A hypergraph blowup lemma

Size: px
Start display at page:

Download "A hypergraph blowup lemma"

Transcription

1 A hypergraph blowup lemma Peter Keevash School of Mathematical Sciences, Queen Mary, University of London.

2 Introduction Extremal problems Given F, what conditions on G guarantee F G?

3 Introduction Extremal problems Given F, what conditions on G guarantee F G? Fixed configurations Mantel: Largest triangle-free graph is complete bipartite.

4 Introduction Extremal problems Given F, what conditions on G guarantee F G? Fixed configurations Mantel: Largest triangle-free graph is complete bipartite. Turán: Largest tetrahedron-free 3-graph?

5 Introduction Extremal problems Given F, what conditions on G guarantee F G? Fixed configurations Mantel: Largest triangle-free graph is complete bipartite. Turán: Largest tetrahedron-free 3-graph? Spanning configurations Dirac: Graph on [n] with min degree n/2 is Hamiltonian.

6 Introduction Extremal problems Given F, what conditions on G guarantee F G? Fixed configurations Mantel: Largest triangle-free graph is complete bipartite. Turán: Largest tetrahedron-free 3-graph? Spanning configurations Dirac: Graph on [n] with min degree n/2 is Hamiltonian. Rödl-Ruciński-Szemerédi: k-graph on [n] with min (k 1)-degree (1/2 + o(1))n has a tight Hamilton cycle.

7 Szemerédi s Regularity Lemma

8 Regularity properties

9 The graph blowup lemma

10 The graph blowup lemma (Komlós, Sárközy and Szemerédi) Super-regular pairs are equivalent to corresponding complete bipartite graphs for embedding bounded degree subgraphs.

11 Regular and quasirandom 3-complexes

12 Regular approximation

13 Regular approximation Regular approximation theorem (Rödl and Schacht) Any k-graph H can be loosely approximated by some G highly regular wrt some moderately complex P.

14 The hypergraph blowup lemma

15 The hypergraph blowup lemma Hypergraph blowup lemma (K.) Super-regular k-complexes are equivalent to corresponding complete k-complexes for embedding bounded degree subhypergraphs.

16 Applications Theorem (K.) Suppose H is k-graph on [n], all degrees H(x) = (1 ± ɛ)c 1 ( n 1 k 1), all codegrees H(S) > c 2 n, and F is fixed unbalanced k-partite k-graph, with 1/n ɛ 1/C c 1, c 2, 1/k. Then H contains F-packing covering all but < C vertices.

17 Applications Theorem (K.) Suppose H is k-graph on [n], all degrees H(x) = (1 ± ɛ)c 1 ( n 1 k 1), all codegrees H(S) > c 2 n, and F is fixed unbalanced k-partite k-graph, with 1/n ɛ 1/C c 1, c 2, 1/k. Then H contains F-packing covering all but < C vertices. Theorem (K., Kühn, Mycroft, Osthus / Hàn, Schacht) Any k-graph on [n] with min (k 1)-degree ( 1 2(k 1) + o(1) ) n has a loose Hamilton cycle.

18 Applications Theorem (K.) Suppose H is k-graph on [n], all degrees H(x) = (1 ± ɛ)c 1 ( n 1 k 1), all codegrees H(S) > c 2 n, and F is fixed unbalanced k-partite k-graph, with 1/n ɛ 1/C c 1, c 2, 1/k. Then H contains F-packing covering all but < C vertices. Theorem (K., Kühn, Mycroft, Osthus / Hàn, Schacht) Any k-graph on [n] with min (k 1)-degree ( 1 2(k 1) + o(1) ) n has a loose Hamilton cycle. Example S [n], S = n 2(k 1) 1, H = {E ( [n]) k : E S }.

19 The random greedy algorithm Problem Setup (special case: r-partite, no restricted positions): r-partite k-graph H max degree on X = r i=1 X i, (G, M) super-regular on V = r i=1 V i, X i = V i = G i.

20 The random greedy algorithm Problem Setup (special case: r-partite, no restricted positions): r-partite k-graph H max degree on X = r i=1 X i, (G, M) super-regular on V = r i=1 V i, X i = V i = G i. Find φ : X V with φ(h) G \ M.

21 The random greedy algorithm Problem Setup (special case: r-partite, no restricted positions): r-partite k-graph H max degree on X = r i=1 X i, (G, M) super-regular on V = r i=1 V i, X i = V i = G i. Find φ : X V with φ(h) G \ M. Algorithm Initialisation: Buffer B V (H) mutual distance 9, N neighbourhoods of b B, R = V (H) \ (B N), list L = NRB, queue q =.

