to te rear principal plane. In general, a positive lens is used to orm an image o an object wit a certain magniication. Sign Convention Distances to te let o te ront principal plane and eigts below te optical axis are negative; distances to te rigt o te rear principal plane and eigts above te optical axis are positive. Tis indicates tat te ligt is assumed to travel rom te let to te rigt. Te ocal lengts o a positive lens, including te ront and back ocal lengts, are positive. It is extremely important to very careully apply te agreed-upon sign convention.

3 5 Te ollowing equations reer to te call-outs in Fig. 2.3: Magniication m ¼ l 0 Back ocal lengt Front ocal lengt b l ¼ l ¼ l ¼ 0 : (2.3) ðn Þt nr : (2.4) ðn Þt nr 2 : (2.5) Te distance rom te vertex o te ront surace to te ront principal plane is ðn Þt d ¼, (2.6) nr 2 and te distance rom te vertex o te rear surace to te rear principal plane is ðn Þt d 2 ¼ : (2.7) nr To demonstrate wat is meant by careully observing te sign convention, we derive te so-called Gaussian expression* or te location o te image. In Fig. 2.3, it can be seen tat te ollowing relations exist: ¼ ð 0 Þ l 0 0 ¼ ð 0 Þ l *Joann Carl Friedric Gauss, a German matematician, lived rom 777 until 855 and is well-known or is many contributions in te ields o matematics and pysics.

4 6 Capter 2 Rearranging leads to l 0 ¼ ð 0 Þ, (2.8) l ¼ 0 ð 0 Þ : (2.9) Subtracting Eq. (2.9) rom Eq. (2.8) yields l 0 l ¼ ð 0 Þ 0 ð 0 Þ ¼ ð 0 Þ ð 0 ¼ Þ : Te inal Gaussian orm is usually presented as l 0 ¼ l þ : (2.0) as To ind te image location, one rewrites Eq. (2.0) to read l 0 ¼ l l þ : (2.) Exercise 2 Find te image location and eigt o an object 5 mm ig, located 50 mm to te let o te vertex o te lens discussed in exercise. Approac and Solution Given are l d ¼ 50 mm; ¼ 5 mm. From exercise we know tat te ocal lengt ¼ 00 mm, te lens tickness t ¼ 5 mm, te index o reraction n ¼.5, and te rear radius o te lens R 2 ¼ 200 mm.

5 7 Using Eq. (2.6), we ind te location o te ront principal plane ðn Þt ð.5 Þ5 00 d ¼ ¼ ¼ 2.5 mm: nr 2.5 ð 200Þ l 0 ¼ Wit tat, l ¼ 50 d ¼ ¼ 52.5 mm. Equation (2.) yields l l þ ¼ 52.5 þ 00 ¼ 52,500 ¼ 2, mm: 52.5 Te magniication is ound wit Eq. (2.3), i.e., m ¼ l 0 l ¼ 2, ð 52.5Þ 9. Te image eigt, also using Eq. (2.3), is 0 ¼ m ¼ ð 9Þ5 ¼ 95 mm. To ind te distance o te image rom te vertex o te rear surace o te lens, we must subtract d 2 rom l 0. Using Eqs. (2.7) and (2.), we obtain l 0 d 2 ¼ l 0 ðn Þt ¼ 2, nr ð.5 Þ5 00 ¼ 2, mm: Negative Lens, Focal Lengt, and Back Focal Lengt A negative lens as a sape as sown in Fig Since its ocal lengt is negative, te locations o te ocal points are in reverse order compared to te positive element, as indicated in Fig By coosing te ront radius R ¼ 60 mm, rear radius R 2 ¼ mm, tickness t ¼ 5 mm, and again

Chapter 34. Images. Two Types of Images. A Common Mirage. Plane Mirrors, Extended Object. Plane Mirrors, Point Object

Chapter 34. Images. Two Types of Images. A Common Mirage. Plane Mirrors, Extended Object. Plane Mirrors, Point Object Capter Images One o te most important uses o te basic laws governing ligt is te production o images. Images are critical to a variety o ields and industries ranging rom entertainment, security, and medicine

More information

Section 3. Imaging With A Thin Lens

Section 3. Imaging With A Thin Lens Section 3 Imaging Wit A Tin Lens 3- at Ininity An object at ininity produces a set o collimated set o rays entering te optical system. Consider te rays rom a inite object located on te axis. Wen te object

More information

Chapter 31: Images and Optical Instruments

Chapter 31: Images and Optical Instruments Capter 3: Image and Optical Intrument Relection at a plane urace Image ormation Te relected ray entering eye look a toug tey ad come rom image P. P virtual image P Ligt ray radiate rom a point object at

