Tolerance based Greedy Heuristics for the Asymmetric TSP. Gerold Jäger Martin Luther University Halle-Wittenberg

Size: px
Start display at page:

Download "Tolerance based Greedy Heuristics for the Asymmetric TSP. Gerold Jäger Martin Luther University Halle-Wittenberg"

Transcription

1 Tolerance based Greedy Heuristics for the Asymmetric TSP Gerold Jäger Martin Luther University Halle-Wittenberg Cooperation with Boris Goldengorin DFG Project: Paul Molitor December 21, 200

2 Overview 1 Introduction Definitions Known Results Historical Development by the Data Base TSPLIB 2 Tolerances Definition of Tolerance Tolerances for the TSP 3 Greedy Algorithm Algorithm Worst Case Example

3 Overview 4 Tolerance Based Greedy Heuristics Idea Relaxed Assignment Problem R-RTBG Algorithm Linear Assignment Problem L-R 1 TBG Algorithm L-R 2 TBG Algorithm Experimental Results Problem Classes Comparison of Execution Time and Quality 6 Conclusions and Future Work

4 Introduction Definitions TSP Input: Directed complete graph G = (V, E), V = n with weight function g : E R. Output: Shortest closed path visiting each vertex exactly once. ATSP g((i, j)) g((j, i)) for at least one edge (i, j), 1 i < j n. STSP g((i, j)) = g((j, i)) for all edges (i, j), i.e. the graph is undirected.

5 Introduction Known Results Theoretical Results Christofides: Approximation factor 1, for STSP with triangle inequality. Arora: Approximation scheme for Euclidean STSP. Practical Results Trivial method: (n 1)! steps (with is too large already for n 20 ). Data base (TSPLIB) with problems from 14 up to vertices (the most are real city problems).

6 Introduction Historical Development by the Data Base TSPLIB Year Research team Number Vertices/Cities 194 Dantzig, Fulkerson, Johnson Held, Karp Camerini, Fratta, Maffioli Grötschel Crowder, Padberg Padberg, Rinaldi Grötschel, Holland Padberg, Rinaldi Applegate, Bixby, Chvátal, Cook Ap., Bi., Ch., Co (USA tour) 2001 Ap., Bi., Ch., Co (Germany tour) 2004 Ap., Bi., Ch., Co., Helsgaun (Sweden tour)

7 Tolerances Definition of Tolerance Input: Directed graph G = (V, E), V = n with g : E R. Problem with set of solutions L(g) E. Let e E be arbitrary and g constant except for e. Upper tolerance: If g(e) is sufficiently small, e L(g). If g(e) is sufficiently small, e / L(g). Let e L(g). The upper tolerance ot(e) is the number, g(e) needs to be increased for reaching e / L(g). Lower tolerance: Let e / L(g). The lower tolerance ut(e) is the number, g(e) needs to be decreased for reaching e L(g).

8 Tolerances Tolerances for the TSP Let an edge e be in the minimum tour. The upper tolerance ot(e) is the number e needs to be decreased so that e is not in the minimum tour any more. Let an edge e be not in the minimum tour. The lower tolerance ut(e) is the number e needs to be decreased, so that e is in the minimum tour. The tolerance computation is more difficult than the whole TSP. Not reasonable. Using of polynomial time problems, related to the TSP.

9 Greedy Algorithm Algorithm Consider an ATSP (and as special case a STSP). 1. Determine the smallest edge in the graph. 2. Contract both vertices of this edge to a new vertex. 3. Repeat 1. and 2., until we have only two vertices. 4. Connect these two vertices to one cycle.. Replace all vertices by the contracted paths. The received tour is the ATSP tour.

10 Greedy Algorithm Worst Case Example (1,2) (1,2)

11 Greedy Algorithm Worst Case Example (1,2,3) 4 6 (1,2,3) (1,2,3,4) 6 (1,2,3,4) (1,2,3,4,) 6 (1,2,3,4,) Solution: 306 (worst tour of all possible tours) 4 24

12 Tolerance Based Greedy Heuristics Idea Choose the contracted edge not by the smallest weight, but by the largest upper tolerance to a problem related to the ATSP.

13 Tolerance Based Greedy Heuristics Relaxed Assignment Problem Input: Directed graph G = (V, E), V = n with weight function g : E R. Output: Assignment function f : V V with f(v) v for all v V. The sum of weights of the assignment function is minimum.