22 The random greedy algorithm Problem Setup (special case: r-partite, no restricted positions): r-partite k-graph H max degree on X = r i=1 X i, (G, M) super-regular on V = r i=1 V i, X i = V i = G i. Find φ : X V with φ(h) G \ M. Algorithm Initialisation: Buffer B V (H) mutual distance 9, N neighbourhoods of b B, R = V (H) \ (B N), list L = NRB, queue q =. Iteration: (i) Select x to embed (jump > queue > list) (ii) Embed x φ(x) random good vertex (iii) Add problem vertices to queue (some jump) (iv) Stop when all non-buffer vertices embedded.

23 The random greedy algorithm Problem Setup (special case: r-partite, no restricted positions): r-partite k-graph H max degree on X = r i=1 X i, (G, M) super-regular on V = r i=1 V i, X i = V i = G i. Find φ : X V with φ(h) G \ M. Algorithm Initialisation: Buffer B V (H) mutual distance 9, N neighbourhoods of b B, R = V (H) \ (B N), list L = NRB, queue q =. Iteration: (i) Select x to embed (jump > queue > list) (ii) Embed x φ(x) random good vertex (iii) Add problem vertices to queue (some jump) (iv) Stop when all non-buffer vertices embedded. Conclusion: Complete embedding with system of distinct representatives on available slots for unembedded vertices.

24 The random greedy algorithm Problem Setup (special case: r-partite, no restricted positions): r-partite k-graph H max degree on X = r i=1 X i, (G, M) super-regular on V = r i=1 V i, X i = V i = G i. Find φ : X V with φ(h) G \ M. Algorithm Initialisation: Buffer B V (H) mutual distance 9, N neighbourhoods of b B, R = V (H) \ (B N), list L = NRB, queue q =. Iteration: (i) Select x to embed (jump > queue > list) (ii) Embed x φ(x) random good vertex (iii) Add problem vertices to queue (some jump) (iv) Stop when all non-buffer vertices embedded. Conclusion: Complete embedding with system of distinct representatives on available slots for unembedded vertices. Theorem The random greedy algorithm embeds H in G \ M with probability 1 o(1).

25 Embeddings of complexes Complex-coloured complexes F(t) = {F S (t)} S H : (i) available: F S (t) G S, all P F S (t) contain embedded part φ(s e t ) (ii) compatible: F S (t) = S SF S (t) is a complex

26 Embeddings of complexes Complex-coloured complexes F(t) = {F S (t)} S H : (i) available: F S (t) G S, all P F S (t) contain embedded part φ(s e t ) (ii) compatible: F S (t) = S SF S (t) is a complex Update rule (for φ(x) = y) F S (t) = F S {x} (t 1)(y) ( if S {x} H) = {P V S : P {y} F S {x} (t 1)}.

27 Embeddings of complexes Complex-coloured complexes F(t) = {F S (t)} S H : (i) available: F S (t) G S, all P F S (t) contain embedded part φ(s e t ) (ii) compatible: F S (t) = S SF S (t) is a complex Update rule (for φ(x) = y) F S (t) = F S {x} (t 1)(y) ( if S {x} H) = {P V S : P {y} F S {x} (t 1)}. C(S) = F S {x}(t 1)(y), S S,S {x} H F S (t) = F S (t 1)[C(S)] \ y.

28 Super-regularity

29 Conclusion Any k-graph can be roughly approximated by very regular pieces. Low degree combinations of these pieces = super-regular (universal for low degree embedding) + small trash.

30 Conclusion Any k-graph can be roughly approximated by very regular pieces. Low degree combinations of these pieces = super-regular (universal for low degree embedding) + small trash. Super-regularity is a complicated definition, but natural simplifications fail on certain examples.

31 Conclusion Any k-graph can be roughly approximated by very regular pieces. Low degree combinations of these pieces = super-regular (universal for low degree embedding) + small trash. Super-regularity is a complicated definition, but natural simplifications fail on certain examples. Many potential applications to hypergraph generalisations of results that used the graph blowup lemma.

Perfect matchings in hypergraphs

Perfect matchings in hypergraphs Queen Mary, University of London 5th December 2012 Including joint work with Daniela Kühn, Deryk Osthus (University of Birmingham) and Yi Zhao (Georgia State) Graph = collection of points (vertices) joined

More information

LOOSE HAMILTON CYCLES IN HYPERGRAPHS

LOOSE HAMILTON CYCLES IN HYPERGRAPHS LOOSE HAMILTON CYCLES IN HYPERGRAPHS PETER KEEVASH, DANIELA KÜHN, RICHARD MYCROFT, AND DERYK OSTHUS Abstract. We prove that any k-uniform hypergraph on n vertices with minimum degree n at least + o(n)

More information

Improved monochromatic loose cycle partitions in hypergraphs

Improved monochromatic loose cycle partitions in hypergraphs Improved monochromatic loose cycle partitions in hypergraphs Gábor N. Sárközy Computer Science Department Worcester Polytechnic Institute Worcester, MA, USA 01609 gsarkozy@cs.wpi.edu and Computer and Automation

