Week 3. Topic 5 Asymptotes

Size: px
Start display at page:

Download "Week 3. Topic 5 Asymptotes"

Transcription

1 Week 3 Topic 5 Asmptotes Week 3 Topic 5 Asmptotes Introduction One of the strangest features of a graph is an asmptote. The come in three flavors: vertical, horizontal, and slant (also called oblique). Asmptotes are lines that the function gets reall close to. There are more technical definitions, of course. The friendl functions ou ve seen before in math classes, like linear and quadratic, do not have an asmptotes. But other tpes do, so we ll keep coming back to them as we proceed through eponentials, logarithms, polnomials, and rationals. Homework There will be a question or two in the Week homework quiz about asmptotes.

2 Week 3 Topic 5 Asmptotes Reading At the basic level, an asmptote is a line that a graph become nearl identical to, at some point. It s a rather difficult concept to eplain in just a few words, so let s look at each tpe of asmptote separatel. Horizontal Asmptotes A horizontal asmptote is a tpe of long-run behavior, or what the graph does for ver large values of or ver large negative values of. For eample, check out this graph: f()=/(+^)+ = There s a hill in the middle, but when gets reall big, the -values get reall close to. In fact, the further ou go to the right or to the left, the closer the -values get to. Let s zoom in on a portion of the graph to the far right. Notice the scale on both aes. For -values bigger than 0, the -values are all within about 0.0 units of..05 f()=/(+^)+ =

3 Week 3 Topic 5 Asmptotes 3 Let s zoom in even more and go even more to the right..005 f()=/(+^)+ = This graph shows the function and the line from = 0 to = 30. The distance is even smaller. Now the -values are all within of. You could keep zooming in and moving further to the right if ou wanted the function s -values too all be less than , if ou reall wanted to. Since this graph s -values approach the horizontal line =, we sa it has a horizontal asmptote at =. Long-run behavior means we re ignoring what happens near the -ais. For eample, a graph could have more than one horizontal asmptote, one for positive and one for negative Notice that for ver large positive, the -values get close to. For ver large negative, the -values get ver close to.5. Other values of don t matter, onl those far out.

4 Week 3 Topic 5 Asmptotes Notice from the graph above that this function does cross the horizontal asmptote. That s perfectl fine. What gives a graph a horizontal asmptote is that eventuall the -values are reall close to the line. In the graph below, we have a function that crosses the horizontal asmptote infinitel often. But notice when gets bigger, the -values still get closer and closer to the line = f()=sin(5)*e^ = Don t think about an asmptote as a line that the graph doesn t cross. That s not quite right. Think about it as a line that the graph becomes nearl identical to, eventuall.

5 Week 3 Topic 5 Asmptotes 5 Vertical Asmptotes Vertical asmptotes are the same idea, but in the other direction. The complication is that we usuall deal with functions that are in the form f ( ) = or =, so it s probabl easier to think about horizontal and vertical asmptotes as different things. For eample, here are two graphs with vertical asmptotes at =. f()=/(-) = = =e^(-.(+5))*sin() Onl the graph on the left is the graph of a function. The graph on the right doesn t pass the Vertical Line Test. A function graph can t cross a vertical asmptote. The function graphed above on the left is f ( ) =. Notice the domain of this function is all real numbers ecept =. And the vertical asmptote is also at =. We can t put into this function for, but an number close to works just fine. Let s look at a table of values f() 0. = = = 000 Using a number close to makes the denominator ver close to 0. Dividing b a number close to zero makes the whole fraction ver large. So the closer ou get to, the bigger the - values get. Here, the get big in the negative direction, and ou can see that in the graph. If we use values such as.0,.00,.000, we get ver big positive -values.

6 Week 3 Topic 5 Asmptotes Vertical asmptotes in function graphs come about when denominators are equal to zero. Let s sa ou have a function where the denominator is zero when = 0. On the graph, when our -values are close to 0, our -values must either increase (to infinit!) or decrease (to negative infinit!). If ou won t have a zero denominator, ou can t have vertical asmptotes, even if the graph looks like there might be one. For eample, here s the graph of asmptotic, doesn t it? f()=^ f ( ) =. Looks like it might be getting a little But no, this graph has no vertical asmptotes. The arrows indicate it goes up forever, but for an -value, there is a defined non-infinite -value. If we zoom out, it looks like this: f()=^ There are no asmptotes here. A steep graph is not the same as a graph with asmptotes. There must be a line where the -values shoot up to infinit (or down to negative infinit) and ou never cross the line itself. One final note: The word is asmptote. Don t sa asmtope. Ever. If ou hear someone else sa it that wa, shake our head furiousl and shout No!