14 Tolerance Based Greedy Heuristics Relaxed Assignment Problem Worst Case Example (6) 6 (1) (6) 13 (6) 4 13 () 12 (1) 3 The relaxed assignment problem can be solved in O(n 2 ). The computation of all tolerances is also in O(n 2 ). A minimum ATSP tour is a relaxed assignment! The length of a minimum relaxed assignment is a lower bound for the minimum ATSP tour.

15 Tolerance Based Greedy Heuristics R-RTBG Algorithm Choose from a solution to the RAP the edge with the largest upper tolerance to the RAP (R-RTBG) (6) 6 (1) (6) 13 (6) 4 13 () 12 (1) (4,2) (4,2) (0) 4 19 (6) 2 18 (1) 19 (6) 12 (1) 3

16 Tolerance Based Greedy Heuristics R-RTBG Algorithm 1 (4,2) (,3) (4,2) (,3) (0) (6) 18 (1) 2 13 (0) 3 1 (,3) (6,4,2) (,3) 3 19 (6,4,2) (0) (22) 2 19 (16) 3 1 (6,4,2,,3) 1 7 (6,4,2,,3) 3 Solution:

17 Tolerance Based Greedy Heuristics Linear Assignment Problem Input: Directed graph G = (V, E), V = n with weight function g : E R. Output: Assignment function f : V V with f(v) v for all v V. The sum of the weights of assignment edges is minimum. The assignment function is bijective.

18 Tolerance Based Greedy Heuristics Linear Assignment Problem Linear assignment problem can be solved in O(n 3 ) (Hungarian method) Solution: 10 (non-unique optimal solution)

19 Tolerance Based Greedy Heuristics Linear Assignment Problem Minimum ATSP-Tour is a linear assignment! The length of a minimum linear assignment is a lower bound for the minimum ATSP tour. The lower bound weight of a minimum linear assignment is better than the lower bound weight of a minimum relaxed assignment, but more difficult to compute (O(n 3 ) instead of O(n 2 ) ). The same (O(n 3 ) in comparison to O(n 2 ) ) holds for the computation of all tolerances. Observation: The lower bound weight of a minimum linear assignment is considerably better for the ATSP than for the STSP. For the STSP the so-called Held Karp bound is better.

20 Tolerance Based Greedy Heuristics L-R 1 TBG Algorithm Choose an edge from a solution to the LAP. The tolerance computation for the LAP is too expensive. Computation of the largest upper tolerance similar to that of the RAP. Algorithm L-RTBG.

21 Tolerance Based Greedy Heuristics L-R 1 TBG Algorithm Version 1: Choose as tolerance the difference of an edge from the LAP to the edge with next large weight, starting from the same vertex ( is possible) (6) (0) 18 (1) () 7 (0) 1 3 ( )

22 Tolerance Based Greedy Heuristics L-R 1 TBG Algorithm (,1) (,1) (0) 1 7 (0) (6) 18 (1) 19 (6) 4 3 Solution: 10 (optimum solution)

23 Tolerance Based Greedy Heuristics L-R 2 TBG Algorithm Version 2: Choose as tolerance the negative difference of an edge from the LAP to the smallest edge, starting from the same edge. (lower tolerance). Is this edge the smallest edge, choose the positive difference to the second smallest edge of this vertex (upper tolerance) (-1) (6) 19 (-6) 7 (-1) 3 (-22) 18 (-) 4 3

24 Tolerance Based Greedy Heuristics L-R 2 TBG Algorithm 1 3 (4,2) (4,2) (1) (-1) 7(0) 3 (-16) 19 (6) 6

25 Tolerance Based Greedy Heuristics L-R 2 TBG Algorithm 1 (4,2) (6,3) (4,2) (6,3) (1) 13 (0) (0) 3 (-10) 1 (6,3,4,2) (6,3,4,2) (0) (-) 13 (22) 2 Solution: 10 (optimum solution)

26 Experimental Results Problem Classes 1 All asymmetric problems from TSPLIB (26 problems). 2 All symmetric problems from TSPLIB with dimension smaller than 3000 (99 problems). 3 Asymmetric problems with c(i, j) chosen randomly and uniformly distributed in {0, 1,, } for i j, 10 for each dimension 100, 200,, 1000 and 3 for each dimension 1100, 1200,, 3000 (160 problems). 4 Asymmetric problems with c(i, j) chosen randomly and uniformly distributed in {0, 1,, i j} for i j, 10 for each dimension 100, 200,, 1000 and 3 for each dimension 1100, 1200,, 3000 (160 problems).