More information

Monochromatic loose-cycle partitions in hypergraphs

Monochromatic loose-cycle partitions in hypergraphs Monochromatic loose-cycle partitions in hypergraphs András Gyárfás Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, P.O. Box 27 Budapest, H-364, Hungary gyarfas.andras@renyi.mta.hu

More information

Extremal Graph Theory. Jan Hladký

Extremal Graph Theory. Jan Hladký Extremal Graph Theory Jan Hladký Definition (Extremal graph theory, Bollobás 1976): Definition (Extremal graph theory, Bollobás 1976): Extremal graph theory, in its strictest sense, is a branch of graph

More information

Triangle packings and 1-factors in oriented graphs

Triangle packings and 1-factors in oriented graphs Triangle packings and 1-factors in oriented graphs Peter Keevash Benny Sudakov Abstract An oriented graph is a directed graph which can be obtained from a simple undirected graph by orienting its edges.

More information

Peter Keevash Dhruv Mubayi

Peter Keevash Dhruv Mubayi The Turán number of F, Peter Keevash Dhruv Mubayi Abstract Let F, be the -graph on 6 vertices, labelled abcxyz, and 10 edges, one of which is abc, and the other 9 of which are all triples that contain

More information

Abstract. We show that every sufficiently large oriented graph G with δ + (G), δ (G) 3n 4 8

Abstract. We show that every sufficiently large oriented graph G with δ + (G), δ (G) 3n 4 8 AN EXACT MINIMUM DEGREE CONDITION FOR HAMILTON CYCLES IN ORIENTED GRAPHS PETER KEEVASH, DANIELA KÜHN AND DERYK OSTHUS Abstract. We show that every sufficiently large oriented graph G with δ + (G), δ (G)

More information

Extremal Graph Theory. Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay.

Extremal Graph Theory. Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay. Extremal Graph Theory Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay. Email: aad@cse.iitb.ac.in Basic Question Let H be a fixed graph. What is the maximum number of edges

More information

Monochromatic path and cycle partitions in hypergraphs

Monochromatic path and cycle partitions in hypergraphs Monochromatic path and cycle partitions in hypergraphs András Gyárfás Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, P.O. Box 127 Budapest, Hungary, H-1364 gyarfas.andras@renyi.mta.hu

More information

The Turán number of F 3,3

The Turán number of F 3,3 The Turán number of F, Peter Keevash Dhruv Mubayi Abstract Let F, be the -graph on 6 vertices, labelled abcxyz, and 10 edges, one of which is abc, and the other 9 of which are all triples that contain

More information

SUBDIVISIONS OF TRANSITIVE TOURNAMENTS A.D. SCOTT

SUBDIVISIONS OF TRANSITIVE TOURNAMENTS A.D. SCOTT SUBDIVISIONS OF TRANSITIVE TOURNAMENTS A.D. SCOTT Abstract. We prove that, for r 2 and n n(r), every directed graph with n vertices and more edges than the r-partite Turán graph T (r, n) contains a subdivision

More information

Extremal results for Berge-hypergraphs

Extremal results for Berge-hypergraphs Extremal results for Berge-hypergraphs Dániel Gerbner Cory Palmer Abstract Let G be a graph and H be a hypergraph both on the same vertex set. We say that a hypergraph H is a Berge-G if there is a bijection

More information

Topics on Computing and Mathematical Sciences I Graph Theory (13) Summary and Review

Topics on Computing and Mathematical Sciences I Graph Theory (13) Summary and Review Topics on Computing and Mathematical Sciences I Graph Theory () Summary and Review Yoshio Okamoto Tokyo Institute of Technology July, 00 Schedule Basic Topics Definition of Graphs; Paths and Cycles Cycles;

More information

SPANNING SUBGRAPHS IN GRAPHS AND HYPERGRAPHS

SPANNING SUBGRAPHS IN GRAPHS AND HYPERGRAPHS SPANNING SUBGRAPHS IN GRAPHS AND HYPERGRAPHS by IMDADULLAH KHAN A Dissertation submitted to the Graduate School New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements

More information

Chromatic Thresholds of Hypergraphs

Chromatic Thresholds of Hypergraphs On the József Balogh Ping Hu John Lenz Dhruv Mubayi 1 University of Illinois at Urbana-Champaign May 12, 2011 1 University of Illinois at Chicago Definitions An r-uniform hypergraph with vertex set V :

More information

Critical chromatic number and the complexity of perfect packings in graphs

Critical chromatic number and the complexity of perfect packings in graphs Critical chromatic number and the complexity of perfect packings in graphs Daniela Kühn and Deryk Osthus Abstract Let H be any non-bipartite graph. We determine asymptotically the minimum degree of a graph