More information

Chapter K. Geometric Optics. Blinn College - Physics Terry Honan

Chapter K. Geometric Optics. Blinn College - Physics Terry Honan Capter K Geometric Optics Blinn College - Pysics 2426 - Terry Honan K. - Properties of Ligt Te Speed of Ligt Te speed of ligt in a vacuum is approximately c > 3.0µ0 8 mês. Because of its most fundamental

More information

Reflection and Refraction

Reflection and Refraction Relection and Reraction Object To determine ocal lengths o lenses and mirrors and to determine the index o reraction o glass. Apparatus Lenses, optical bench, mirrors, light source, screen, plastic or

More information

Lab 9 - GEOMETRICAL OPTICS

Lab 9 - GEOMETRICAL OPTICS 161 Name Date Partners Lab 9 - GEOMETRICAL OPTICS OBJECTIVES Optics, developed in us through study, teaches us to see - Paul Cezanne Image rom www.weidemyr.com To examine Snell s Law To observe total internal

More information

θ R = θ 0 (1) -The refraction law says that: the direction of refracted ray (angle θ 1 from vertical) is (2)

θ R = θ 0 (1) -The refraction law says that: the direction of refracted ray (angle θ 1 from vertical) is (2) LIGHT (Basic information) - Considering te ligt of a projector in a smoky room, one gets to geometrical optics model of ligt as a set of tiny particles tat travel along straigt lines called "optical rays.

More information

Lenses & Prism Consider light entering a prism At the plane surface perpendicular light is unrefracted Moving from the glass to the slope side light

Lenses & Prism Consider light entering a prism At the plane surface perpendicular light is unrefracted Moving from the glass to the slope side light Lenses & Prism Consider light entering a prism At the plane surace perpendicular light is unreracted Moving rom the glass to the slope side light is bent away rom the normal o the slope Using Snell's law

More information

When the dimensions of a solid increase by a factor of k, how does the surface area change? How does the volume change?

When the dimensions of a solid increase by a factor of k, how does the surface area change? How does the volume change? 8.4 Surface Areas and Volumes of Similar Solids Wen te dimensions of a solid increase by a factor of k, ow does te surface area cange? How does te volume cange? 1 ACTIVITY: Comparing Surface Areas and

More information

CHAPTER The elevation can be determined as. The partial derivatives can be evaluated,

CHAPTER The elevation can be determined as. The partial derivatives can be evaluated, 1 CHAPTER 14 14.1 Te elevation can be determined as (.8,1. (.81. 1.5(1. 1.5(.8 Te partial derivatives can be evaluated,.5 (1..5(.8.4 1.5 4 (.8 1.5 4(1. 1.7 (1. 5 5.4 wic can be used to determine te gradient

More information

Outline F. OPTICS. Objectives. Introduction. Wavefronts. Light Rays. Geometrical Optics. Reflection and Refraction

Outline F. OPTICS. Objectives. Introduction. Wavefronts. Light Rays. Geometrical Optics. Reflection and Refraction F. OPTICS Outline 22. Spherical mirrors 22.2 Reraction at spherical suraces 22.3 Thin lenses 22. Geometrical optics Objectives (a) use the relationship = r/2 or spherical mirrors (b) draw ray agrams to

More information

VOLUMES. The volume of a cylinder is determined by multiplying the cross sectional area by the height. r h V. a) 10 mm 25 mm.

VOLUMES. The volume of a cylinder is determined by multiplying the cross sectional area by the height. r h V. a) 10 mm 25 mm. OLUME OF A CYLINDER OLUMES Te volume of a cylinder is determined by multiplying te cross sectional area by te eigt. r Were: = volume r = radius = eigt Exercise 1 Complete te table ( =.14) r a) 10 mm 5

More information

4.2 The Derivative. f(x + h) f(x) lim

4.2 The Derivative. f(x + h) f(x) lim 4.2 Te Derivative Introduction In te previous section, it was sown tat if a function f as a nonvertical tangent line at a point (x, f(x)), ten its slope is given by te it f(x + ) f(x). (*) Tis is potentially

More information

4.1 Tangent Lines. y 2 y 1 = y 2 y 1

4.1 Tangent Lines. y 2 y 1 = y 2 y 1 41 Tangent Lines Introduction Recall tat te slope of a line tells us ow fast te line rises or falls Given distinct points (x 1, y 1 ) and (x 2, y 2 ), te slope of te line troug tese two points is cange

More information

GEOMETRICAL OPTICS OBJECTIVES

GEOMETRICAL OPTICS OBJECTIVES Geometrical Optics 207 Name Date Partners OBJECTIVES OVERVIEW GEOMETRICAL OPTICS To examine Snell s Law and observe total internal relection. To understand and use the lens equations. To ind the ocal length

More information

Chapter 5: Light and Vision CHAPTER 5: LIGHT AND VISION

Chapter 5: Light and Vision CHAPTER 5: LIGHT AND VISION CHAPTER 5: LIGHT AND VISION These notes have been compiled in a way to make it easier or revision. The topics are not in order as per the syllabus. 5.1 Mirrors and Lenses 5.1.1 Image Characteristics Image

More information

11/13/2018. Lenses. Lenses. Light refracts at both surfaces. Non-parallel surfaces results in net bend.