27 Experimental Results Problem Classes Symmetric problems with c(i, j) chosen randomly and uniformly distributed in {0, 1,, } for i < j, 10 for each dimension 100, 200,, 1000 and 3 for each dimension 1100, 1200,, 3000 (160 problems). 6 Symmetric problems with c(i, j) chosen randomly and uniformly distributed in {0, 1,, i j} for i < j, 10 for each dimension 100, 200,, 1000 and 3 for each dimension 1100, 1200,, 3000 (160 problems).

28 Experimental Results Problem Classes 7 Sloped Plane problems: For randomly chosen x i, x j, y i, y j for i j in {0, 1,, i j} let c(i, j) = (x i x j ) 2 + (y i y j ) 2 max{0, y i y j } + 2 max{0, y j y i } for i j, 10 for each dimension 100, 200,, 1000 and 3 for each dimension 1100, 1200,, 3000 (160 problems). 8 Worst case example: c(i, j) = n 3 for i = n, j = 1 in for j = i + 1 n 2 1 for i = 2, 3,, n 1, j = 1 n min{i, j} + 1 otherwise for each dimension, 10,, 1000 (200 problems).

29 Experimental Results Comparison of Execution Time and Quality Average Excess over Optimum, LAP bound or Held Karp bound, Average Time Classes 1-4 Class 1 (26) Class 2 (99) Class 3 (160) Class 4 (160) Opt. Time Opt. Time LAP Time LAP Time (%) (s) (%) (s) (%) (s) (%) (s) GR R-R L-R L-R

30 Experimental Results Comparison of Execution Time and Quality Average Excess over Optimum, LAP bound or Held Karp bound, Average Time Classes -8 Class (160) Class 6 (160) Class 7 (160) Class 8 (200) HK Time HK Time LAP Time LAP Time (%) (s) (%) (s) (%) (s) (%) (s) GR R-R L-R L-R

31 Conclusions and Future Work For greedy heuristics: Using of tolerances leads to substantial improvements. Further aims: Create a theoretical basis for the tolerances Improvement of more general TSP heuristics using tolerances Improvement of exact TSP algorithms, e.g. b-n-b algorithms using tolerances The leading TSP heuristic of Helsgaun is implicitly based on the tolerance of the minimum spanning tree. Test different tolerances in this algorithm.

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg joint work with Changxing Dong, Paul Molitor, Dirk Richter November 14, 2008 Overview 1 Introduction

More information

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg (Germany) joint work with Changxing Dong, Paul Molitor, Dirk Richter German Research Foundation Grant

More information

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg (Germany) joint work with Changxing Dong, Paul Molitor, Dirk Richter German Research Foundation Grant

More information

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order Gerold Jäger joint work with Paul Molitor University Halle-Wittenberg, Germany August 22, 2008 Overview 1 Introduction

More information

A COMPARATIVE STUDY OF BRUTE FORCE METHOD, NEAREST NEIGHBOUR AND GREEDY ALGORITHMS TO SOLVE THE TRAVELLING SALESMAN PROBLEM

A COMPARATIVE STUDY OF BRUTE FORCE METHOD, NEAREST NEIGHBOUR AND GREEDY ALGORITHMS TO SOLVE THE TRAVELLING SALESMAN PROBLEM IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 6, Jun 2014, 59-72 Impact Journals A COMPARATIVE STUDY OF BRUTE

More information

Heuristic Approaches to Solve Traveling Salesman Problem

Heuristic Approaches to Solve Traveling Salesman Problem TELKOMNIKA Indonesian Journal of Electrical Engineering Vol. 15, No. 2, August 2015, pp. 390 ~ 396 DOI: 10.11591/telkomnika.v15i2.8301 390 Heuristic Approaches to Solve Traveling Salesman Problem Malik

More information

The Subtour LP for the Traveling Salesman Problem

The Subtour LP for the Traveling Salesman Problem The Subtour LP for the Traveling Salesman Problem David P. Williamson Cornell University November 22, 2011 Joint work with Jiawei Qian, Frans Schalekamp, and Anke van Zuylen The Traveling Salesman Problem

