Name: Thus, y-intercept is (0,40) (d) y-intercept: Set x = 0: Cover the x term with your finger: 2x + 6y = 240 Solve that equation: 6y = 24 y = 4

Size: px
Start display at page:

Download "Name: Thus, y-intercept is (0,40) (d) y-intercept: Set x = 0: Cover the x term with your finger: 2x + 6y = 240 Solve that equation: 6y = 24 y = 4"

Transcription

1 Name: GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES SHOW ALL WORK AND JUSTIFY ALL ANSWERS. 1. We will graph linear inequalities first. Let us first consider (a) First, we will graph the boundar equation: = 240 (b) This line is in standard form, so the intercepts are eas to find. (c) -intercept: Set = 0: Cover the term with our finger: 2 +6 = 240 Solve that equation: 2 = 24 = 12 Thus, -intercept is (120,0) (d) -intercept: Set = 0: Cover the term with our finger: = 240 Solve that equation: 6 = 24 = 4 Thus, -intercept is (0,40) (e) We need two points to determine a line, so we can plot these and draw the line through these points. Note: You can also change this slope-intercept ( = m + b) form, but that is more work. This is much easier. (f) We will use the coordinates of our intercepts to determine the scale of our graph. The bigger the graph, the better. Our values were 40 and 120. Let s count b 20 s and go to 140. Notice we have no negative values. (g) After ou have labeled the aes, plot the points (120,0) and (0,40). (h) Now we shift attention back to the orginal inequalit: (i) Since the inequalit is less than or equal to we will use a solid line to connect the intercepts we found above. A solid line is used antime the inequalit is or (j) We now need to determine which region of the plane to shade. To do that, we will use a test point that does not la on the line. Often the origin, (0,0), is a nice test point. (k) Since our inequalit does not lie on the line we will use the origin. Substitute = 0 and = 0 into the inequalit and determine if the resulting statement is true or false. 2( ) + 6( )? 240 (h) Did ou get a true statement? Yes, 0 is alwas less than 240! Since our statement is true, we shade the region that contains the test point. In this problem, we will shade the region below and to the left of the line. That s it! Admire our work and let s move on! c M. Yosko & R. Winkenwerder This page ma not be scanned, copied, or redistributed without permission. Page 1

2 2. Now let s tr another: 18 8 > 144 (a) First, we will graph the boundar equation: 18 8 = 144 (b) This line is in standard form, so the intercepts are eas to find. (c) -intercept: Set = 0: Cover the term with our finger: 18 8 = 144 Solve that equation: Thus, -intercept is (,0) (d) -intercept: Set = 0: Cover the term with our finger: 18 8 = 144 Solve that equation: Thus, -intercept is (0, ) (e) Now we have the two intercepts (8,0) and (0, 18). This time, let s count b 2 s and go to 18 (f) After ou have labeled the aes, plot the points above. (g) Now look at the original inequalit: 18 8 > 144 (h) Since the inequalit is strictl greater than we will use a dashed line to connect the intercepts we found above. The inequalities < and > alwas use a dashed line. Connect the intercepts with a dashed line. (i) Since the line does not pass through the origin we can use it again. Note: You can use an point not on the line, but the origin is often the nicest because it minimizes the computation in evaluating the inequalit. (j) Substitute = 0 and = 0 into the inequalit and determine if the resulting statement is true or false. 18( ) 8( )? > 144 (g) This time, ou should have got a false statement. This means we shade the region that does NOT contain our test point. Here we will shade the region below and to the right of the line. Now let s take the problems to the net level... c M. Yosko & R. Winkenwerder This page ma not be scanned, copied, or redistributed without permission. Page 2

3 { Graph 3 > 3 (a) Let s find the information for each inequalit separatel. (b) (c) 3 > 3 i. Find the -intercept: Let = 0 (,0) i. Find the -intercept: Let = 0 (,0) ii. Find the -intercept: Let = 0 (0, ) ii. Find the -intercept: Let = 0 (0, ) iii. Look at the inequalit and make a decision on the tpe of line to use iv. Choose a test point: v. Evaluate the test point in the inequalit. 5( ) + 3( )? 15 iii. Look at the inequalit and make a decision on the tpe of line to use. 3 > 3 iv. Choose a test point: v. Evaluate the test point in the inequalit. 3( ) ( )? > 3 vi. Is the statement true or false? Where should ou shade? vi. Is the statement true or false? Where should ou shade? (d) Since this is our first eample graphing two inequalities on one plane, let s stick to a scale of 1 for each the horizontal and vertical ais. (e) There is going to be a lot of shading, and it can be eas to shade the wrong region b mistake. So we are going to use arrows to indicate which regions should be shaded before we shade the final feasible region. (f) Transfer the information from the inequalit to the coordinate plane below. Rather than shading the entire region, use small below the line and along the entire line to indicate the region we need to shade for this inequalit (g) Now transfer the information from the inequalit 3 > 3 to the coordinate plane below. This time use small below the line and along the line to indicate the region we need to graph. (h) Finall, we can shade! We need to shade the region that satisfies BOTH inequalities. We are looking for the overlap of the two areas. c M. Yosko & R. Winkenwerder This page ma not be scanned, copied, or redistributed without permission. Page 3