11/13/2018. Lenses. Lenses. Light refracts at both surfaces. Non-parallel surfaces results in net bend. Light reracts at both suraces. Non-parallel suraces results in net bend. Focusing power o the lens is unction o radius o curvature o each surace and index o reraction o lens. Converging lenses are thicker

More information

Snell s Law n i sin! i = n r sin! r

Snell s Law n i sin! i = n r sin! r Mr. Rawson Physics Snell s Law n i sin! i = n r sin! r Angle o Reraction n glass = 1.5 Angle o Incidence n air = 1.00 32 o 32 o 1 Mr. Rawson Physics 4 Mr. Rawson Physics 2 Mr. Rawson Physics 3 !"#$%&&&&

More information

Classify solids. Find volumes of prisms and cylinders.

Classify solids. Find volumes of prisms and cylinders. 11.4 Volumes of Prisms and Cylinders Essential Question How can you find te volume of a prism or cylinder tat is not a rigt prism or rigt cylinder? Recall tat te volume V of a rigt prism or a rigt cylinder

More information

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically 2 Te Derivative Te two previous capters ave laid te foundation for te study of calculus. Tey provided a review of some material you will need and started to empasize te various ways we will view and use

More information

11. Transceiver Link Debugging Using the System Console

11. Transceiver Link Debugging Using the System Console November 2011 QII53029-11.1.0 11. Transceiver Link Debugging Using te System Console QII53029-11.1.0 Tis capter describes ow to use te Transceiver Toolkit in te Quartus II sotware. Te Transceiver Toolkit

More information

THIN LENSES: BASICS. There are at least three commonly used symbols for object and image distances:

THIN LENSES: BASICS. There are at least three commonly used symbols for object and image distances: THN LENSES: BASCS BJECTVE: To study and veriy some o the laws o optics applicable to thin lenses by determining the ocal lengths o three such lenses ( two convex, one concave) by several methods. THERY:

More information

12.2 Investigate Surface Area

12.2 Investigate Surface Area Investigating g Geometry ACTIVITY Use before Lesson 12.2 12.2 Investigate Surface Area MATERIALS grap paper scissors tape Q U E S T I O N How can you find te surface area of a polyedron? A net is a pattern

More information

You Try: A. Dilate the following figure using a scale factor of 2 with center of dilation at the origin.

You Try: A. Dilate the following figure using a scale factor of 2 with center of dilation at the origin. 1 G.SRT.1-Some Tings To Know Dilations affect te size of te pre-image. Te pre-image will enlarge or reduce by te ratio given by te scale factor. A dilation wit a scale factor of 1> x >1enlarges it. A dilation

More information

1. Observe Observe your image on each side of a spoon. Record your observations using words and a picture.

1. Observe Observe your image on each side of a spoon. Record your observations using words and a picture. Concave Mirrors 1. Observe Observe your image on each side o a spoon. Record your observations using words and a picture. Inner spoon Outer spoon 2. Observe and Explain http://www.youtube.com/watch?v=kqxdwpmof9c&eature=player_embedded

More information

EXERCISES 6.1. Cross-Sectional Areas. 6.1 Volumes by Slicing and Rotation About an Axis 405

EXERCISES 6.1. Cross-Sectional Areas. 6.1 Volumes by Slicing and Rotation About an Axis 405 6. Volumes b Slicing and Rotation About an Ais 5 EXERCISES 6. Cross-Sectional Areas In Eercises and, find a formula for te area A() of te crosssections of te solid perpendicular to te -ais.. Te solid lies

More information

19.2 Surface Area of Prisms and Cylinders

19.2 Surface Area of Prisms and Cylinders Name Class Date 19 Surface Area of Prisms and Cylinders Essential Question: How can you find te surface area of a prism or cylinder? Resource Locker Explore Developing a Surface Area Formula Surface area

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Interference and Diffraction of Ligt References: [1] A.P. Frenc: Vibrations and Waves, Norton Publ. 1971, Capter 8, p. 280-297 [2] PASCO Interference and Diffraction EX-9918 guide (written by Ann Hanks)

More information

3.6 Directional Derivatives and the Gradient Vector

3.6 Directional Derivatives and the Gradient Vector 288 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.6 Directional Derivatives and te Gradient Vector 3.6.1 Functions of two Variables Directional Derivatives Let us first quickly review, one more time, te