7 Week 3 Topic 5 Asmptotes 7 Slant Asmptotes (also called Oblique Asmptotes) Asmptotes are alwas lines, but the don t have to be vertical or horizontal. The can be angled too. This graph has an oblique asmptote at +. It also has a vertical asmptote at =. f()=()*( + )/( - ) =+ = These are also eamples of long-run behavior, so it doesn t matter what happens in the middle of the graph, onl for ver large -values. So a function s graph can cross an oblique asmptote, like shown here: f()=3()*(- + )*( + )/( - )^ = This function has a slant asmptote at =. The function crosses it at = = This sort of asmptote isn t ver important. In the last week, of the course, we ll talk about these a little more but as one tpe of long-run behavior of rational functions.

8 Week 3 Topic 5 Asmptotes 8 Practice Problems. Sketch graphs of functions with these properties. Use dotted lines to indicate asmptotes. a. The function has a vertical asmptote at = and a horizontal asmptote at = - b. The function has a slant asmptote at = + and a vertical asmptote at = 0. Identif the asmptotes (horizontal, vertical, and slant) in each of these graphs. Give each asmptote as an equation. a b

9 Week 3 Topic 5 Asmptotes 9 Practice Problem Solutions. There are man possible graphs. Just be sure ours fits all the criteria. You don t have to come up with equations, just draw the graphs. a. The function has a vertical asmptote at = and a horizontal asmptote at = - f()=/(-)- = - = - - b. The function has a slant asmptote at = + and a vertical asmptote at = 0 f()=(^++)/ = + = Identif the asmptotes (horizontal, vertical, and slant) in each of these graphs. Give each asmptote as an equation = f()=-/( - )^+ = -7-9 = - f()=( + )*( - )/( + ) f()= Vertical: = Horizontal: = Vertical: = - Slant: =

Week 10. Topic 1 Polynomial Functions

Week 10. Topic 1 Polynomial Functions Week 10 Topic 1 Polnomial Functions 1 Week 10 Topic 1 Polnomial Functions Reading Polnomial functions result from adding power functions 1 together. Their graphs can be ver complicated, so the come up

More information

5.2. Exploring Quotients of Polynomial Functions. EXPLORE the Math. Each row shows the graphs of two polynomial functions.

5.2. Exploring Quotients of Polynomial Functions. EXPLORE the Math. Each row shows the graphs of two polynomial functions. YOU WILL NEED graph paper coloured pencils or pens graphing calculator or graphing software Eploring Quotients of Polnomial Functions EXPLORE the Math Each row shows the graphs of two polnomial functions.

More information

Topic 2 Transformations of Functions

Topic 2 Transformations of Functions Week Topic Transformations of Functions Week Topic Transformations of Functions This topic can be a little trick, especiall when one problem has several transformations. We re going to work through each

More information

2.4 Polynomial and Rational Functions

2.4 Polynomial and Rational Functions Polnomial Functions Given a linear function f() = m + b, we can add a square term, and get a quadratic function g() = a 2 + f() = a 2 + m + b. We can continue adding terms of higher degrees, e.g. we can

More information

Rational functions and graphs. Section 2: Graphs of rational functions

Rational functions and graphs. Section 2: Graphs of rational functions Rational functions and graphs Section : Graphs of rational functions Notes and Eamples These notes contain subsections on Graph sketching Turning points and restrictions on values Graph sketching You can

More information

Lesson 11 Skills Maintenance. Activity 1. Model. The addition problem is = 4. The subtraction problem is 5 9 = 4.

Lesson 11 Skills Maintenance. Activity 1. Model. The addition problem is = 4. The subtraction problem is 5 9 = 4. Lesson Skills Maintenance Lesson Planner Vocabular Development -coordinate -coordinate point of origin Skills Maintenance ddition and Subtraction of Positive and Negative Integers Problem Solving: We look

More information

4.4 Absolute Value Equations. What is the absolute value of a number? Example 1 Simplify a) 6 b) 4 c) 7 3. Example 2 Solve x = 2

4.4 Absolute Value Equations. What is the absolute value of a number? Example 1 Simplify a) 6 b) 4 c) 7 3. Example 2 Solve x = 2 4.4 Absolute Value Equations What is the absolute value of a number? Eample Simplif a) 6 b) 4 c) 7 3 Eample Solve = Steps for solving an absolute value equation: ) Get the absolute value b itself on one

More information

g(x) h(x) f (x) = Examples sin x +1 tan x!