4 Graph (a) Find the information for each inequalit. (b) (c) intercept: (, 0) -intercept: (0, ) -intercept: (, 0) -intercept: (0, ) Test Point: Evaluate the test point: Test Point: Evaluate the test point: Is the statement true or false? Where should ou shade? Is the statement true or false? Where should ou shade? (d) The third row of inequalities, 0 and 0, actuall make it easier to find the feasible region. i. The inequalit 0 means can take on positive values or zero. We know is positive in quadrants I or IV, and is zero for an point on the -ais. ii. Likewise, the inequalit 0 means can take on positive values or zero. We know is positive in quadrants I or II, and is zero for an point on the -ais. iii. If we shade those areas on the plane, it means we are looking for an points in Quadrant I, OR on the positive -ais, OR on the positive -ais, OR the origin itself. iv. So the third row of inequalities is telling us to restrict our feasible region to the upper, right-hand portion of the plane. (e) Transfer the information from each of the inequalities. Again, use small arrows indicating where ou will look of the feasible region (f) Use a scaling of 10 units for this graph. Then each midpoint of the grid lines is a multiple of 5. c M. Yosko & R. Winkenwerder This page ma not be scanned, copied, or redistributed without permission. Page 4

5 Graph Recommended scaling: 5 units Graph Recommended scaling: 10 units c M. Yosko & R. Winkenwerder This page ma not be scanned, copied, or redistributed without permission. Page 5

Graphing Linear Inequalities

Graphing Linear Inequalities Graphing Linear Inequalities Basic Mathematics Review 837 Linear inequalities pla an important role in applied mathematics. The are used in an area of mathematics called linear programming which was developed

More information

Sect Linear Inequalities in Two Variables

Sect Linear Inequalities in Two Variables Sect 9. - Linear Inequalities in Two Variables Concept # Graphing a Linear Inequalit in Two Variables Definition Let a, b, and c be real numbers where a and b are not both zero. Then an inequalit that

More information

Graphing Method. Graph of x + y < > y 10. x

Graphing Method. Graph of x + y < > y 10. x Graphing Method Eample: Graph the inequalities on the same plane: + < 6 and 2 - > 4. Before we graph them simultaneousl, let s look at them separatel. 10-10 10 Graph of + < 6. ---> -10 Graphing Method

More information

ACTIVITY 9 Continued Lesson 9-2

ACTIVITY 9 Continued Lesson 9-2 Continued Lesson 9- Lesson 9- PLAN Pacing: 1 class period Chunking the Lesson Eample A Eample B #1 #3 Lesson Practice M Notes Learning Targets: Graph on a coordinate plane the solutions of a linear inequalit

More information

Name Class Date. subtract 3 from each side. w 5z z 5 2 w p - 9 = = 15 + k = 10m. 10. n =

Name Class Date. subtract 3 from each side. w 5z z 5 2 w p - 9 = = 15 + k = 10m. 10. n = Reteaching Solving Equations To solve an equation that contains a variable, find all of the values of the variable that make the equation true. Use the equalit properties of real numbers and inverse operations

More information

Graphing Systems of Linear Inequalities in Two Variables

Graphing Systems of Linear Inequalities in Two Variables 5.5 Graphing Sstems of Linear Inequalities in Two Variables 5.5 OBJECTIVES 1. Graph a sstem of linear inequalities in two variables 2. Solve an application of a sstem of linear inequalities In Section

More information

Graphs, Linear Equations, and Functions

Graphs, Linear Equations, and Functions Graphs, Linear Equations, and Functions. The Rectangular R. Coordinate Fractions Sstem bjectives. Interpret a line graph.. Plot ordered pairs.. Find ordered pairs that satisf a given equation. 4. Graph

More information

Review for Mastery Using Graphs and Tables to Solve Linear Systems

Review for Mastery Using Graphs and Tables to Solve Linear Systems 3-1 Using Graphs and Tables to Solve Linear Systems A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations

More information

Graphing Equations Case 1: The graph of x = a, where a is a constant, is a vertical line. Examples a) Graph: x = x

Graphing Equations Case 1: The graph of x = a, where a is a constant, is a vertical line. Examples a) Graph: x = x 06 CHAPTER Algebra. GRAPHING EQUATIONS AND INEQUALITIES Tetbook Reference Section 6. &6. CLAST OBJECTIVE Identif regions of the coordinate plane that correspond to specific conditions and vice-versa Graphing

More information

Lesson 5.2 Exercises, pages

Lesson 5.2 Exercises, pages Lesson 5. Eercises, pages 6 68 A. Determine whether each point is a solution of the given inequalit. a) - -16 A(-, ) In the inequalit, substitute:, L.S.: ( ) () 17 R.S. 16 Since the L.S.