More information

12.2 Techniques for Evaluating Limits

12.2 Techniques for Evaluating Limits 335_qd /4/5 :5 PM Page 863 Section Tecniques for Evaluating Limits 863 Tecniques for Evaluating Limits Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing

More information

References Photography, B. London and J. Upton Optics in Photography, R. Kingslake The Camera, The Negative, The Print, A. Adams

References Photography, B. London and J. Upton Optics in Photography, R. Kingslake The Camera, The Negative, The Print, A. Adams Page 1 Camera Simulation Eect Cause Field o view Depth o ield Motion blur Exposure Film size, stops and pupils Aperture, ocal length Shutter Film speed, aperture, shutter Reerences Photography, B. London

More information

CHAPTER 7: TRANSCENDENTAL FUNCTIONS

CHAPTER 7: TRANSCENDENTAL FUNCTIONS 7.0 Introduction and One to one Functions Contemporary Calculus 1 CHAPTER 7: TRANSCENDENTAL FUNCTIONS Introduction In te previous capters we saw ow to calculate and use te derivatives and integrals of

More information

Non-Interferometric Testing

Non-Interferometric Testing NonInterferometric Testing.nb Optics 513 - James C. Wyant 1 Non-Interferometric Testing Introduction In tese notes four non-interferometric tests are described: (1) te Sack-Hartmann test, (2) te Foucault

More information

Areas of Parallelograms and Triangles. To find the area of parallelograms and triangles

Areas of Parallelograms and Triangles. To find the area of parallelograms and triangles 10-1 reas of Parallelograms and Triangles ommon ore State Standards G-MG..1 Use geometric sapes, teir measures, and teir properties to descrie ojects. G-GPE..7 Use coordinates to compute perimeters of

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 26 Propagation of Light Hecht, chapter 5 Spring 2015 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR 13.5 Directional Derivatives and te Gradient Vector Contemporary Calculus 1 13.5 DIRECTIONAL DERIVATIVES and te GRADIENT VECTOR Directional Derivatives In Section 13.3 te partial derivatives f x and f

More information

You should be able to visually approximate the slope of a graph. The slope m of the graph of f at the point x, f x is given by

You should be able to visually approximate the slope of a graph. The slope m of the graph of f at the point x, f x is given by Section. Te Tangent Line Problem 89 87. r 5 sin, e, 88. r sin sin Parabola 9 9 Hperbola e 9 9 9 89. 7,,,, 5 7 8 5 ortogonal 9. 5, 5,, 5, 5. Not multiples of eac oter; neiter parallel nor ortogonal 9.,,,

More information

Geometrical Optics. Chapter General Comments. 1.2 Snell s Law

Geometrical Optics. Chapter General Comments. 1.2 Snell s Law Chapter 1 Geometrical Optics 1.1 General Comments A light wave is an electromagnetic wave, and the wavelength that optics studies ranges from the ultraviolet (0.2 mm) to the middle infrared (10 mm). The

More information

All truths are easy to understand once they are discovered; the point is to discover them. Galileo

All truths are easy to understand once they are discovered; the point is to discover them. Galileo Section 7. olume All truts are easy to understand once tey are discovered; te point is to discover tem. Galileo Te main topic of tis section is volume. You will specifically look at ow to find te volume

More information

ANTENNA SPHERICAL COORDINATE SYSTEMS AND THEIR APPLICATION IN COMBINING RESULTS FROM DIFFERENT ANTENNA ORIENTATIONS

ANTENNA SPHERICAL COORDINATE SYSTEMS AND THEIR APPLICATION IN COMBINING RESULTS FROM DIFFERENT ANTENNA ORIENTATIONS NTNN SPHRICL COORDINT SSTMS ND THIR PPLICTION IN COMBINING RSULTS FROM DIFFRNT NTNN ORINTTIONS llen C. Newell, Greg Hindman Nearfield Systems Incorporated 133. 223 rd St. Bldg. 524 Carson, C 9745 US BSTRCT

More information

Lens Conventions From Jenkins & White: Fundamentals of Optics, pg 50 Incident rays travel left to right Object distance s + if left to vertex, - if

Lens Conventions From Jenkins & White: Fundamentals of Optics, pg 50 Incident rays travel left to right Object distance s + if left to vertex, - if Len Convention From Jenkin & White: Fundamental o Optic, pg 50 Incident ray travel let to right Object ditance + i let to vertex, - i right to vertex Image ditance ' + i right to vertex, - i let to vertex

More information

MAPI Computer Vision

MAPI Computer Vision MAPI Computer Vision Multiple View Geometry In tis module we intend to present several tecniques in te domain of te 3D vision Manuel Joao University of Mino Dep Industrial Electronics - Applications -

More information

12.2 TECHNIQUES FOR EVALUATING LIMITS

12.2 TECHNIQUES FOR EVALUATING LIMITS Section Tecniques for Evaluating Limits 86 TECHNIQUES FOR EVALUATING LIMITS Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing tecnique to evaluate its of