g(x) h(x) f (x) = Examples sin x +1 tan x! Lecture 4-5A: An Introduction to Rational Functions A Rational Function f () is epressed as a fraction with a functiong() in the numerator and a function h() in the denominator. f () = g() h() Eamples

More information

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations Chapter Transformations of Functions TOPICS.5.. Shifting, reflecting, and stretching graphs Smmetr of functions and equations TOPIC Horizontal Shifting/ Translation Horizontal Shifting/ Translation Shifting,

More information

Section 1.4 Limits involving infinity

Section 1.4 Limits involving infinity Section. Limits involving infinit (/3/08) Overview: In later chapters we will need notation and terminolog to describe the behavior of functions in cases where the variable or the value of the function

More information

Pre-Algebra Notes Unit 8: Graphs and Functions

Pre-Algebra Notes Unit 8: Graphs and Functions Pre-Algebra Notes Unit 8: Graphs and Functions The Coordinate Plane A coordinate plane is formed b the intersection of a horizontal number line called the -ais and a vertical number line called the -ais.

More information

3.5 Rational Functions

3.5 Rational Functions 0 Chapter Polnomial and Rational Functions Rational Functions For a rational function, find the domain and graph the function, identifing all of the asmptotes Solve applied problems involving rational

More information

SLOPE A MEASURE OF STEEPNESS through 7.1.5

SLOPE A MEASURE OF STEEPNESS through 7.1.5 SLOPE A MEASURE OF STEEPNESS 7.1. through 7.1.5 Students have used the equation = m + b throughout this course to graph lines and describe patterns. When the equation is written in -form, the m is the

More information

Domain of Rational Functions

Domain of Rational Functions SECTION 46 RATIONAL FU NCTIONS SKI LLS OBJ ECTIVES Find the domain of a rational function Determine vertical, horizontal, and slant asmptotes of rational functions Graph rational functions CONCE PTUAL

More information

Domain: The domain of f is all real numbers except those values for which Q(x) =0.

Domain: The domain of f is all real numbers except those values for which Q(x) =0. Math 1330 Section.3.3: Rational Functions Definition: A rational function is a function that can be written in the form P() f(), where f and g are polynomials. Q() The domain of the rational function such

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technolog c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

Checkpoint: Assess Your Understanding, pages

Checkpoint: Assess Your Understanding, pages Checkpoint: Assess Your Understanding, pages 1 18.1 1. Multiple Choice Given the graph of the function f(), which graph below right represents = f()? f() D C A B Chapter : Radical and Rational Functions

More information

A Rational Shift in Behavior. Translating Rational Functions. LEARnIng goals

A Rational Shift in Behavior. Translating Rational Functions. LEARnIng goals . A Rational Shift in Behavior LEARnIng goals In this lesson, ou will: Analze rational functions with a constant added to the denominator. Compare rational functions in different forms. Identif vertical

More information

SLOPE A MEASURE OF STEEPNESS through 2.1.4

SLOPE A MEASURE OF STEEPNESS through 2.1.4 SLOPE A MEASURE OF STEEPNESS 2.1.2 through 2.1.4 Students used the equation = m + b to graph lines and describe patterns in previous courses. Lesson 2.1.1 is a review. When the equation of a line is written

More information

SECTION 3-4 Rational Functions

SECTION 3-4 Rational Functions 20 3 Polnomial and Rational Functions 0. Shipping. A shipping bo is reinforced with steel bands in all three directions (see the figure). A total of 20. feet of steel tape is to be used, with 6 inches

More information

Math College Algebra

Math College Algebra Math 5 - College Algebra Eam # - 08.0. Solutions. Below is the graph of a function f(), using the information on the graph, sketch on a separate graph the function F () = f( + ) +. Be sure to include important

More information

A Rational Existence Introduction to Rational Functions

A Rational Existence Introduction to Rational Functions Lesson. Skills Practice Name Date A Rational Eistence Introduction to Rational Functions Vocabular Write the term that best completes each sentence.. A rational function is an function that can be written

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions Figure -mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of work b Horia Varlan;

More information

Algebra I. Linear Equations. Slide 1 / 267 Slide 2 / 267. Slide 3 / 267. Slide 3 (Answer) / 267. Slide 4 / 267. Slide 5 / 267

Algebra I. Linear Equations. Slide 1 / 267 Slide 2 / 267. Slide 3 / 267. Slide 3 (Answer) / 267. Slide 4 / 267. Slide 5 / 267 Slide / 67 Slide / 67 lgebra I Graphing Linear Equations -- www.njctl.org Slide / 67 Table of ontents Slide () / 67 Table of ontents Linear Equations lick on the topic to go to that section Linear Equations