More information

ALGORITHM CHEAPEST INSERTION

ALGORITHM CHEAPEST INSERTION Version for STSP ALGORITHM CHEAPEST INSERTION. Choose the two furthest vertices i and k as initial subtour (c ik = max {c hj : (h, j) A}); set V := V \ {i} \ {k} (set of the unvisited vertices).. For each

More information

Some Basics on Tolerances. Gerold Jäger

Some Basics on Tolerances. Gerold Jäger Some Basics on Tolerances Gerold Jäger University Halle, Germany joint work with Boris Goldengorin and Paul Molitor June 21, 2006 Acknowledgement This paper is dedicated to Jop Sibeyn, who is missed since

More information

An Experimental Evaluation of the Best-of-Many Christofides Algorithm for the Traveling Salesman Problem

An Experimental Evaluation of the Best-of-Many Christofides Algorithm for the Traveling Salesman Problem An Experimental Evaluation of the Best-of-Many Christofides Algorithm for the Traveling Salesman Problem David P. Williamson Cornell University Joint work with Kyle Genova, Cornell University July 14,

More information

Improving the Efficiency of Helsgaun s Lin-Kernighan Heuristic for the Symmetric TSP

Improving the Efficiency of Helsgaun s Lin-Kernighan Heuristic for the Symmetric TSP Improving the Efficiency of Helsgaun s Lin-Kernighan Heuristic for the Symmetric TSP Dirk Richter 1, Boris Goldengorin 2,3,4, Gerold Jäger 5, and Paul Molitor 1 1 Computer Science Institute, University

More information

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R

More information

An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem

An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem and more recent developments CATS @ UMD April 22, 2016 The Asymmetric Traveling Salesman Problem (ATSP) Problem

More information

A constant-factor approximation algorithm for the asymmetric travelling salesman problem

A constant-factor approximation algorithm for the asymmetric travelling salesman problem A constant-factor approximation algorithm for the asymmetric travelling salesman problem London School of Economics Joint work with Ola Svensson and Jakub Tarnawski cole Polytechnique F d rale de Lausanne

More information

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij Travelling Salesman Problem Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij Traveling Salesman Problem Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

The Traveling Salesman Problem: State of the Art

The Traveling Salesman Problem: State of the Art The Traveling Salesman Problem: State of the Art Thomas Stützle stuetzle@informatik.tu-darmstadt.de http://www.intellektik.informatik.tu-darmstadt.de/ tom. Darmstadt University of Technology Department

More information

Polynomial time approximation algorithms

Polynomial time approximation algorithms Polynomial time approximation algorithms Doctoral course Optimization on graphs - Lecture 5.2 Giovanni Righini January 18 th, 2013 Approximation algorithms There are several reasons for using approximation

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21 . Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, 2011 1 / 21 THE TRAVELING SALESMAN PROBLEM Amanur Rahman Saiyed Indiana State University November 22, 2011

More information

Lecture 8: The Traveling Salesman Problem

Lecture 8: The Traveling Salesman Problem Lecture 8: The Traveling Salesman Problem Let G = (V, E) be an undirected graph. A Hamiltonian cycle of G is a cycle that visits every vertex v V exactly once. Instead of Hamiltonian cycle, we sometimes

More information

TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.!

TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.! TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.! Local Search! TSP! 1 3 5 6 4 What should be the neighborhood?! 2-opt: Find two edges in the current

More information

Seismic Vessel Problem

Seismic Vessel Problem Seismic Vessel Problem Gregory Gutin, Helmut Jakubowicz, Shuki Ronen and Alexei Zverovitch November 14, 2003 Abstract We introduce and study a new combinatorial optimization problem, the Seismic Vessel

More information

EXACT METHODS FOR THE ASYMMETRIC TRAVELING SALESMAN PROBLEM

EXACT METHODS FOR THE ASYMMETRIC TRAVELING SALESMAN PROBLEM EXACT METHODS FOR THE ASYMMETRIC TRAVELING SALESMAN PROBLEM Matteo Fischetti D.E.I, University of Padova Via Gradenigo 6/A, 35100 Padova, Italy fisch@dei.unipd.it (2013) Abstract In the present chapter

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

Advanced Methods in Algorithms HW 5

Advanced Methods in Algorithms HW 5 Advanced Methods in Algorithms HW 5 Written by Pille Pullonen 1 Vertex-disjoint cycle cover Let G(V, E) be a finite, strongly-connected, directed graph. Let w : E R + be a positive weight function dened