More information

A6525 Fall 2015 Solutions to Problem Set #2. This is the case of a single plano-convex lens. The specifications are:

A6525 Fall 2015 Solutions to Problem Set #2. This is the case of a single plano-convex lens. The specifications are: A655 Fall 05 Solutions to Problem Set # Problem : This is the case o a single plano-convex lens. The speciications are: Focal length ~ 5 cm Diameter D = 0 cm Index o reraction n =. Size o aperture stop

More information

: Find the values of the six trigonometric functions for θ. Special Right Triangles:

: Find the values of the six trigonometric functions for θ. Special Right Triangles: ALGEBRA 2 CHAPTER 13 NOTES Section 13-1 Right Triangle Trig Understand and use trigonometric relationships of acute angles in triangles. 12.F.TF.3 CC.9- Determine side lengths of right triangles by using

More information

L ENSES. Lenses Spherical refracting surfaces. n 1 n 2

L ENSES. Lenses Spherical refracting surfaces. n 1 n 2 Lenses 2 L ENSES 2. Sherical reracting suraces In order to start discussing lenses uantitatively, it is useul to consider a simle sherical surace, as shown in Fig. 2.. Our lens is a semi-ininte rod with

More information

Measuring Length 11and Area

Measuring Length 11and Area Measuring Lengt 11and Area 11.1 Areas of Triangles and Parallelograms 11.2 Areas of Trapezoids, Romuses, and Kites 11.3 Perimeter and Area of Similar Figures 11.4 Circumference and Arc Lengt 11.5 Areas

More information

Lens Conventions From Jenkins & White: Fundamentals of Optics, pg 50 Incident rays travel left to right Object distance s + if left to vertex, - if

Lens Conventions From Jenkins & White: Fundamentals of Optics, pg 50 Incident rays travel left to right Object distance s + if left to vertex, - if Len Convention From Jenkin & White: Fundamental o Optic, pg 50 Incident ray travel let to right Object ditance + i let to vertex, - i right to vertex Image ditance ' + i right to vertex, - i let to vertex

More information

NOTES: A quick overview of 2-D geometry

NOTES: A quick overview of 2-D geometry NOTES: A quick overview of 2-D geometry Wat is 2-D geometry? Also called plane geometry, it s te geometry tat deals wit two dimensional sapes flat tings tat ave lengt and widt, suc as a piece of paper.

More information

CHAPTER 35. Answer to Checkpoint Questions

CHAPTER 35. Answer to Checkpoint Questions 956 CHAPTER 35 GEMETRICAL PTICS CHAPTER 35 Answer to Checkpoint Questions answer to kaleidoscope question: two mirrors that orm a V with an angle o 60. 0:d, :8d, :d. (a) real; (b) inverted; (c) same 3.

More information

Conic Sections. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Conic Sections. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Conic Sections MATH 211, Calculus II J. Robert Buchanan Department o Mathematics Spring 2018 Introduction The conic sections include the parabola, the ellipse, and the hyperbola. y y y x x x Parabola A

More information

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 Note: Tere will be a very sort online reading quiz (WebWork) on eac reading assignment due one our before class on its due date. Due dates can be found

More information

A Quick Review of Trigonometry

A Quick Review of Trigonometry A Quick Review of Trigonometry As a starting point, we consider a ray with vertex located at the origin whose head is pointing in the direction of the positive real numbers. By rotating the given ray (initial

More information

7. Graph Algorithms. 7.1 Depth-First Search

7. Graph Algorithms. 7.1 Depth-First Search 7. Grap Algoritms Te previous capters ave examined a numer o grap prolems and teir algoritms in te context o design tecniques. In tis capter, we examine additional undamental grap prolems. In te irst two

More information

Read pages in the book, up to the investigation. Pay close attention to Example A and how to identify the height.

Read pages in the book, up to the investigation. Pay close attention to Example A and how to identify the height. C 8 Noteseet L Key In General ON LL PROBLEMS!!. State te relationsip (or te formula).. Sustitute in known values. 3. Simplify or Solve te equation. Use te order of operations in te correct order. Order

More information

( ) ( ) Mat 241 Homework Set 5 Due Professor David Schultz. x y. 9 4 The domain is the interior of the hyperbola.

( ) ( ) Mat 241 Homework Set 5 Due Professor David Schultz. x y. 9 4 The domain is the interior of the hyperbola. Mat 4 Homework Set 5 Due Professor David Scultz Directions: Sow all algebraic steps neatly and concisely using proper matematical symbolism. Wen graps and tecnology are to be implemented, do so appropriately.