More information

12 Rational Functions

12 Rational Functions Funtions Conepts: The Definition of a Funtion Identifing Funtions Finding the Domain of a Funtion The Big-Little Priniple Vertial and Horizontal Asmptotes The Graphs of Funtions (Setion.) Definition. A

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching Roberto s Notes on Differential Calculus Chapter 8: Graphical analsis Section 5 Graph sketching What ou need to know alread: How to compute and interpret limits How to perform first and second derivative

More information

Date Lesson Text TOPIC Homework. Simplifying Rational Expressions Pg. 246 # 2-5, 7

Date Lesson Text TOPIC Homework. Simplifying Rational Expressions Pg. 246 # 2-5, 7 UNIT RATIONAL FUNCTIONS EQUATIONS and INEQUALITIES Date Lesson Tet TOPIC Homework Oct. 7.0 (9).0 Simplifing Rational Epressions Pg. 6 # -, 7 Oct. 9. (0). Graphs of Reciprocal Functions Pg. #,,, doso, 6,

More information

Essential Question: How do you graph an exponential function of the form f (x) = ab x? Explore Exploring Graphs of Exponential Functions. 1.

Essential Question: How do you graph an exponential function of the form f (x) = ab x? Explore Exploring Graphs of Exponential Functions. 1. Locker LESSON 4.4 Graphing Eponential Functions Common Core Math Standards The student is epected to: F-IF.7e Graph eponential and logarithmic functions, showing intercepts and end behavior, and trigonometric

More information

It s Not Complex Just Its Solutions Are Complex!

It s Not Complex Just Its Solutions Are Complex! It s Not Comple Just Its Solutions Are Comple! Solving Quadratics with Comple Solutions 15.5 Learning Goals In this lesson, ou will: Calculate comple roots of quadratic equations and comple zeros of quadratic

More information

Math 1050 Lab Activity: Graphing Transformations

Math 1050 Lab Activity: Graphing Transformations Math 00 Lab Activit: Graphing Transformations Name: We'll focus on quadratic functions to eplore graphing transformations. A quadratic function is a second degree polnomial function. There are two common

More information

Appendix A.6 Functions

Appendix A.6 Functions A. Functions 539 RELATIONS: DOMAIN AND RANGE Appendi A. Functions A relation is a set of ordered pairs. A relation can be a simple set of just a few ordered pairs, such as {(0, ), (1, 3), (, )}, or it

More information

Graphing Rational Functions

Graphing Rational Functions 5 LESSON Graphing Rational Functions Points of Discontinuit and Vertical Asmptotes UNDERSTAND The standard form of a rational function is f () 5 P(), where P () and Q () Q() are polnomial epressions. Remember

More information

Rational Functions with Removable Discontinuities

Rational Functions with Removable Discontinuities Rational Functions with Removable Discontinuities 1. a) Simplif the rational epression and state an values of where the epression is b) Using the simplified epression in part (a), predict the shape for

More information

Algebra 2 Notes Name: Section 8.4 Rational Functions. A function is a function whose rule can be written as a of. 1 x. =. Its graph is a, f x

Algebra 2 Notes Name: Section 8.4 Rational Functions. A function is a function whose rule can be written as a of. 1 x. =. Its graph is a, f x Algebra Notes Name: Section 8. Rational Functions DAY ONE: A function is a function whose rule can be written as a of two polynomials. The parent rational function is f. Its graph is a, which has two separate

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

2-4 Graphing Rational Functions

2-4 Graphing Rational Functions 2-4 Graphing Rational Functions Factor What are the zeros? What are the end behaviors? How to identify the intercepts, asymptotes, and end behavior of a rational function. How to sketch the graph of a

More information

Chapter 1. Limits and Continuity. 1.1 Limits

Chapter 1. Limits and Continuity. 1.1 Limits Chapter Limits and Continuit. Limits The its is the fundamental notion of calculus. This underling concept is the thread that binds together virtuall all of the calculus ou are about to stud. In this section,

More information

Graphing Review. Math Tutorial Lab Special Topic

Graphing Review. Math Tutorial Lab Special Topic Graphing Review Math Tutorial Lab Special Topic Common Functions and Their Graphs Linear Functions A function f defined b a linear equation of the form = f() = m + b, where m and b are constants, is called

More information

Section 4.3 Features of a Line

Section 4.3 Features of a Line Section.3 Features of a Line Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif the - and -intercepts of a line. Plotting points in the --plane

More information

Math-3 Lesson 3-6 Analyze Rational functions The Oblique Asymptote

Math-3 Lesson 3-6 Analyze Rational functions The Oblique Asymptote Math- Lesson - Analyze Rational functions The Oblique Asymptote Quiz: a What is the domain? b Where are the holes? c What is the vertical asymptote? y 4 8 8 a -, b = c = - Last time Zeroes of the numerator