More information

Mathematics for Business and Economics - I. Chapter7 Linear Inequality Systems and Linear Programming (Lecture11)

Mathematics for Business and Economics - I. Chapter7 Linear Inequality Systems and Linear Programming (Lecture11) Mathematics for Business and Economics - I Chapter7 Linear Inequality Systems and Linear Programming (Lecture11) A linear inequality in two variables is an inequality that can be written in the form Ax

More information

7.6 Solve Linear Systems of

7.6 Solve Linear Systems of 7.6 Solve Linear Sstems of Linear Inequalities Goal p Solve sstems of linear inequalities in two variables. Your Notes VOCABULARY Sstem of linear inequalities Solution of a sstem of linear inequalities

More information

LINEAR PROGRAMMING. Straight line graphs LESSON

LINEAR PROGRAMMING. Straight line graphs LESSON LINEAR PROGRAMMING Traditionall we appl our knowledge of Linear Programming to help us solve real world problems (which is referred to as modelling). Linear Programming is often linked to the field of

More information

Content Standards Two-Variable Inequalities

Content Standards Two-Variable Inequalities -8 Content Standards Two-Variable Inequalities A.CED. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate aes with labels and scales.

More information

Algebra Unit 2: Linear Functions Notes. Slope Notes. 4 Types of Slope. Slope from a Formula

Algebra Unit 2: Linear Functions Notes. Slope Notes. 4 Types of Slope. Slope from a Formula Undefined Slope Notes Types of Slope Zero Slope Slope can be described in several ways: Steepness of a line Rate of change rate of increase or decrease Rise Run Change (difference) in y over change (difference)

More information

Chapter 4 Section 1 Graphing Linear Inequalities in Two Variables

Chapter 4 Section 1 Graphing Linear Inequalities in Two Variables Chapter 4 Section 1 Graphing Linear Inequalities in Two Variables Epressions of the tpe + 2 8 and 3 > 6 are called linear inequalities in two variables. A solution of a linear inequalit in two variables

More information

Functions. Name. Use an XY Coordinate Pegboard to graph each line. Make a table of ordered pairs for each line. y = x + 5 x y.

Functions. Name. Use an XY Coordinate Pegboard to graph each line. Make a table of ordered pairs for each line. y = x + 5 x y. Lesson 1 Functions Name Use an XY Coordinate Pegboard to graph each line. Make a table of ordered pairs for each line. 1. = + = + = 2 3 = 2 3 Using an XY Coordinate Pegboard, graph the line on a coordinate

More information

Algebra I Notes Unit Six: Graphing Linear Equations and Inequalities in Two Variables, Absolute Value Functions

Algebra I Notes Unit Six: Graphing Linear Equations and Inequalities in Two Variables, Absolute Value Functions Sllabus Objective.4 The student will graph linear equations and find possible solutions to those equations using coordinate geometr. Coordinate Plane a plane formed b two real number lines (axes) that

More information

Example 1: Give the coordinates of the points on the graph.

Example 1: Give the coordinates of the points on the graph. Ordered Pairs Often, to get an idea of the behavior of an equation, we will make a picture that represents the solutions to the equation. A graph gives us that picture. The rectangular coordinate plane,

More information

SLOPE A MEASURE OF STEEPNESS through 7.1.5

SLOPE A MEASURE OF STEEPNESS through 7.1.5 SLOPE A MEASURE OF STEEPNESS 7.1. through 7.1.5 Students have used the equation = m + b throughout this course to graph lines and describe patterns. When the equation is written in -form, the m is the

More information

Derivatives 3: The Derivative as a Function

Derivatives 3: The Derivative as a Function Derivatives : The Derivative as a Function 77 Derivatives : The Derivative as a Function Model : Graph of a Function 9 8 7 6 5 g() - - - 5 6 7 8 9 0 5 6 7 8 9 0 5 - - -5-6 -7 Construct Your Understanding

More information

3.7 Graphing Linear Inequalities

3.7 Graphing Linear Inequalities 8 CHAPTER Graphs and Functions.7 Graphing Linear Inequalities S Graph Linear Inequalities. Graph the Intersection or Union of Two Linear Inequalities. Graphing Linear Inequalities Recall that the graph

More information

Appendix F: Systems of Inequalities

Appendix F: Systems of Inequalities Appendi F: Sstems of Inequalities F. Solving Sstems of Inequalities The Graph of an Inequalit What ou should learn The statements < and ⱖ are inequalities in two variables. An ordered pair 共a, b兲 is a