More information

CESILA: Communication Circle External Square Intersection-Based WSN Localization Algorithm

CESILA: Communication Circle External Square Intersection-Based WSN Localization Algorithm Sensors & Transducers 2013 by IFSA ttp://www.sensorsportal.com CESILA: Communication Circle External Square Intersection-Based WSN Localization Algoritm Sun Hongyu, Fang Ziyi, Qu Guannan College of Computer

More information

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 27 Propagation of Light Hecht, chapter 5 Spring 2016 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

Areas of Triangles and Parallelograms. Bases of a parallelogram. Height of a parallelogram THEOREM 11.3: AREA OF A TRIANGLE. a and its corresponding.

Areas of Triangles and Parallelograms. Bases of a parallelogram. Height of a parallelogram THEOREM 11.3: AREA OF A TRIANGLE. a and its corresponding. 11.1 Areas of Triangles and Parallelograms Goal p Find areas of triangles and parallelograms. Your Notes VOCABULARY Bases of a parallelogram Heigt of a parallelogram POSTULATE 4: AREA OF A SQUARE POSTULATE

More information

2.8 The derivative as a function

2.8 The derivative as a function CHAPTER 2. LIMITS 56 2.8 Te derivative as a function Definition. Te derivative of f(x) istefunction f (x) defined as follows f f(x + ) f(x) (x). 0 Note: tis differs from te definition in section 2.7 in

More information

Fourth-order NMO velocity for P-waves in layered orthorhombic media vs. offset-azimuth

Fourth-order NMO velocity for P-waves in layered orthorhombic media vs. offset-azimuth Fourt-order NMO velocity for P-waves in layered orrombic media vs. set-azimut Zvi Koren* and Igor Ravve Paradigm Geopysical Summary We derive te fourt-order NMO velocity of compressional waves for a multi-layer

More information

Haar Transform CS 430 Denbigh Starkey

Haar Transform CS 430 Denbigh Starkey Haar Transform CS Denbig Starkey. Background. Computing te transform. Restoring te original image from te transform 7. Producing te transform matrix 8 5. Using Haar for lossless compression 6. Using Haar

More information

THANK YOU FOR YOUR PURCHASE!

THANK YOU FOR YOUR PURCHASE! THANK YOU FOR YOUR PURCHASE! Te resources included in tis purcase were designed and created by me. I ope tat you find tis resource elpful in your classroom. Please feel free to contact me wit any questions

More information

521466S Machine Vision Exercise #1 Camera models

521466S Machine Vision Exercise #1 Camera models 52466S Machine Vision Exercise # Camera models. Pinhole camera. The perspective projection equations or a pinhole camera are x n = x c, = y c, where x n = [x n, ] are the normalized image coordinates,

More information

More on Functions and Their Graphs

More on Functions and Their Graphs More on Functions and Teir Graps Difference Quotient ( + ) ( ) f a f a is known as te difference quotient and is used exclusively wit functions. Te objective to keep in mind is to factor te appearing in

More information

The (, D) and (, N) problems in double-step digraphs with unilateral distance

The (, D) and (, N) problems in double-step digraphs with unilateral distance Electronic Journal of Grap Teory and Applications () (), Te (, D) and (, N) problems in double-step digraps wit unilateral distance C Dalfó, MA Fiol Departament de Matemàtica Aplicada IV Universitat Politècnica

More information

Proceedings. Seventh ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC 2013) Palm Spring, CA

Proceedings. Seventh ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC 2013) Palm Spring, CA Proceedings Of te Sevent ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC ) Palm Spring, CA October 9 November st Parameter-Unaware Autocalibration for Occupancy Mapping David Van

More information

5.4 Sum and Difference Formulas

5.4 Sum and Difference Formulas 380 Capter 5 Analtic Trigonometr 5. Sum and Difference Formulas Using Sum and Difference Formulas In tis section and te following section, ou will stud te uses of several trigonometric identities and formulas.

More information

Physics 2C: Optics. refraction, Snell s law, polarization, images, thin mirrors, thin lenses July 11,

Physics 2C: Optics. refraction, Snell s law, polarization, images, thin mirrors, thin lenses July 11, Physics C: Optics Relection, reraction, Snell s law, polarization, images, thin mirrors, thin lenses July, 0 4 Relection: specularand diuse Size o objects a>>λ, treat waves as rays Light strikes medium,

More information

Section 14. Relays and Microscopes

Section 14. Relays and Microscopes Section 14 Relays and Microscopes 14-1 Image Erection The image produced by a Keplerian telescope is inverted and reverted. For many applications, such as terrestrial telescopes and binoculars, it is important

More information

Trigonometric Graphs. Graphs of Sine and Cosine

Trigonometric Graphs. Graphs of Sine and Cosine Trigonometric Graphs Page 1 4 Trigonometric Graphs Graphs of Sine and Cosine In Figure 13, we showed the graphs of = sin and = cos, for angles from 0 rad to rad. In reality these graphs extend indefinitely

More information

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved.