More information

What is a Function? How to find the domain of a function (algebraically) Domain hiccups happen in 2 major cases (rational functions and radicals)

What is a Function? How to find the domain of a function (algebraically) Domain hiccups happen in 2 major cases (rational functions and radicals) What is a Function? Proving a Function Vertical Line Test Mapping Provide definition for function Provide sketch/rule for vertical line test Provide sketch/rule for mapping (notes #-3) How to find the

More information

Derivatives 3: The Derivative as a Function

Derivatives 3: The Derivative as a Function Derivatives : The Derivative as a Function 77 Derivatives : The Derivative as a Function Model : Graph of a Function 9 8 7 6 5 g() - - - 5 6 7 8 9 0 5 6 7 8 9 0 5 - - -5-6 -7 Construct Your Understanding

More information

More Coordinate Graphs. How do we find coordinates on the graph?

More Coordinate Graphs. How do we find coordinates on the graph? Lesson Problem Solving: More Coordinate Graphs Problem Solving: More Coordinate Graphs How do we find coordinates on the graph? We use coordinates to find where the dot goes on the coordinate graph. From

More information

Section 4.2 Graphing Lines

Section 4.2 Graphing Lines Section. Graphing Lines Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif collinear points. The order of operations (1.) Graph the line

More information

Determining the 2d transformation that brings one image into alignment (registers it) with another. And

Determining the 2d transformation that brings one image into alignment (registers it) with another. And Last two lectures: Representing an image as a weighted combination of other images. Toda: A different kind of coordinate sstem change. Solving the biggest problem in using eigenfaces? Toda Recognition

More information

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers 88 CHAPTER 4 Polnomial and Rational Functions 5. Obtain a graph of the function for the values of a, b, and c in the following table. Conjecture a relation between the degree of a polnomial and the number

More information

LINEAR PROGRAMMING. Straight line graphs LESSON

LINEAR PROGRAMMING. Straight line graphs LESSON LINEAR PROGRAMMING Traditionall we appl our knowledge of Linear Programming to help us solve real world problems (which is referred to as modelling). Linear Programming is often linked to the field of

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED FOM 11 T9 GRAPHING LINEAR EQUATIONS REVIEW - 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) -INTERCEPT = the point where the graph touches or crosses the -ais. It occurs when = 0. ) -INTERCEPT = the

More information

A Rational Existence Introduction to Rational Functions

A Rational Existence Introduction to Rational Functions Lesson. Skills Practice Name Date A Rational Eistence Introduction to Rational Functions Vocabular Write the term that best completes each sentence.. A is an function that can be written as the ratio of

More information

f (x ) ax b cx d Solving Rational Equations Pg. 285 # 1, 3, 4, (5 7)sodo, 11, 12, 13

f (x ) ax b cx d Solving Rational Equations Pg. 285 # 1, 3, 4, (5 7)sodo, 11, 12, 13 UNIT RATIONAL FUNCTIONS EQUATIONS and INEQUALITIES Date Lesson Tet TOPIC Homework Oct. 7.0 (9).0 Simplifing Rational Epressions Pg. 6 # -, 7 Oct. 8. (0). Graphs of Reciprocal Functions Pg. #,,, doso, 6,

More information

STRAND G: Relations, Functions and Graphs

STRAND G: Relations, Functions and Graphs UNIT G Using Graphs to Solve Equations: Tet STRAND G: Relations, Functions and Graphs G Using Graphs to Solve Equations Tet Contents * * Section G. Solution of Simultaneous Equations b Graphs G. Graphs

More information

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2 Learning Enhancement Team Model answers: Finding Equations of Straight Lines Finding Equations of Straight Lines stud guide The straight line with gradient 3 which passes through the point, 4 is 3 0 Because

More information

Math 26: Fall (part 1) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pythagorean Identity)

Math 26: Fall (part 1) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pythagorean Identity) Math : Fall 0 0. (part ) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pthagorean Identit) Cosine and Sine Angle θ standard position, P denotes point where the terminal side of

More information

Lesson 2.4 Exercises, pages

Lesson 2.4 Exercises, pages Lesson. Eercises, pages 13 10 A 3. Sketch the graph of each function. ( - )( + 1) a) = b) = + 1 ( )( 1) 1 (- + )( - ) - ( )( ) 0 0 The function is undefined when: 1 There is a hole at 1. The function can