More information

Tiling tripartite graphs with 3-colorable graphs

Tiling tripartite graphs with 3-colorable graphs Tiling tripartite graphs with 3-colorable graphs Ryan Martin Iowa State University Ames, IA 50010 Yi Zhao Georgia State University Atlanta, GA 30303 Submitted: Apr 25, 2008; Accepted: Aug 22, 2009; Published:

More information

Ramsey number of a connected triangle matching

Ramsey number of a connected triangle matching Ramsey number of a connected triangle matching András Gyárfás Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, P.O. Box 127 Budapest, Hungary, H-1364 gyarfas.andras@renyi.mta.hu

More information

Partitioning 3-colored complete graphs into three monochromatic cycles

Partitioning 3-colored complete graphs into three monochromatic cycles Partitioning 3-colored complete graphs into three monochromatic cycles András Gyárfás, Miklós Ruszinkó Computer and Automation Research Institute Hungarian Academy of Sciences Budapest, P.O. Box 63, Hungary,

More information

Spanning Trees in Dense Graphs

Spanning Trees in Dense Graphs Combinatorics, Probability and Computing (2001) 10, 397 416. c 2001 Cambridge University Press DOI 10.1017/S0963548301004849 Printed in the United Kingdom Spanning Trees in Dense Graphs J ÁNOS KOMLÓS1,GÁBOR

More information

Monochromatic Matchings in the Shadow Graph of Almost Complete Hypergraphs

Monochromatic Matchings in the Shadow Graph of Almost Complete Hypergraphs Ann. Comb. 14 (010 45 49 DOI 10.1007/s0006-010-0058-1 Published online May 5, 010 Springer Basel AG 010 Annals of Combinatorics Monochromatic Matchings in the Shadow Graph of Almost Complete Hypergraphs

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

A note on the saturation number of the family of k-connected graphs

A note on the saturation number of the family of k-connected graphs A note on the saturation number of the family of k-connected graphs Paul S. Wenger January 8, 014 Abstract Given a family of graphs F, a graph G is F-saturated if no member of F is a subgraph of G, but

More information

EXPLORATIONS ON THE DIMENSION OF A GRAPH

EXPLORATIONS ON THE DIMENSION OF A GRAPH EXPLORATIONS ON THE DIMENSION OF A GRAPH RYAN KAVANAGH Abstract. Erdős, Harary and Tutte first defined the dimension of a graph G as the minimum number n such that G can be embedded into the Euclidean

More information

Interaction Between Input and Output-Sensitive

Interaction Between Input and Output-Sensitive Interaction Between Input and Output-Sensitive Really? Mamadou M. Kanté Université Blaise Pascal - LIMOS, CNRS Enumeration Algorithms Using Structure, Lorentz Institute, August 26 th, 2015 1 Introduction

More information

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar.

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Graph Theory Frist, KandMa, IT 010 10 1 Problem sheet 4 Exam questions Solve a subset of, say, four questions to the problem session on friday.

More information

Part II. Graph Theory. Year

Part II. Graph Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 53 Paper 3, Section II 15H Define the Ramsey numbers R(s, t) for integers s, t 2. Show that R(s, t) exists for all s,

More information

Matching Theory. Figure 1: Is this graph bipartite?

Matching Theory. Figure 1: Is this graph bipartite? Matching Theory 1 Introduction A matching M of a graph is a subset of E such that no two edges in M share a vertex; edges which have this property are called independent edges. A matching M is said to

More information

Coverings by few monochromatic pieces - a transition between two Ramsey problems

Coverings by few monochromatic pieces - a transition between two Ramsey problems Coverings by few monochromatic pieces - a transition between two Ramsey problems András Gyárfás Computer and Automation Research Institute Hungarian Academy of Sciences Budapest, P.O. Box 63 Budapest,

More information

Cycles of given size in a dense graph

Cycles of given size in a dense graph Monash University 23 March 2015 Corrádi-Hajnal Theorem Theorem (Corrádi, Hajnal (1963)) Every graph with minimum degree 2k and at least 3k vertices contains k (vertex) disjoint cycles. Corrádi-Hajnal Theorem

More information

Combinatorics MAP363 Sheet 1. Mark: /10. Name. Number. Hand in by 19th February. date marked: / /2007

Combinatorics MAP363 Sheet 1. Mark: /10. Name. Number. Hand in by 19th February. date marked: / /2007 Turn over Combinatorics MAP6 Sheet Hand in by 9th February Name Number Year Mark: /0 date marked: / /200 Please attach your working, with this sheet at the front. Guidance on notation: graphs may have

More information

Stability theorems for cancellative hypergraphs

Stability theorems for cancellative hypergraphs Stability theorems for cancellative hypergraphs Peter Keevash Dhruv Mubayi Dec, 00 Abstract A cancellative hypergraph has no three edges A, B, C with A B C. We give a new short proof of an old result of

More information

Scheduling, Map Coloring, and Graph Coloring

Scheduling, Map Coloring, and Graph Coloring Scheduling, Map Coloring, and Graph Coloring Scheduling via Graph Coloring: Final Exam Example Suppose want to schedule some ;inal exams for CS courses with following course numbers: 1007, 3137, 3157,

More information

Testing subgraphs in large graphs

Testing subgraphs in large graphs Testing subgraphs in large graphs Noga Alon Abstract Let H be a fixed graph with h vertices, let G be a graph on n vertices and suppose that at least ɛn 2 edges have to be deleted from it to make it H-free.