More information

x Check: p. C) 32 8k D) 3t 15

x Check: p. C) 32 8k D) 3t 15 Chapter Notes Alg H -A (Lesson -&) Solving Inequalities p. 0-0 A) n B) Check: n A) B) p When ou multipl or divide b a number, ou must the inequalit sign! A) r B) g 0 C) k D) t Points: Ch Notes Alg H -A

More information

Lesson 5.3 Exercises, pages

Lesson 5.3 Exercises, pages Lesson 5.3 Eercises, pages 37 3 A. Determine whether each ordered pair is a solution of the quadratic inequalit: 3 - a) (-3, ) b) (, 5) Substitute each ordered pair in» 3. L.S. ; R.S.: 3( 3) 3 L.S. 5;

More information

Section Graphs and Lines

Section Graphs and Lines Section 1.1 - Graphs and Lines The first chapter of this text is a review of College Algebra skills that you will need as you move through the course. This is a review, so you should have some familiarity

More information

SLOPE A MEASURE OF STEEPNESS through 2.1.4

SLOPE A MEASURE OF STEEPNESS through 2.1.4 SLOPE A MEASURE OF STEEPNESS 2.1.2 through 2.1.4 Students used the equation = m + b to graph lines and describe patterns in previous courses. Lesson 2.1.1 is a review. When the equation of a line is written

More information

Ready To Go On? Skills Intervention 3-1 Using Graphs and Tables to Solve Linear Systems

Ready To Go On? Skills Intervention 3-1 Using Graphs and Tables to Solve Linear Systems Read To Go On? Skills Intervention 3-1 Using Graphs and Tables to Solve Linear Sstems Find these vocabular words in Lesson 3-1 and the Multilingual Glossar. Vocabular sstem of equations linear sstem consistent

More information

Chapter 3: Section 3-2 Graphing Linear Inequalities

Chapter 3: Section 3-2 Graphing Linear Inequalities Chapter : Section - Graphing Linear Inequalities D. S. Malik Creighton Universit, Omaha, NE D. S. Malik Creighton Universit, Omaha, NE Chapter () : Section - Graphing Linear Inequalities / 9 Geometric

More information

6.1. Graphing Linear Inequalities in Two Variables. INVESTIGATE the Math. Reflecting

6.1. Graphing Linear Inequalities in Two Variables. INVESTIGATE the Math. Reflecting 6.1 Graphing Linear Inequalities in Two Variables YOU WILL NEED graphing technolog OR graph paper, ruler, and coloured pencils EXPLORE For which inequalities is (3, 1) a possible solution? How do ou know?

More information

6.7. Graph Linear Inequalities in Two Variables. Warm Up Lesson Presentation Lesson Quiz

6.7. Graph Linear Inequalities in Two Variables. Warm Up Lesson Presentation Lesson Quiz 6.7 Graph Linear Inequalities in Two Variables Warm Up Lesson Presentation Lesson Quiz 6.7 Warm-Up Tell whether the ordered pair is a solution of the equation. 1. x + 2y = 4; (2, 1) no 2. 4x + 3y = 22;

More information

LESSON 5.3 SYSTEMS OF INEQUALITIES

LESSON 5.3 SYSTEMS OF INEQUALITIES LESSON 5. SYSTEMS OF INEQUALITIES LESSON 5. SYSTEMS OF INEQUALITIES OVERVIEW Here s what ou ll learn in this lesson: Solving Linear Sstems a. Solving sstems of linear inequalities b graphing As a conscientious

More information

Graphing Quadratics: Vertex and Intercept Form

Graphing Quadratics: Vertex and Intercept Form Algebra : UNIT Graphing Quadratics: Verte and Intercept Form Date: Welcome to our second function famil...the QUADRATIC FUNCTION! f() = (the parent function) What is different between this function and

More information

LESSON 3.1 INTRODUCTION TO GRAPHING

LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING 137 OVERVIEW Here s what ou ll learn in this lesson: Plotting Points a. The -plane b. The -ais and -ais c. The origin d. Ordered

More information

7.5. Systems of Inequalities. The Graph of an Inequality. What you should learn. Why you should learn it

7.5. Systems of Inequalities. The Graph of an Inequality. What you should learn. Why you should learn it 0_0705.qd /5/05 9:5 AM Page 5 Section 7.5 7.5 Sstems of Inequalities 5 Sstems of Inequalities What ou should learn Sketch the graphs of inequalities in two variables. Solve sstems of inequalities. Use

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technolog c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

Partial Fraction Decomposition

Partial Fraction Decomposition Section 7. Partial Fractions 53 Partial Fraction Decomposition Algebraic techniques for determining the constants in the numerators of partial fractions are demonstrated in the eamples that follow. Note

More information

ax + by = 0. x = c. y = d.

ax + by = 0. x = c. y = d. Review of Lines: Section.: Linear Inequalities in Two Variables The equation of a line is given by: ax + by = c. for some given numbers a, b and c. For example x + y = 6 gives the equation of a line. A

More information

4.1 The Coordinate Plane

4.1 The Coordinate Plane 4. The Coordinate Plane Goal Plot points in a coordinate plane. VOCABULARY Coordinate plane Origin -ais -ais Ordered pair -coordinate -coordinate Quadrant Scatter plot Copright McDougal Littell, Chapter

More information

Question 2: How do you solve a linear programming problem with a graph?