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms 6.046J/18.401J Lecture 24 Prof. Piotr Indyk Dealing with Hard Problems What to do if: Divide and conquer Dynamic programming Greedy Linear Programming/Network Flows does not

More information

Constraint-based solution methods for vehicle routing problems

Constraint-based solution methods for vehicle routing problems EWO Seminar - November 17, 2009 Constraint-based solution methods for vehicle routing problems Willem-Jan van Hoeve Tepper School of Business, Carnegie Mellon University Based on joint work with Michela

More information

Traveling Salesperson Problem (TSP)

Traveling Salesperson Problem (TSP) TSP-0 Traveling Salesperson Problem (TSP) Input: Undirected edge weighted complete graph G = (V, E, W ), where W : e R +. Tour: Find a path that starts at vertex 1, visits every vertex exactly once, and

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems?

Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems? Even More NP Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems? Reduction We say that problem A reduces to problem B, if there

More information

CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017

CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017 CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017 Reading: Section 9.2 of DPV. Section 11.3 of KT presents a different approximation algorithm for Vertex Cover. Coping

More information

Assignment 3b: The traveling salesman problem

Assignment 3b: The traveling salesman problem Chalmers University of Technology MVE165 University of Gothenburg MMG631 Mathematical Sciences Linear and integer optimization Optimization with applications Emil Gustavsson Assignment information Ann-Brith

More information

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS)

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS) COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section 35.1-35.2(CLRS) 1 Coping with NP-Completeness Brute-force search: This is usually only a viable option for small

More information

Algorithms for Euclidean TSP

Algorithms for Euclidean TSP This week, paper [2] by Arora. See the slides for figures. See also http://www.cs.princeton.edu/~arora/pubs/arorageo.ps Algorithms for Introduction This lecture is about the polynomial time approximation

More information

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem CS61: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem Tim Roughgarden February 5, 016 1 The Traveling Salesman Problem (TSP) In this lecture we study a famous computational problem,

More information

Approximation Algorithms

Approximation Algorithms Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Approximation Algorithms Tamassia Approximation Algorithms 1 Applications One of

More information

Improved approximation ratios for traveling salesperson tours and paths in directed graphs

Improved approximation ratios for traveling salesperson tours and paths in directed graphs Improved approximation ratios for traveling salesperson tours and paths in directed graphs Uriel Feige Mohit Singh August, 2006 Abstract In metric asymmetric traveling salesperson problems the input is

More information

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science Volume 118 No. 20 2018, 419-424 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan

More information

Construction heuristics for the asymmetric TSP

Construction heuristics for the asymmetric TSP European Journal of Operational Research 129 (2001) 555±568 www.elsevier.com/locate/dsw Theory and Methodology Construction heuristics for the asymmetric TSP Fred Glover a, Gregory Gutin b, *, Anders Yeo

More information

Improving the Held and Karp Approach with Constraint Programming

Improving the Held and Karp Approach with Constraint Programming Improving the Held and Karp Approach with Constraint Programming Pascal Benchimol 1, Jean-Charles Régin 2, Louis-Martin Rousseau 1, Michel Rueher 2, Willem-Jan van Hoeve 3 1 CIRRELT,École Polytechnique

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu P, NP-Problems Class

More information

val(y, I) α (9.0.2) α (9.0.3)

val(y, I) α (9.0.2) α (9.0.3) CS787: Advanced Algorithms Lecture 9: Approximation Algorithms In this lecture we will discuss some NP-complete optimization problems and give algorithms for solving them that produce a nearly optimal,

More information

Discrete Optimization

Discrete Optimization Discrete Optimization Quentin Louveaux ULg - Institut Montefiore 2016 Quentin Louveaux (ULg - Institut Montefiore) Discrete Optimization 2016 1 / 28 Discrete optimization problems What is a discrete optimization

More information

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two.