More information

Lines and Their Slopes

Lines and Their Slopes 8.2 Lines and Their Slopes Linear Equations in Two Variables In the previous chapter we studied linear equations in a single variable. The solution of such an equation is a real number. A linear equation

More information

Module 2, Section 2 Graphs of Trigonometric Functions

Module 2, Section 2 Graphs of Trigonometric Functions Principles of Mathematics Section, Introduction 5 Module, Section Graphs of Trigonometric Functions Introduction You have studied trigonometric ratios since Grade 9 Mathematics. In this module ou will

More information

Mathematics Stage 5 PAS5.1.2 Coordinate geometry

Mathematics Stage 5 PAS5.1.2 Coordinate geometry Mathematics Stage PAS.. Coordinate geometr Part Graphing lines Acknowledgments This publication is copright New South Wales Department of Education and Training (DET), however it ma contain material from

More information

2.2 Differential Forms

2.2 Differential Forms 2.2 Differential Forms With vector analsis, there are some operations such as the curl derivative that are difficult to understand phsicall. We will introduce a notation called the calculus of differential

More information

THE INVERSE GRAPH. Finding the equation of the inverse. What is a function? LESSON

THE INVERSE GRAPH. Finding the equation of the inverse. What is a function? LESSON LESSON THE INVERSE GRAPH The reflection of a graph in the line = will be the graph of its inverse. f() f () The line = is drawn as the dotted line. Imagine folding the page along the dotted line, the two

More information

Attributes and Transformations of f(x) = e x VOCABULARY

Attributes and Transformations of f(x) = e x VOCABULARY - Attributes and Transformations of f() = e TEKS FOCUS TEKS ()(A) Determine the effects on the ke attributes on the graphs of f() = b and f() = log b () where b is,, and e when f() is replaced b af(),

More information

Lesson 12: Sine 5 = 15 3

Lesson 12: Sine 5 = 15 3 Lesson 12: Sine How did ou do on that last worksheet? Is finding the opposite side and adjacent side of an angle super-duper eas for ou now? Good, now I can show ou wh I wanted ou to learn that first.

More information

LESSON 3.1 INTRODUCTION TO GRAPHING

LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING 137 OVERVIEW Here s what ou ll learn in this lesson: Plotting Points a. The -plane b. The -ais and -ais c. The origin d. Ordered

More information

Section 9.3: Functions and their Graphs

Section 9.3: Functions and their Graphs Section 9.: Functions and their Graphs Graphs provide a wa of displaing, interpreting, and analzing data in a visual format. In man problems, we will consider two variables. Therefore, we will need to

More information

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1)

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1) Unit 4 Trigonometr Stud Notes 1 Right Triangle Trigonometr (Section 8.1) Objective: Evaluate trigonometric functions of acute angles. Use a calculator to evaluate trigonometric functions. Use trigonometric

More information

Functions Review Packet from November Questions. 1. The diagrams below show the graphs of two functions, y = f(x), and y = g(x). y y

Functions Review Packet from November Questions. 1. The diagrams below show the graphs of two functions, y = f(x), and y = g(x). y y Functions Review Packet from November Questions. The diagrams below show the graphs of two functions, = f(), and = g()..5 = f( ) = g( ).5 6º 8º.5 8º 6º.5 State the domain and range of the function f; the

More information

LINEAR TOPICS Notes and Homework: DUE ON EXAM

LINEAR TOPICS Notes and Homework: DUE ON EXAM NAME CLASS PERIOD LINEAR TOPICS Notes and Homework: DUE ON EXAM VOCABULARY: Make sure ou know the definitions of the terms listed below. These will be covered on the exam. Axis Scatter plot b Slope Coordinate

More information

Using a Table of Values to Sketch the Graph of a Polynomial Function

Using a Table of Values to Sketch the Graph of a Polynomial Function A point where the graph changes from decreasing to increasing is called a local minimum point. The -value of this point is less than those of neighbouring points. An inspection of the graphs of polnomial

More information

Exponential Functions

Exponential Functions 6. Eponential Functions Essential Question What are some of the characteristics of the graph of an eponential function? Eploring an Eponential Function Work with a partner. Cop and complete each table

More information

1.7 Limit of a Function

1.7 Limit of a Function 1.7 Limit of a Function We will discuss the following in this section: 1. Limit Notation 2. Finding a it numerically 3. Right and Left Hand Limits 4. Infinite Limits Consider the following graph Notation:

More information

SECTION 6-8 Graphing More General Tangent, Cotangent, Secant, and Cosecant Functions

SECTION 6-8 Graphing More General Tangent, Cotangent, Secant, and Cosecant Functions 6-8 Graphing More General Tangent, Cotangent, Secant, and Cosecant Functions 9 duce a scatter plot in the viewing window. Choose 8 for the viewing window. (B) It appears that a sine curve of the form k