Question 2: How do you solve a linear programming problem with a graph? Question : How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.

More information

6-1: Solving Systems by Graphing

6-1: Solving Systems by Graphing 6-1: Solving Sstems b Graphing Objective: To solve sstems of linear equations b graphing Warm Up: Graph each equation using - and -intercepts. 1. 1. 4 8. 6 9 18 4. 5 10 5 sstem of linear equations: two

More information

Section 4.5 Linear Inequalities in Two Variables

Section 4.5 Linear Inequalities in Two Variables Section 4.5 Linear Inequalities in Two Variables Department of Mathematics Grossmont College February 25, 203 4.5 Linear Inequalities in Two Variables Learning Objectives: Graph linear inequalities in

More information

Systems of Equations and Inequalities. Copyright Cengage Learning. All rights reserved.

Systems of Equations and Inequalities. Copyright Cengage Learning. All rights reserved. 5 Systems of Equations and Inequalities Copyright Cengage Learning. All rights reserved. 5.5 Systems of Inequalities Copyright Cengage Learning. All rights reserved. Objectives Graphing an Inequality Systems

More information

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane. What am I learning today? How to graph a linear

More information

Algebra I Notes Linear Functions & Inequalities Part I Unit 5 UNIT 5 LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES

Algebra I Notes Linear Functions & Inequalities Part I Unit 5 UNIT 5 LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES UNIT LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES PREREQUISITE SKILLS: students must know how to graph points on the coordinate plane students must understand ratios, rates and unit rate VOCABULARY:

More information

Appendix F: Systems of Inequalities

Appendix F: Systems of Inequalities A0 Appendi F Sstems of Inequalities Appendi F: Sstems of Inequalities F. Solving Sstems of Inequalities The Graph of an Inequalit The statements < and are inequalities in two variables. An ordered pair

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

WRITING AND GRAPHING LINEAR EQUATIONS ON A FLAT SURFACE #1313

WRITING AND GRAPHING LINEAR EQUATIONS ON A FLAT SURFACE #1313 WRITING AND GRAPHING LINEAR EQUATIONS ON A FLAT SURFACE #11 SLOPE is a number that indicates the steepness (or flatness) of a line, as well as its direction (up or down) left to right. SLOPE is determined

More information

Section 18-1: Graphical Representation of Linear Equations and Functions

Section 18-1: Graphical Representation of Linear Equations and Functions Section 18-1: Graphical Representation of Linear Equations and Functions Prepare a table of solutions and locate the solutions on a coordinate system: f(x) = 2x 5 Learning Outcome 2 Write x + 3 = 5 as

More information

TIPS4RM: MHF4U: Unit 1 Polynomial Functions

TIPS4RM: MHF4U: Unit 1 Polynomial Functions TIPSRM: MHFU: Unit Polnomial Functions 008 .5.: Polnomial Concept Attainment Activit Compare and contrast the eamples and non-eamples of polnomial functions below. Through reasoning, identif attributes

More information

GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM

GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM FOM 11 T7 GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM 1 1 GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM I) THE STANDARD FORM OF A QUADRATIC FUNCTION (PARABOLA) IS = a +b +c. To graph a quadratic function

More information

Section 9.3: Functions and their Graphs

Section 9.3: Functions and their Graphs Section 9.: Functions and their Graphs Graphs provide a wa of displaing, interpreting, and analzing data in a visual format. In man problems, we will consider two variables. Therefore, we will need to

More information

Transformations of Absolute Value Functions. Compression A compression is a. function a function of the form f(x) = a 0 x - h 0 + k

Transformations of Absolute Value Functions. Compression A compression is a. function a function of the form f(x) = a 0 x - h 0 + k - Transformations of Absolute Value Functions TEKS FOCUS VOCABULARY Compression A compression is a TEKS (6)(C) Analze the effect on the graphs of f() = when f() is replaced b af(), f(b), f( - c), and f()

More information

Name: THE SIMPLEX METHOD: STANDARD MAXIMIZATION PROBLEMS

Name: THE SIMPLEX METHOD: STANDARD MAXIMIZATION PROBLEMS Name: THE SIMPLEX METHOD: STANDARD MAXIMIZATION PROBLEMS A linear programming problem consists of a linear objective function to be maximized or minimized subject to certain constraints in the form of

More information

Concept: Solving Inequalities Name:

Concept: Solving Inequalities Name: Concept: Solving Inequalities Name: You should have completed Equations Section 7 Part A: Solving Inequalities before beginning this handout. COMPUTER COMPONENT Instructions: In follow the Content Menu

More information

Intro. To Graphing Linear Equations

Intro. To Graphing Linear Equations Intro. To Graphing Linear Equations The Coordinate Plane A. The coordinate plane has 4 quadrants. B. Each point in the coordinate plain has an x-coordinate (the abscissa) and a y-coordinate (the ordinate).