More information

Block Crossings in Storyline Visualizations

Block Crossings in Storyline Visualizations Block Crossings in Storyline Visualizations Thomas van Dijk, Martin Fink, Norbert Fischer, Fabian Lipp, Peter Markfelder, Alexander Ravsky, Subhash Suri, and Alexander Wolff 3/15 3/15 block crossing 3/15

More information

Large Rainbow Matchings in Edge-Colored Graphs

Large Rainbow Matchings in Edge-Colored Graphs Large Rainbow Matchings in Edge-Colored Graphs Alexandr Kostochka, Matthew Yancey 1 May 13, 2011 1 Department of Mathematics, University of Illinois, Urbana, IL 61801. E-mail: yancey1@illinois.edu. Rainbow

More information

Independent dominating sets in graphs of girth five via the semi-random method

Independent dominating sets in graphs of girth five via the semi-random method Independent dominating sets in graphs of girth five via the semi-random method Ararat Harutyunyan (Oxford), Paul Horn (Harvard), Jacques Verstraete (UCSD) March 12, 2014 Introduction: The semi-random method

More information

Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H.

Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H. Abstract We discuss a class of graphs called perfect graphs. After defining them and getting intuition with a few simple examples (and one less simple example), we present a proof of the Weak Perfect Graph

More information

Monochromatic Tree Partition for Complete. Multipartite Graphs

Monochromatic Tree Partition for Complete. Multipartite Graphs Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 43, 2129-2134 Monochromatic Tree Partition for Complete Multipartite Graphs Shili Wen and Peipei Zhu Department of Mathematics Zhejiang Normal University

More information

and Heinz-Jürgen Voss

and Heinz-Jürgen Voss Discussiones Mathematicae Graph Theory 22 (2002 ) 193 198 ON k-trestles IN POLYHEDRAL GRAPHS Michal Tkáč Department of Mathematics The Faculty of Business Economics in Košice University of Economics in

More information

H-Factors in Dense Graphs

H-Factors in Dense Graphs H-Factors in Dense Graphs Noga Alon and Raphael Yuster Department of Mathematics Raymond and Beverly Sacler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel Abstract The following asymptotic

More information

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Dealing with NP-Complete Problems Dealing with NP-Completeness Suppose the problem you need to solve is NP-complete. What

More information

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem Minimum Spanning Trees (Forests) Given an undirected graph G=(V,E) with each edge e having a weight w(e) : Find a subgraph T of G of minimum total weight s.t. every pair of vertices connected in G are

More information

HW Graph Theory SOLUTIONS (hbovik) - Q

HW Graph Theory SOLUTIONS (hbovik) - Q 1, Diestel 9.3: An arithmetic progression is an increasing sequence of numbers of the form a, a+d, a+ d, a + 3d.... Van der Waerden s theorem says that no matter how we partition the natural numbers into

More information

Two Problems on Bipartite Graphs

Two Problems on Bipartite Graphs Georgia State University ScholarWorks @ Georgia State University Mathematics Theses Department of Mathematics and Statistics 7-13-009 Two Problems on Bipartite Graphs Albert Bush Follow this and additional

More information

Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems

Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems Royal Holloway, University of London Joint work with Mark Jones and Anders Yeo WorKer 2011, Vienna

More information

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff Institute of Operating Systems and Computer Networks Algorithms Group Network Algorithms Tutorial 4: Matching and other stuff Christian Rieck Matching 2 Matching A matching M in a graph is a set of pairwise

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Graph theory G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/37 Outline 1 Graph theory Undirected and directed graphs

More information

Induced-universal graphs for graphs with bounded maximum degree

Induced-universal graphs for graphs with bounded maximum degree Induced-universal graphs for graphs with bounded maximum degree Steve Butler UCLA, Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095, USA. email: butler@math.ucla.edu.