More information

Math 111 Lecture Notes

Math 111 Lecture Notes A rational function is of the form R() = p() q() where p and q are polnomial functions. A rational function is undefined where the denominator equals zero, as this would cause division b zero. The zeros

More information

Lesson 6a Exponents and Rational Functions

Lesson 6a Exponents and Rational Functions Lesson 6a Eponents and Rational Functions In this lesson, we put quadratics aside for the most part (not entirely) in this lesson and move to a study of eponents and rational functions. The rules of eponents

More information

science. In this course we investigate problems both algebraically and graphically.

science. In this course we investigate problems both algebraically and graphically. Section. Graphs. Graphs Much of algebra is concerned with solving equations. Man algebraic techniques have been developed to provide insights into various sorts of equations and those techniques are essential

More information

Making Graphs from Tables and Graphing Horizontal and Vertical Lines - Black Level Problems

Making Graphs from Tables and Graphing Horizontal and Vertical Lines - Black Level Problems Making Graphs from Tables and Graphing Horizontal and Vertical Lines - Black Level Problems Black Level Hperbola. Give the graph and find the range and domain for. EXPONENTIAL Functions - The following

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE. Eponential Functions. Logarithmic Properties. Graphs of Eponential

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) Chapter Outline. Eponential Functions. Logarithmic Properties. Graphs of Eponential

More information

Laurie s Notes. Overview of Section 6.3

Laurie s Notes. Overview of Section 6.3 Overview of Section.3 Introduction In this lesson, eponential equations are defined. Students distinguish between linear and eponential equations, helping to focus on the definition of each. A linear function

More information

TIPS4RM: MHF4U: Unit 1 Polynomial Functions

TIPS4RM: MHF4U: Unit 1 Polynomial Functions TIPSRM: MHFU: Unit Polnomial Functions 008 .5.: Polnomial Concept Attainment Activit Compare and contrast the eamples and non-eamples of polnomial functions below. Through reasoning, identif attributes

More information

Algebra I Notes Linear Functions & Inequalities Part I Unit 5 UNIT 5 LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES

Algebra I Notes Linear Functions & Inequalities Part I Unit 5 UNIT 5 LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES UNIT LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES PREREQUISITE SKILLS: students must know how to graph points on the coordinate plane students must understand ratios, rates and unit rate VOCABULARY:

More information

Section 3.7 Notes. Rational Functions. is a rational function. The graph of every rational function is smooth (no sharp corners)

Section 3.7 Notes. Rational Functions. is a rational function. The graph of every rational function is smooth (no sharp corners) Section.7 Notes Rational Functions Introduction Definition A rational function is fraction of two polynomials. For example, f(x) = x x + x 5 Properties of Rational Graphs is a rational function. The graph

More information

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center . The Ellipse The net one of our conic sections we would like to discuss is the ellipse. We will start b looking at the ellipse centered at the origin and then move it awa from the origin. Standard Form

More information

Chapter 9: Rational Equations and Functions

Chapter 9: Rational Equations and Functions Chapter 9: Rational Equations and Functions Chapter 9: Rational Equations and Functions Assignment Sheet Date Topic Assignment Completed 9.: Inverse and Joint Variation pg. 57 # - 4 odd, 54 9..: Graphing

More information

Lesson 2.1 Exercises, pages 90 96

Lesson 2.1 Exercises, pages 90 96 Lesson.1 Eercises, pages 9 96 A. a) Complete the table of values. 1 1 1 1 1. 1 b) For each function in part a, sketch its graph then state its domain and range. For : the domain is ; and the range is.

More information

0 COORDINATE GEOMETRY

0 COORDINATE GEOMETRY 0 COORDINATE GEOMETRY Coordinate Geometr 0-1 Equations of Lines 0- Parallel and Perpendicular Lines 0- Intersecting Lines 0- Midpoints, Distance Formula, Segment Lengths 0- Equations of Circles 0-6 Problem

More information

Graphs, Linear Equations, and Functions

Graphs, Linear Equations, and Functions Graphs, Linear Equations, and Functions. The Rectangular R. Coordinate Fractions Sstem bjectives. Interpret a line graph.. Plot ordered pairs.. Find ordered pairs that satisf a given equation. 4. Graph

More information

1.5 LIMITS. The Limit of a Function

1.5 LIMITS. The Limit of a Function 60040_005.qd /5/05 :0 PM Page 49 SECTION.5 Limits 49.5 LIMITS Find its of functions graphicall and numericall. Use the properties of its to evaluate its of functions. Use different analtic techniques to