More information

Lines and Their Slopes

Lines and Their Slopes 8.2 Lines and Their Slopes Linear Equations in Two Variables In the previous chapter we studied linear equations in a single variable. The solution of such an equation is a real number. A linear equation

More information

1.1 Horizontal & Vertical Translations

1.1 Horizontal & Vertical Translations Unit II Transformations of Functions. Horizontal & Vertical Translations Goal: Demonstrate an understanding of the effects of horizontal and vertical translations on the graphs of functions and their related

More information

Graphing Equations. The Rectangular Coordinate System

Graphing Equations. The Rectangular Coordinate System 3.1 Graphing Equations The Rectangular Coordinate Sstem Ordered pair two numbers associated with a point on a graph. The first number gives the horizontal location of the point. The second gives the vertical

More information

Pre-Algebra Notes Unit 8: Graphs and Functions

Pre-Algebra Notes Unit 8: Graphs and Functions Pre-Algebra Notes Unit 8: Graphs and Functions The Coordinate Plane A coordinate plane is formed b the intersection of a horizontal number line called the -ais and a vertical number line called the -ais.

More information

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2 Learning Enhancement Team Model answers: Finding Equations of Straight Lines Finding Equations of Straight Lines stud guide The straight line with gradient 3 which passes through the point, 4 is 3 0 Because

More information

Lesson 11 Skills Maintenance. Activity 1. Model. The addition problem is = 4. The subtraction problem is 5 9 = 4.

Lesson 11 Skills Maintenance. Activity 1. Model. The addition problem is = 4. The subtraction problem is 5 9 = 4. Lesson Skills Maintenance Lesson Planner Vocabular Development -coordinate -coordinate point of origin Skills Maintenance ddition and Subtraction of Positive and Negative Integers Problem Solving: We look

More information

1. Solve the following equation, please show your steps for full credit: (3.1)

1. Solve the following equation, please show your steps for full credit: (3.1) Ope Steiner Test 1 Practice Test Identif the choice that best completes the statement or answers the question. 1. Solve the following equation, please show our steps for full credit: (3.1) 1 1 (x + 5)

More information

PATTERNS AND ALGEBRA. He opened mathematics to many discoveries and exciting applications.

PATTERNS AND ALGEBRA. He opened mathematics to many discoveries and exciting applications. PATTERNS AND ALGEBRA The famous French philosopher and mathematician René Descartes (596 65) made a great contribution to mathematics in 67 when he published a book linking algebra and geometr for the

More information

Math 1050 Lab Activity: Graphing Transformations

Math 1050 Lab Activity: Graphing Transformations Math 00 Lab Activit: Graphing Transformations Name: We'll focus on quadratic functions to eplore graphing transformations. A quadratic function is a second degree polnomial function. There are two common

More information

Lesson 2.1 Exercises, pages 90 96

Lesson 2.1 Exercises, pages 90 96 Lesson.1 Eercises, pages 9 96 A. a) Complete the table of values. 1 1 1 1 1. 1 b) For each function in part a, sketch its graph then state its domain and range. For : the domain is ; and the range is.

More information

Attributes and Transformations of f(x) = e x VOCABULARY

Attributes and Transformations of f(x) = e x VOCABULARY - Attributes and Transformations of f() = e TEKS FOCUS TEKS ()(A) Determine the effects on the ke attributes on the graphs of f() = b and f() = log b () where b is,, and e when f() is replaced b af(),

More information

Algebra 1. 7 th Standard Complete Graphs. Categories Quadratic (p. 3-9) Exponential (p ) Absolute Value (p ) Linear (p.

Algebra 1. 7 th Standard Complete Graphs. Categories Quadratic (p. 3-9) Exponential (p ) Absolute Value (p ) Linear (p. Algebra 1 7 th Standard Complete Graphs Categories Quadratic (p. -9) Eponential (p. 10-1) Absolute Value (p. 14-17) Linear (p. 18-9) Summative Assessment Date: Wednesda, November 8 th Page 1 Standard:

More information

Name Class Date. Graphing a Linear Inequality

Name Class Date. Graphing a Linear Inequality Name Class Date Solving Linear Inequalities Going Deeper Essential question: How do ou graph a linear inequalit in two variables? A linear inequalit in two variables, such as 2-6, results when ou replace