More information

Regular Hypergraphs: Asymptotic Counting and Loose Hamilton Cycles

Regular Hypergraphs: Asymptotic Counting and Loose Hamilton Cycles Regular Hypergraphs: Asymptotic Counting and Loose Hamilton Cycles ANDRZEJ DUDEK ALAN FRIEZE ANDRZEJ RUCIŃSKI MATAS ŠILEIKIS March 15, 2013 Abstract We present results from two papers by the authors on

More information

Bipartite Vertex Cover

Bipartite Vertex Cover Bipartite Vertex Cover Mika Göös Jukka Suomela University of Toronto & HIIT University of Helsinki & HIIT Göös and Suomela Bipartite Vertex Cover 18th October 2012 1 / 12 LOCAL model Göös and Suomela Bipartite

More information

1 Minimum Spanning Tree (MST)

1 Minimum Spanning Tree (MST) Lecture Notes CS:5360 Randomized Algorithms Lectures 10, 11, and 12: Sep 20, Sep 25, and Sep 27, 2018 Scribe: Hankyu Jang 1 Minimum Spanning Tree (MST) MST is another example of sampling. Input: An edge-weighted,

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

4.1 Interval Scheduling

4.1 Interval Scheduling 41 Interval Scheduling Interval Scheduling Interval scheduling Job j starts at s j and finishes at f j Two jobs compatible if they don't overlap Goal: find maximum subset of mutually compatible jobs a

More information

Extremal Graph Theory: Turán s Theorem

Extremal Graph Theory: Turán s Theorem Bridgewater State University Virtual Commons - Bridgewater State University Honors Program Theses and Projects Undergraduate Honors Program 5-9-07 Extremal Graph Theory: Turán s Theorem Vincent Vascimini

More information

Discrete mathematics II. - Graphs

Discrete mathematics II. - Graphs Emil Vatai April 25, 2018 Basic definitions Definition of an undirected graph Definition (Undirected graph) An undirected graph or (just) a graph is a triplet G = (ϕ, E, V ), where V is the set of vertices,

More information

Answers to specimen paper questions. Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes.

Answers to specimen paper questions. Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes. Answers to specimen paper questions Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes. Question 1. (a) The degree of a vertex x is the number

More information

1 1 2 P. Erd ös f6(v) (n) > ón 2 (2) where f(v)(n) is the largest integer for which there is a graph G(n ; fk v l ( n)) which is k-chromatic and verte

1 1 2 P. Erd ös f6(v) (n) > ón 2 (2) where f(v)(n) is the largest integer for which there is a graph G(n ; fk v l ( n)) which is k-chromatic and verte Annals of Discrete Mathematics 41 (1989) 1 1 1-116 Elsevier Science Publishers B.V. (North-Holland) On some Aspects of my Work with Gabriel Dirac P. Erdős Mathematical Institute Hungarian Academy of Sciences

More information

Greedy Approximations

Greedy Approximations CS 787: Advanced Algorithms Instructor: Dieter van Melkebeek Greedy Approximations Approximation algorithms give a solution to a problem in polynomial time, at most a given factor away from the correct

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Subhash Suri June 5, 2018 1 Figure of Merit: Performance Ratio Suppose we are working on an optimization problem in which each potential solution has a positive cost, and we want

More information

An expected polynomial time algorithm for coloring 2-colorable 3-graphs

An expected polynomial time algorithm for coloring 2-colorable 3-graphs An expected polynomial time algorithm for coloring 2-colorable 3-graphs Yury Person 1,2 Mathias Schacht 2 Institut für Informatik Humboldt-Universität zu Berlin Unter den Linden 6, D-10099 Berlin, Germany

More information

Hamiltonian cycles in bipartite quadrangulations on the torus

Hamiltonian cycles in bipartite quadrangulations on the torus Hamiltonian cycles in bipartite quadrangulations on the torus Atsuhiro Nakamoto and Kenta Ozeki Abstract In this paper, we shall prove that every bipartite quadrangulation G on the torus admits a simple

More information

Edge-Disjoint Cycles in Regular Directed Graphs

Edge-Disjoint Cycles in Regular Directed Graphs Edge-Disjoint Cycles in Regular Directed Graphs Noga Alon Colin McDiarmid Michael Molloy February 22, 2002 Abstract We prove that any k-regular directed graph with no parallel edges contains a collection

More information

{ 1} Definitions. 10. Extremal graph theory. Problem definition Paths and cycles Complete subgraphs

{ 1} Definitions. 10. Extremal graph theory. Problem definition Paths and cycles Complete subgraphs Problem definition Paths and cycles Complete subgraphs 10. Extremal graph theory 10.1. Definitions Let us examine the following forbidden subgraph problems: At most how many edges are in a graph of order

More information

Notes for Recitation 9

Notes for Recitation 9 6.042/18.062J Mathematics for Computer Science October 8, 2010 Tom Leighton and Marten van Dijk Notes for Recitation 9 1 Traveling Salesperson Problem Now we re going to talk about a famous optimization