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two. Approximation Algorithms and Hardness of Approximation February 19, 2013 Lecture 1 Lecturer: Ola Svensson Scribes: Alantha Newman 1 Class Information 4 credits Lecturers: Ola Svensson (ola.svensson@epfl.ch)

More information

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen University of Copenhagen Outline Motivation and Background Minimum-Weight Spanner Problem Greedy Spanner Algorithm Exact Algorithm:

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 29 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/7/2016 Approximation

More information

Approximating TSP Solution by MST based Graph Pyramid

Approximating TSP Solution by MST based Graph Pyramid Approximating TSP Solution by MST based Graph Pyramid Y. Haxhimusa 1,2, W. G. Kropatsch 2, Z. Pizlo 1, A. Ion 2 and A. Lehrbaum 2 1 Department of Psychological Sciences, Purdue University 2 PRIP, Vienna

More information

Recent PTAS Algorithms on the Euclidean TSP

Recent PTAS Algorithms on the Euclidean TSP Recent PTAS Algorithms on the Euclidean TSP by Leonardo Zambito Submitted as a project for CSE 4080, Fall 2006 1 Introduction The Traveling Salesman Problem, or TSP, is an on going study in computer science.

More information

An Approximation Algorithm for the Curvature-Constrained Traveling Salesman Problem

An Approximation Algorithm for the Curvature-Constrained Traveling Salesman Problem An Approximation Algorithm for the Curvature-Constrained Traveling Salesman Problem Jerome Le Ny Laboratory for Information and Decision Systems Massachusetts Institute of Technology Cambridge, MA 02139

More information

Approximation Algorithms for the Dubins' Traveling Salesman Problem

Approximation Algorithms for the Dubins' Traveling Salesman Problem June, 2005 LIDS Publication # 2654 Research supported in part by: Air Force-DARPA-MURI award 009628001 Navy-ONR award N00014-03-1-0171 The University of California award 025-G-CB222 Approximation Algorithms

More information

Combinatorial Optimization - Lecture 14 - TSP EPFL

Combinatorial Optimization - Lecture 14 - TSP EPFL Combinatorial Optimization - Lecture 14 - TSP EPFL 2012 Plan Simple heuristics Alternative approaches Best heuristics: local search Lower bounds from LP Moats Simple Heuristics Nearest Neighbor (NN) Greedy

More information

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility Outline CS38 Introduction to Algorithms Lecture 18 May 29, 2014 coping with intractibility approximation algorithms set cover TSP center selection randomness in algorithms May 29, 2014 CS38 Lecture 18

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information

Two new variants of Christofides heuristic for the Static TSP and a computational study of a nearest neighbor approach for the Dynamic TSP

Two new variants of Christofides heuristic for the Static TSP and a computational study of a nearest neighbor approach for the Dynamic TSP Two new variants of Christofides heuristic for the Static TSP and a computational study of a nearest neighbor approach for the Dynamic TSP Orlis Christos Kartsiotis George Samaras Nikolaos Margaritis Konstantinos

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 39 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Mandal psm@iitg.ernet.in Dept.

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

1 The Traveling Salesman Problem

1 The Traveling Salesman Problem Comp 260: Advanced Algorithms Tufts University, Spring 2011 Prof. Lenore Cowen Scribe: Jisoo Park Lecture 3: The Traveling Salesman Problem 1 The Traveling Salesman Problem The Traveling Salesman Problem

More information

Introduction to Approximation Algorithms

Introduction to Approximation Algorithms Introduction to Approximation Algorithms Dr. Gautam K. Das Departmet of Mathematics Indian Institute of Technology Guwahati, India gkd@iitg.ernet.in February 19, 2016 Outline of the lecture Background

More information

Efficient Algorithms for Graph Bisection of Sparse Planar Graphs. Gerold Jäger University of Halle Germany

Efficient Algorithms for Graph Bisection of Sparse Planar Graphs. Gerold Jäger University of Halle Germany Efficient Algorithms for Graph Bisection of Sparse Planar Graphs Gerold Jäger University of Halle Germany Overview 1 Definition of MINBISECTION 2 Approximation Results 3 Previous Algorithms Notations Simple-Greedy-Algorithm

More information

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu

More information

Travelling Salesman Problems

Travelling Salesman Problems STOCHASTIC LOCAL SEARCH FOUNDATIONS & APPLICATIONS Travelling Salesman Problems Presented by Camilo Rostoker rostokec@cs.ubc.ca Department of Computer Science University of British Columbia Outline 1.