More information

CHECK Your Understanding

CHECK Your Understanding CHECK Your Understanding. State the domain and range of each relation. Then determine whether the relation is a function, and justif our answer.. a) e) 5(, ), (, 9), (, 7), (, 5), (, ) 5 5 f) 55. State

More information

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center . The Ellipse The net one of our conic sections we would like to discuss is the ellipse. We will start b looking at the ellipse centered at the origin and then move it awa from the origin. Standard Form

More information

Learning Objectives for Section Graphs and Lines. Cartesian coordinate system. Graphs

Learning Objectives for Section Graphs and Lines. Cartesian coordinate system. Graphs Learning Objectives for Section 3.1-2 Graphs and Lines After this lecture and the assigned homework, ou should be able to calculate the slope of a line. identif and work with the Cartesian coordinate sstem.

More information

Section 4.2 Graphing Lines

Section 4.2 Graphing Lines Section. Graphing Lines Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif collinear points. The order of operations (1.) Graph the line

More information

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved.

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved. 3 LINEAR PROGRAMMING: A GEOMETRIC APPROACH Copyright Cengage Learning. All rights reserved. 3.1 Graphing Systems of Linear Inequalities in Two Variables Copyright Cengage Learning. All rights reserved.

More information

MATH ALGEBRA AND FUNCTIONS 5 Performance Objective Task Analysis Benchmarks/Assessment Students:

MATH ALGEBRA AND FUNCTIONS 5 Performance Objective Task Analysis Benchmarks/Assessment Students: Students: 1. Use information taken from a graph or Which table, a or b, matches the linear equation to answer questions about a graph? problem situation. y 1. Students use variables in simple expressions,

More information

Chapter 3 Linear Equations and Inequalities in two variables.

Chapter 3 Linear Equations and Inequalities in two variables. Chapter 3 Linear Equations and Inequalities in two variables. 3.1 Paired Data and Graphing Ordered Pairs 3.2 Graphing linear equations in two variables. 3.3 Graphing using intercepts 3.4 The slope of a

More information

2-3. Attributes of Absolute Value Functions. Key Concept Absolute Value Parent Function f (x)= x VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING

2-3. Attributes of Absolute Value Functions. Key Concept Absolute Value Parent Function f (x)= x VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING - Attributes of Absolute Value Functions TEKS FOCUS TEKS ()(A) Graph the functions f() =, f() =, f() =, f() =,f() = b, f() =, and f() = log b () where b is,, and e, and, when applicable, analze the ke

More information

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions 76 CHAPTER Graphs and Functions Find the equation of each line. Write the equation in the form = a, = b, or = m + b. For Eercises through 7, write the equation in the form f = m + b.. Through (, 6) and

More information

HORIZONTAL AND VERTICAL LINES

HORIZONTAL AND VERTICAL LINES the graph of the equation........... AlgebraDate 4.2 Notes: Graphing Linear Equations In Lesson (pp 3.1210-213) ou saw examples of linear equations in one variable. The solution of A an solution equation

More information

Section 3.1: Introduction to Linear Equations in 2 Variables Section 3.2: Graphing by Plotting Points and Finding Intercepts

Section 3.1: Introduction to Linear Equations in 2 Variables Section 3.2: Graphing by Plotting Points and Finding Intercepts Remember to read the tetbook before attempting to do our homework. Section 3.1: Introduction to Linear Equations in 2 Variables Section 3.2: Graphing b Plotting Points and Finding Intercepts Rectangular

More information

UNIT P1: PURE MATHEMATICS 1 QUADRATICS

UNIT P1: PURE MATHEMATICS 1 QUADRATICS QUADRATICS Candidates should able to: carr out the process of completing the square for a quadratic polnomial, and use this form, e.g. to locate the vertex of the graph of or to sketch the graph; find

More information

Graphing square root functions. What would be the base graph for the square root function? What is the table of values?

Graphing square root functions. What would be the base graph for the square root function? What is the table of values? Unit 3 (Chapter 2) Radical Functions (Square Root Functions Sketch graphs of radical functions b appling translations, stretches and reflections to the graph of Analze transformations to identif the of

More information

Test Name: Chapter 3 Review

Test Name: Chapter 3 Review Test Name: Chapter 3 Review 1. For the following equation, determine the values of the missing entries. If needed, write your answer as a fraction reduced to lowest terms. 10x - 8y = 18 Note: Each column

More information

Shifting, Reflecting, and Stretching Graphs

Shifting, Reflecting, and Stretching Graphs Shifting, Reflecting, and Stretching s Shifting s 1 ( ) ( ) This is f ( ) This is f ( ) This is f ( ) What happens to the graph? f ( ) is f () shifted units to the right. f ( ) is f () shifted units to

More information

Chapter 1 Notes, Calculus I with Precalculus 3e Larson/Edwards

Chapter 1 Notes, Calculus I with Precalculus 3e Larson/Edwards Contents 1.1 Functions.............................................. 2 1.2 Analzing Graphs of Functions.................................. 5 1.3 Shifting and Reflecting Graphs..................................