More information

managing an evolving set of connected components implementing a Union-Find data structure implementing Kruskal s algorithm

managing an evolving set of connected components implementing a Union-Find data structure implementing Kruskal s algorithm Spanning Trees 1 Spanning Trees the minimum spanning tree problem three greedy algorithms analysis of the algorithms 2 The Union-Find Data Structure managing an evolving set of connected components implementing

More information

Large feedback arc sets, high minimum degree subgraphs, and long cycles in Eulerian digraphs

Large feedback arc sets, high minimum degree subgraphs, and long cycles in Eulerian digraphs Large feedback arc sets, high minimum degree subgraphs, and long cycles in Eulerian digraphs Hao Huang Jie Ma Asaf Shapira Benny Sudakov Raphael Yuster Abstract A minimum feedback arc set of a directed

More information

The number of orientations having no fixed tournament

The number of orientations having no fixed tournament The number of orientations having no fixed tournament Noga Alon Raphael Yuster Abstract Let T be a fixed tournament on k vertices. Let D(n, T ) denote the maximum number of orientations of an n-vertex

More information

Colouring graphs with no odd holes

Colouring graphs with no odd holes Colouring graphs with no odd holes Paul Seymour (Princeton) joint with Alex Scott (Oxford) 1 / 17 Chromatic number χ(g): minimum number of colours needed to colour G. 2 / 17 Chromatic number χ(g): minimum

More information

Combinatorics Summary Sheet for Exam 1 Material 2019

Combinatorics Summary Sheet for Exam 1 Material 2019 Combinatorics Summary Sheet for Exam 1 Material 2019 1 Graphs Graph An ordered three-tuple (V, E, F ) where V is a set representing the vertices, E is a set representing the edges, and F is a function

More information

Multiple Vertex Coverings by Cliques

Multiple Vertex Coverings by Cliques Multiple Vertex Coverings by Cliques Wayne Goddard Department of Computer Science University of Natal Durban, 4041 South Africa Michael A. Henning Department of Mathematics University of Natal Private

More information

Harmonious and achromatic colorings of fragmentable hypergraphs

Harmonious and achromatic colorings of fragmentable hypergraphs Available online at www.sciencedirect.com www.elsevier.com/locate/endm Harmonious and achromatic colorings of fragmentable hypergraphs Michał Dębski 1,2 Faculty of Mathematics, Informatics and Mechanics

More information

Chapter 6 GRAPH COLORING

Chapter 6 GRAPH COLORING Chapter 6 GRAPH COLORING A k-coloring of (the vertex set of) a graph G is a function c : V (G) {1, 2,..., k} such that c (u) 6= c (v) whenever u is adjacent to v. Ifak-coloring of G exists, then G is called

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

K s,t -saturated bipartite graphs

K s,t -saturated bipartite graphs K s,t -saturated bipartite graphs Wenying Gan Dániel Korándi Benny Sudakov Abstract An n-by-n bipartite graph is H-saturated if the addition of any missing edge between its two parts creates a new copy

More information

Degree Equitable Domination Number and Independent Domination Number of a Graph

Degree Equitable Domination Number and Independent Domination Number of a Graph Degree Equitable Domination Number and Independent Domination Number of a Graph A.Nellai Murugan 1, G.Victor Emmanuel 2 Assoc. Prof. of Mathematics, V.O. Chidambaram College, Thuthukudi-628 008, Tamilnadu,

More information

Jörgen Bang-Jensen and Gregory Gutin. Digraphs. Theory, Algorithms and Applications. Springer

Jörgen Bang-Jensen and Gregory Gutin. Digraphs. Theory, Algorithms and Applications. Springer Jörgen Bang-Jensen and Gregory Gutin Digraphs Theory, Algorithms and Applications Springer Contents 1. Basic Terminology, Notation and Results 1 1.1 Sets, Subsets, Matrices and Vectors 1 1.2 Digraphs,

More information

What is a Graphon? Daniel Glasscock, June 2013

What is a Graphon? Daniel Glasscock, June 2013 What is a Graphon? Daniel Glasscock, June 2013 These notes complement a talk given for the What is...? seminar at the Ohio State University. The block images in this PDF should be sharp; if they appear

More information

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Graphs Extremely important concept in computer science Graph, : node (or vertex) set : edge set Simple graph: no self loops, no multiple

More information

IMO Training 2008: Graph Theory

IMO Training 2008: Graph Theory IMO Training 2008: Graph Theory by: Adrian Tang Email: tang @ math.ucalgary.ca This is a compilation of math problems (with motivation towards the training for the International Mathematical Olympiad)

More information

On the Zarankiewicz Problem for Intersection Hypergraphs

On the Zarankiewicz Problem for Intersection Hypergraphs On the Zarankiewicz Problem for Intersection Hypergraphs Nabil H. Mustafa and János Pach Abstract. Let d and t be fixed positive integers, and let Kt,...,t d denote the complete d-partite hypergraph with