More information

1 The Traveling Salesman Problem

1 The Traveling Salesman Problem Comp 260: Advanced Algorithms Tufts University, Spring 2018 Prof. Lenore Cowen Scribe: Duc Nguyen Lecture 3a: The Traveling Salesman Problem 1 The Traveling Salesman Problem The Traveling Salesman Problem

More information

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff Institute of Operating Systems and Computer Networks Algorithms Group Network Algorithms Tutorial 4: Matching and other stuff Christian Rieck Matching 2 Matching A matching M in a graph is a set of pairwise

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

1 date: September 15, 1998 file: mitche1

1 date: September 15, 1998 file: mitche1 1 date: September 15, 1998 file: mitche1 CUTTING PLANE ALGORITHMS FOR INTEGER PROGRAMMING, Cutting plane algorithms Cutting plane methods are exact algorithms for integer programming problems. Theyhave

More information

Problem Set 6 (Due: Wednesday, December 6, 2006)

Problem Set 6 (Due: Wednesday, December 6, 2006) Urban OR Fall 2006 Problem Set 6 (Due: Wednesday, December 6, 2006) Problem 1 Problem 6.6 in Larson and Odoni Problem 2 Exercise 6.7 (page 442) in Larson and Odoni. Problem Suppose we have a network G(N,

More information

Lecture Notes: Euclidean Traveling Salesman Problem

Lecture Notes: Euclidean Traveling Salesman Problem IOE 691: Approximation Algorithms Date: 2/6/2017, 2/8/2017 ecture Notes: Euclidean Traveling Salesman Problem Instructor: Viswanath Nagarajan Scribe: Miao Yu 1 Introduction In the Euclidean Traveling Salesman

More information

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far:

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: I Strength of formulations; improving formulations by adding valid inequalities I Relaxations and dual problems; obtaining

More information

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Dealing with NP-Complete Problems Dealing with NP-Completeness Suppose the problem you need to solve is NP-complete. What

More information

An Experimental Evaluation of Ejection Chain Algorithms for the Traveling Salesman Problem

An Experimental Evaluation of Ejection Chain Algorithms for the Traveling Salesman Problem An Experimental Evaluation of Ejection Chain Algorithms for the Traveling Salesman Problem Dorabela Gamboa a, Colin Osterman b, César Rego b, Fred Glover c a b c Escola Superior de Tecnologia e Gestão

More information

to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics

to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics An Application of Lagrangian Relaxation to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics M lardalen University SE-721

More information

2 depots. In the next section, we present a transformation of. In this paper, we present a transformation that can convert

2 depots. In the next section, we present a transformation of. In this paper, we present a transformation that can convert 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -, 9 ThA9.5 A Transformation for a Multiple Depot, Multiple Traveling Salesman Problem Paul Oberlin, Sivakumar Rathinam,

More information

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0).

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0). CS4234: Optimisation Algorithms Lecture 4 TRAVELLING-SALESMAN-PROBLEM (4 variants) V1.0: Seth Gilbert, V1.1: Steven Halim August 30, 2016 Abstract The goal of the TRAVELLING-SALESMAN-PROBLEM is to find

More information

Fall CS598CC: Approximation Algorithms. Chandra Chekuri

Fall CS598CC: Approximation Algorithms. Chandra Chekuri Fall 2006 CS598CC: Approximation Algorithms Chandra Chekuri Administrivia http://www.cs.uiuc.edu/homes/chekuri/teaching/fall2006/approx.htm Grading: 4 home works (60-70%), 1 take home final (30-40%) Mailing

More information

A Distributed Chained Lin-Kernighan Algorithm for TSP Problems

A Distributed Chained Lin-Kernighan Algorithm for TSP Problems A Distributed Chained Lin-Kernighan Algorithm for TSP Problems Thomas Fischer Department of Computer Science University of Kaiserslautern fischer@informatik.uni-kl.de Peter Merz Department of Computer

More information

Case Studies: Bin Packing & The Traveling Salesman Problem. TSP: Part II. David S. Johnson AT&T Labs Research

Case Studies: Bin Packing & The Traveling Salesman Problem. TSP: Part II. David S. Johnson AT&T Labs Research Case Studies: Bin Packing & The Traveling Salesman Problem TSP: Part II David S. Johnson AT&T Labs Research 2010 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of

More information

The Traveling Salesman Problem: Adapting 2-Opt And 3-Opt Local Optimization to Branch & Bound Techniques