More information

Rational functions, like rational numbers, will involve a fraction. We will discuss rational functions in the form:

Rational functions, like rational numbers, will involve a fraction. We will discuss rational functions in the form: Name: Date: Period: Chapter 2: Polynomial and Rational Functions Topic 6: Rational Functions & Their Graphs Rational functions, like rational numbers, will involve a fraction. We will discuss rational

More information

2.3. Horizontal and Vertical Translations of Functions. Investigate

2.3. Horizontal and Vertical Translations of Functions. Investigate .3 Horizontal and Vertical Translations of Functions When a video game developer is designing a game, she might have several objects displaed on the computer screen that move from one place to another

More information

Flux Integrals. Solution. We want to visualize the surface together with the vector field. Here s a picture of exactly that:

Flux Integrals. Solution. We want to visualize the surface together with the vector field. Here s a picture of exactly that: Flu Integrals The pictures for problems # - #4 are on the last page.. Let s orient each of the three pictured surfaces so that the light side is considered to be the positie side. Decide whether each of

More information

Week 27 Algebra 1 Assignment:

Week 27 Algebra 1 Assignment: Week 7 Algebra Assignment: Da : p. 494 #- odd, -, 8- Da : pp. 496-497 #-9 odd, -6 Da : pp. 0-0 #-9 odd, -, -9 Da 4: p. 09 #-4, 7- Da : pp. - #-9 odd Notes on Assignment: Page 494: General notes for this

More information

Function vs Relation Notation: A relationis a rule which takes an inputand may/or may not produce multiple outputs. Relation: y = 2x + 1

Function vs Relation Notation: A relationis a rule which takes an inputand may/or may not produce multiple outputs. Relation: y = 2x + 1 /0/07 X Y - - - - 0 7. Relations Vs. Functions Warm up: Make a table of values, then graph the relation + Definition: A relationis a rule which takes an inputand ma/or ma not produce multiple outputs.

More information

Partial Fraction Decomposition

Partial Fraction Decomposition Section 7. Partial Fractions 53 Partial Fraction Decomposition Algebraic techniques for determining the constants in the numerators of partial fractions are demonstrated in the eamples that follow. Note

More information

CHECK Your Understanding

CHECK Your Understanding CHECK Your Understanding. State the domain and range of each relation. Then determine whether the relation is a function, and justif our answer.. a) e) 5(, ), (, 9), (, 7), (, 5), (, ) 5 5 f) 55. State

More information

The Graph Scale-Change Theorem

The Graph Scale-Change Theorem Lesson 3-5 Lesson 3-5 The Graph Scale-Change Theorem Vocabular horizontal and vertical scale change, scale factor size change BIG IDEA The graph of a function can be scaled horizontall, verticall, or in

More information

2-3 Graphing Rational Functions

2-3 Graphing Rational Functions 2-3 Graphing Rational Functions Factor What are the end behaviors of the Graph? Sketch a graph How to identify the intercepts, asymptotes and end behavior of a rational function. How to sketch the graph

More information

x 2 + 3, r 4(x) = x2 1

x 2 + 3, r 4(x) = x2 1 Math 121 (Lesieutre); 4.2: Rational functions; September 1, 2017 1. What is a rational function? It s a function of the form p(x), where p(x) and q(x) are both polynomials. In other words, q(x) something

More information

Transformations of Exponential Functions

Transformations of Exponential Functions Transformations of Eponential Functions Math Objectives Students will eplore the famil of eponential functions of the form f ( ) c b a and be able to describe the effect of each parameter on the graph

More information

Algebra I Notes Unit Six: Graphing Linear Equations and Inequalities in Two Variables, Absolute Value Functions

Algebra I Notes Unit Six: Graphing Linear Equations and Inequalities in Two Variables, Absolute Value Functions Sllabus Objective.4 The student will graph linear equations and find possible solutions to those equations using coordinate geometr. Coordinate Plane a plane formed b two real number lines (axes) that

More information

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7)

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7) 0 Relations and Functions.7 Transformations In this section, we stud how the graphs of functions change, or transform, when certain specialized modifications are made to their formulas. The transformations

More information

MATHEMATICAL METHODS UNITS 3 AND Sketching Polynomial Graphs

MATHEMATICAL METHODS UNITS 3 AND Sketching Polynomial Graphs Maths Methods 1 MATHEMATICAL METHODS UNITS 3 AND 4.3 Sketching Polnomial Graphs ou are required to e ale to sketch the following graphs. 1. Linear functions. Eg. = ax + These graphs when drawn will form

More information