More information

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility Outline CS38 Introduction to Algorithms Lecture 18 May 29, 2014 coping with intractibility approximation algorithms set cover TSP center selection randomness in algorithms May 29, 2014 CS38 Lecture 18

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

List Colouring Squares of Planar Graphs

List Colouring Squares of Planar Graphs Electronic Notes in Discrete Mathematics 9 (007) 515 519 www.elsevier.com/locate/endm List Colouring Squares of Planar Graphs Frédéric Havet a,1, Jan van den Heuvel b,1, Colin McDiarmid c,1, and Bruce

More information

Topics on Computing and Mathematical Sciences I Graph Theory (3) Trees and Matchings I

Topics on Computing and Mathematical Sciences I Graph Theory (3) Trees and Matchings I Topics on Computing and Mathematical Sciences I Graph Theory (3) Trees and Matchings I Yoshio Okamoto Tokyo Institute of Technology April 23, 2008 Y. Okamoto (Tokyo Tech) TCMSI Graph Theory (3) 2008-04-23

More information

Let G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) be graphs. Introduction. Some facts about Graph Isomorphism. Proving Graph Isomorphism completeness

Let G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) be graphs. Introduction. Some facts about Graph Isomorphism. Proving Graph Isomorphism completeness Graph Let G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) be graphs. Algorithms and Networks Graph Hans Bodlaender and Stefan Kratsch March 24, 2011 An G 1 to G 2 is a bijection φ : V 1 V 2 s.t.: {u, v} E 1 {φ(u),

More information

Introduction to Approximation Algorithms

Introduction to Approximation Algorithms Introduction to Approximation Algorithms Dr. Gautam K. Das Departmet of Mathematics Indian Institute of Technology Guwahati, India gkd@iitg.ernet.in February 19, 2016 Outline of the lecture Background

More information

Reductions of Graph Isomorphism Problems. Margareta Ackerman. Technical Report 08

Reductions of Graph Isomorphism Problems. Margareta Ackerman. Technical Report 08 CS-2008-08 Reductions of Graph Isomorphism Problems Margareta Ackerman Technical Report 08 David R. Cheriton School of Computer Science, University of Waterloo. 1 REDUCTIONS OF GRAPH ISOMORPHISM PROBLEMS

More information

Models of distributed computing: port numbering and local algorithms

Models of distributed computing: port numbering and local algorithms Models of distributed computing: port numbering and local algorithms Jukka Suomela Adaptive Computing Group Helsinki Institute for Information Technology HIIT University of Helsinki FMT seminar, 26 February

More information

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2,

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2, List of Theorems Mat 416, Introduction to Graph Theory 1. Ramsey s Theorem for graphs 8.3.11. Theorem 1 The numbers R(p, q) exist and for p, q 2, R(p, q) R(p 1, q) + R(p, q 1). If both summands on the

More information

1 Matchings in Graphs

1 Matchings in Graphs Matchings in Graphs J J 2 J 3 J 4 J 5 J J J 6 8 7 C C 2 C 3 C 4 C 5 C C 7 C 8 6 J J 2 J 3 J 4 J 5 J J J 6 8 7 C C 2 C 3 C 4 C 5 C C 7 C 8 6 Definition Two edges are called independent if they are not adjacent

More information

Vertex-Colouring Edge-Weightings

Vertex-Colouring Edge-Weightings Vertex-Colouring Edge-Weightings L. Addario-Berry a, K. Dalal a, C. McDiarmid b, B. A. Reed a and A. Thomason c a School of Computer Science, McGill University, University St. Montreal, QC, H3A A7, Canada

More information

Matchings. Examples. K n,m, K n, Petersen graph, Q k ; graphs without perfect matching. A maximal matching cannot be enlarged by adding another edge.

Matchings. Examples. K n,m, K n, Petersen graph, Q k ; graphs without perfect matching. A maximal matching cannot be enlarged by adding another edge. Matchings A matching is a set of (non-loop) edges with no shared endpoints. The vertices incident to an edge of a matching M are saturated by M, the others are unsaturated. A perfect matching of G is a

More information

CSE 521: Design and Analysis of Algorithms I

CSE 521: Design and Analysis of Algorithms I CSE 521: Design and Analysis of Algorithms I Greedy Algorithms Paul Beame 1 Greedy Algorithms Hard to define exactly but can give general properties Solution is built in small steps Decisions on how to

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

Vertex Colorings without Rainbow or Monochromatic Subgraphs. 1 Introduction

Vertex Colorings without Rainbow or Monochromatic Subgraphs. 1 Introduction Vertex Colorings without Rainbow or Monochromatic Subgraphs Wayne Goddard and Honghai Xu Dept of Mathematical Sciences, Clemson University Clemson SC 29634 {goddard,honghax}@clemson.edu Abstract. This

More information