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved. 9.5 Polar Coordinates Copyright Cengage Learning. All rights reserved. Introduction Representation of graphs of equations as collections of points (x, y), where x and y represent the directed distances

More information

THE POSSIBILITY OF ESTIMATING THE VOLUME OF A SQUARE FRUSTRUM USING THE KNOWN VOLUME OF A CONICAL FRUSTRUM

THE POSSIBILITY OF ESTIMATING THE VOLUME OF A SQUARE FRUSTRUM USING THE KNOWN VOLUME OF A CONICAL FRUSTRUM THE POSSIBILITY OF ESTIMATING THE VOLUME OF A SQUARE FRUSTRUM USING THE KNOWN VOLUME OF A CONICAL FRUSTRUM SAMUEL OLU OLAGUNJU Adeyemi College of Education NIGERIA Email: lagsam04@aceondo.edu.ng ABSTRACT

More information

Name Student Activity

Name Student Activity Open the TI-Nspire document Proofs_of_Identities.tns. An identity is an equation that is true for all values of the variables for which both sides of the equation are defined. In this activity, you will

More information

MAC-CPTM Situations Project

MAC-CPTM Situations Project raft o not use witout permission -P ituations Project ituation 20: rea of Plane Figures Prompt teacer in a geometry class introduces formulas for te areas of parallelograms, trapezoids, and romi. e removes

More information

Linear Interpolating Splines

Linear Interpolating Splines Jim Lambers MAT 772 Fall Semester 2010-11 Lecture 17 Notes Tese notes correspond to Sections 112, 11, and 114 in te text Linear Interpolating Splines We ave seen tat ig-degree polynomial interpolation

More information

, 1 1, A complex fraction is a quotient of rational expressions (including their sums) that result

, 1 1, A complex fraction is a quotient of rational expressions (including their sums) that result RT. Complex Fractions Wen working wit algebraic expressions, sometimes we come across needing to simplify expressions like tese: xx 9 xx +, xx + xx + xx, yy xx + xx + +, aa Simplifying Complex Fractions

More information

Cubic smoothing spline

Cubic smoothing spline Cubic smooting spline Menu: QCExpert Regression Cubic spline e module Cubic Spline is used to fit any functional regression curve troug data wit one independent variable x and one dependent random variable

More information

Fast Calculation of Thermodynamic Properties of Water and Steam in Process Modelling using Spline Interpolation

Fast Calculation of Thermodynamic Properties of Water and Steam in Process Modelling using Spline Interpolation P R E P R N T CPWS XV Berlin, September 8, 008 Fast Calculation of Termodynamic Properties of Water and Steam in Process Modelling using Spline nterpolation Mattias Kunick a, Hans-Joacim Kretzscmar a,

More information

Multi-Stack Boundary Labeling Problems

Multi-Stack Boundary Labeling Problems Multi-Stack Boundary Labeling Problems Micael A. Bekos 1, Micael Kaufmann 2, Katerina Potika 1 Antonios Symvonis 1 1 National Tecnical University of Atens, Scool of Applied Matematical & Pysical Sciences,

More information

Unit 10 Reflection. Grading: Show all work, keeping it neat and organized. Show equations used and include all units.

Unit 10 Reflection. Grading: Show all work, keeping it neat and organized. Show equations used and include all units. Name: Hr: Unit 0 Relection Grading: Show all work, keeping it neat and organized. Show equations used and include all units. REFLECTION Vocabulary Relection: The bouncing o light. The angle a beam o light

More information

Engineering Mechanics (Statics) (Centroid) Dr. Hayder A. Mehdi

Engineering Mechanics (Statics) (Centroid) Dr. Hayder A. Mehdi Engineering Mecanics (Statics) (Centroid) Dr. Hader A. Medi Centroid of an Area: If an area lies in te x plane and is ounded te curve = f (x), as sown in te following figure ten its centroid will e in

More information

MTH-112 Quiz 1 - Solutions

MTH-112 Quiz 1 - Solutions MTH- Quiz - Solutions Words in italics are for eplanation purposes onl (not necessar to write in te tests or. Determine weter te given relation is a function. Give te domain and range of te relation. {(,

More information

Our Calibrated Model has No Predictive Value: An Example from the Petroleum Industry

Our Calibrated Model has No Predictive Value: An Example from the Petroleum Industry Our Calibrated Model as No Predictive Value: An Example from te Petroleum Industry J.N. Carter a, P.J. Ballester a, Z. Tavassoli a and P.R. King a a Department of Eart Sciences and Engineering, Imperial