More information

Integrated Algebra A Notes/Homework Packet 9

Integrated Algebra A Notes/Homework Packet 9 Name Date Integrated Algebra A Notes/Homework Packet 9 Lesson Homework Graph Using the Calculator HW # Graph with Slope/Intercept Method HW # Graph with Slope/Intercept Method-Continued HW #3 Review Put

More information

Week 3. Topic 5 Asymptotes

Week 3. Topic 5 Asymptotes Week 3 Topic 5 Asmptotes Week 3 Topic 5 Asmptotes Introduction One of the strangest features of a graph is an asmptote. The come in three flavors: vertical, horizontal, and slant (also called oblique).

More information

Transformations of y = x 2

Transformations of y = x 2 Transformations of = Parent Parabola Lesson 11-1 Learning Targets: Describe translations of the parent function f() =. Given a translation of the function f() =, write the equation of the function. SUGGESTED

More information

8.5 Quadratic Functions and Their Graphs

8.5 Quadratic Functions and Their Graphs CHAPTER 8 Quadratic Equations and Functions 8. Quadratic Functions and Their Graphs S Graph Quadratic Functions of the Form f = + k. Graph Quadratic Functions of the Form f = - h. Graph Quadratic Functions

More information

Graphing Calculator Graphing with the TI-86

Graphing Calculator Graphing with the TI-86 Graphing Calculator Graphing with the TI-86 I. Introduction The TI-86 has fift kes, man of which perform multiple functions when used in combination. Each ke has a smbol printed on its face. When a ke

More information

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle.

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle. Algebra I Chapter 4 Notes Name Sec 4.1 Coordinates and Scatter Plots Coordinate Plane: Formed by two real number lines that intersect at a right angle. X-axis: The horizontal axis Y-axis: The vertical

More information

LINEAR TOPICS Notes and Homework: DUE ON EXAM

LINEAR TOPICS Notes and Homework: DUE ON EXAM NAME CLASS PERIOD LINEAR TOPICS Notes and Homework: DUE ON EXAM VOCABULARY: Make sure ou know the definitions of the terms listed below. These will be covered on the exam. Axis Scatter plot b Slope Coordinate

More information

Matrix Representations

Matrix Representations CONDENSED LESSON 6. Matri Representations In this lesson, ou Represent closed sstems with transition diagrams and transition matrices Use matrices to organize information Sandra works at a da-care center.

More information

Sketching Straight Lines (Linear Relationships)

Sketching Straight Lines (Linear Relationships) Sketching Straight Lines (Linear Relationships) The slope of the line is m = y x = y 2 y 1 = rise run. Horizontal lines have the form y = b and have slope m = 0. Vertical lines have the form x = a and

More information

Exam 2 Review. 2. What the difference is between an equation and an expression?

Exam 2 Review. 2. What the difference is between an equation and an expression? Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? 2. What the difference is between an equation and an expression? 3. How to tell if an equation is linear? 4. How

More information

5-8. Systems of Linear Inequalities. Vocabulary. Lesson. Mental Math

5-8. Systems of Linear Inequalities. Vocabulary. Lesson. Mental Math Lesson 5-8 Systems of Linear Inequalities Vocabulary feasible set, feasible region BIG IDEA The solution to a system of linear inequalities in two variables is either the empty set, the interior of a polygon,

More information

Lesson 8.1 Exercises, pages

Lesson 8.1 Exercises, pages Lesson 8.1 Eercises, pages 1 9 A. Complete each table of values. a) -3 - -1 1 3 3 11 8 5-1 - -7 3 11 8 5 1 7 To complete the table for 3, take the absolute value of each value of 3. b) - -3 - -1 1 3 3

More information

Rational functions and graphs. Section 2: Graphs of rational functions

Rational functions and graphs. Section 2: Graphs of rational functions Rational functions and graphs Section : Graphs of rational functions Notes and Eamples These notes contain subsections on Graph sketching Turning points and restrictions on values Graph sketching You can

More information

3.1. 3x 4y = 12 3(0) 4y = 12. 3x 4y = 12 3x 4(0) = y = x 0 = 12. 4y = 12 y = 3. 3x = 12 x = 4. The Rectangular Coordinate System

3.1. 3x 4y = 12 3(0) 4y = 12. 3x 4y = 12 3x 4(0) = y = x 0 = 12. 4y = 12 y = 3. 3x = 12 x = 4. The Rectangular Coordinate System 3. The Rectangular Coordinate System Interpret a line graph. Objectives Interpret a line graph. Plot ordered pairs. 3 Find ordered pairs that satisfy a given equation. 4 Graph lines. 5 Find x- and y-intercepts.

More information