More information

Simplified Algorithm for Implementing an ABCD Ray Matrix Wave-Optics Propagator

Simplified Algorithm for Implementing an ABCD Ray Matrix Wave-Optics Propagator Simpliied Algorithm or Implementing an ABC Ray atrix Wave-Optics Propagator Justin. ansell, Robert Praus, Anthony Seward, and Steve Coy ZA Associates Corporation Outline Introduction & otivation Ray atrices

More information

VideoText Interactive

VideoText Interactive VideoText Interactive Homescool and Independent Study Sampler Print Materials for Geometry: A Complete Course Unit I, Part C, Lesson 3 Triangles ------------------------------------------ Course Notes

More information

Section 2.3: Calculating Limits using the Limit Laws

Section 2.3: Calculating Limits using the Limit Laws Section 2.3: Calculating Limits using te Limit Laws In previous sections, we used graps and numerics to approimate te value of a it if it eists. Te problem wit tis owever is tat it does not always give

More information

1 Finding Trigonometric Derivatives

1 Finding Trigonometric Derivatives MTH 121 Fall 2008 Essex County College Division of Matematics Hanout Version 8 1 October 2, 2008 1 Fining Trigonometric Derivatives 1.1 Te Derivative as a Function Te efinition of te erivative as a function

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Sofia Burille Mentor: Micael Natanson September 15, 2014 Abstract Given a grap, G, wit a set of vertices, v, and edges, various

More information

6.7. POLAR COORDINATES

6.7. POLAR COORDINATES 6.7. POLAR COORDINATES What You Should Learn Plot points on the polar coordinate system. Convert points from rectangular to polar form and vice versa. Convert equations from rectangular to polar form and

More information

OPTI-502 Midterm Exam John E. Greivenkamp Page 1/12 Fall, 2016

OPTI-502 Midterm Exam John E. Greivenkamp Page 1/12 Fall, 2016 Page 1/12 Fall, 2016 October 19, 2016 Lecture 17 Name SOLUTIONS Closed book; closed notes. Time limit: 75 minutes. An equation sheet is attached and can be removed. A spare raytrace sheet is also attached.

More information

wrobot k wwrobot hrobot (a) Observation area Horopter h(θ) (Virtual) horopters h(θ+ θ lim) U r U l h(θ+ θ) Base line Left camera Optical axis

wrobot k wwrobot hrobot (a) Observation area Horopter h(θ) (Virtual) horopters h(θ+ θ lim) U r U l h(θ+ θ) Base line Left camera Optical axis Selective Acquisition of 3-D Information Enoug for Finding Passable Free Spaces Using an Active Stereo Vision System Atsusi Nisikawa, Atsusi Okubo, and Fumio Miyazaki Department of Systems and Human Science

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

Limits and Continuity

Limits and Continuity CHAPTER Limits and Continuit. Rates of Cange and Limits. Limits Involving Infinit.3 Continuit.4 Rates of Cange and Tangent Lines An Economic Injur Level (EIL) is a measurement of te fewest number of insect

More information

Tolerancing of single point diamond turned diffractive. Carl Zeiss AG, Oberkochen, Germany. with. ρ = 1/R

Tolerancing of single point diamond turned diffractive. Carl Zeiss AG, Oberkochen, Germany. with. ρ = 1/R J O U R N A L O F Journal of te European Optical Society - Rapid Publications, 0708 (007) www.jeos.org T H E E U R O P E A N Tolerancing of single point diamond turned diffractive O Poptical T elements

More information

EMILY RIEHL. X. This data is subject to the following axiom: to any pair X f Y g Z there must be some specified composite map = Z

EMILY RIEHL. X. This data is subject to the following axiom: to any pair X f Y g Z there must be some specified composite map = Z THE ALGEBRA AND GEOMETRY OF -CATEGORIES EMILY RIEHL Abstract. -cateories are a sopisticated tool or te study o matematical structures wit ier omotopical inormation. Tis note, directed at te Friends o Harvard

More information

Noninvasive optical tomographic imaging by speckle ensemble

Noninvasive optical tomographic imaging by speckle ensemble Invited Paper Noninvasive optical tomographic imaging by speckle ensemble Joseph Rosen and David Abookasis Ben-Gurion University o the Negev Department o Electrical and Computer Engineering P. O. Box 653,

More information

Implementation of Integral based Digital Curvature Estimators in DGtal

Implementation of Integral based Digital Curvature Estimators in DGtal Implementation of Integral based Digital Curvature Estimators in DGtal David Coeurjolly 1, Jacques-Olivier Lacaud 2, Jérémy Levallois 1,2 1 Université de Lyon, CNRS INSA-Lyon, LIRIS, UMR5205, F-69621,

More information

Paraxial into real surfaces

Paraxial into real surfaces Paraxial into real surfaces Curvature, Radius Power lens and mirrors lens maker equation mirror and lens in contact Principle planes Real Surfaces Refractive via Fermat s Principle Calculate optical path

More information