The Traveling Salesman Problem: Adapting 2-Opt And 3-Opt Local Optimization to Branch & Bound Techniques The Traveling Salesman Problem: Adapting 2-Opt And 3-Opt Local Optimization to Branch & Bound Techniques Hitokazu Matsushita hitokazu@byu.edu Ogden Mills ogdenlaynemills@gmail.com Nathan Lambson nlambson@gmail.com

More information

1 Better Approximation of the Traveling Salesman

1 Better Approximation of the Traveling Salesman Stanford University CS261: Optimization Handout 4 Luca Trevisan January 13, 2011 Lecture 4 In which we describe a 1.5-approximate algorithm for the Metric TSP, we introduce the Set Cover problem, observe

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 97 E-mail: natarajan.meghanathan@jsums.edu Optimization vs. Decision

More information

Notes for Recitation 9

Notes for Recitation 9 6.042/18.062J Mathematics for Computer Science October 8, 2010 Tom Leighton and Marten van Dijk Notes for Recitation 9 1 Traveling Salesperson Problem Now we re going to talk about a famous optimization

More information

On the Integrality Gap of the Subtour Relaxation of the Traveling Salesman Problem for Certain Fractional 2-matching Costs

On the Integrality Gap of the Subtour Relaxation of the Traveling Salesman Problem for Certain Fractional 2-matching Costs RICE UNIVERSITY On the Integrality Gap of the Subtour Relaxation of the Traveling Salesman Problem for Certain Fractional 2-matching Costs by Caleb C. Fast A Thesis Submitted in Partial Fulfillment of

More information

Supporting hyperplanes

Supporting hyperplanes Supporting hyperplanes General approach when using Lagrangian methods Lecture 1 homework Shadow prices A linear programming problem The simplex tableau Simple example with cycling The pivot rule being

More information

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini Metaheuristic Development Methodology Fall 2009 Instructor: Dr. Masoud Yaghini Phases and Steps Phases and Steps Phase 1: Understanding Problem Step 1: State the Problem Step 2: Review of Existing Solution

More information

SLS Methods: An Overview

SLS Methods: An Overview HEURSTC OPTMZATON SLS Methods: An Overview adapted from slides for SLS:FA, Chapter 2 Outline 1. Constructive Heuristics (Revisited) 2. terative mprovement (Revisited) 3. Simple SLS Methods 4. Hybrid SLS

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved.

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 397 E-mail: natarajan.meghanathan@jsums.edu Optimization vs. Decision

More information

(Refer Slide Time: 01:00)

(Refer Slide Time: 01:00) Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture minus 26 Heuristics for TSP In this lecture, we continue our discussion

More information

Prove, where is known to be NP-complete. The following problems are NP-Complete:

Prove, where is known to be NP-complete. The following problems are NP-Complete: CMPSCI 601: Recall From Last Time Lecture 21 To prove is NP-complete: Prove NP. Prove, where is known to be NP-complete. The following problems are NP-Complete: SAT (Cook-Levin Theorem) 3-SAT 3-COLOR CLIQUE

More information

Lecture 12: Randomized Rounding Algorithms for Symmetric TSP

Lecture 12: Randomized Rounding Algorithms for Symmetric TSP Recent Advances in Approximation Algorithms Spring 2015 Lecture 12: Randomized Rounding Algorithms for Symmetric TSP Lecturer: Shayan Oveis Gharan May 6th Disclaimer: These notes have not been subjected

More information

Computing Crossing-Free Configurations with Minimum Bottleneck

Computing Crossing-Free Configurations with Minimum Bottleneck Computing Crossing-Free Configurations with Minimum Bottleneck Sándor P. Fekete 1 and Phillip Keldenich 1 1 Department of Computer Science, TU Braunschweig, Germany {s.fekete,p.keldenich}@tu-bs.de Abstract

More information

Greedy algorithms Or Do the right thing

Greedy algorithms Or Do the right thing Greedy algorithms Or Do the right thing March 1, 2005 1 Greedy Algorithm Basic idea: When solving a problem do locally the right thing. Problem: Usually does not work. VertexCover (Optimization Version)

More information

A SURVEY ON DIFFERENT METHODS TO SOLVE TRAVELLING SALESMAN PROBLEM

A SURVEY ON DIFFERENT METHODS TO SOLVE TRAVELLING SALESMAN PROBLEM A SURVEY ON DIFFERENT METHODS TO SOLVE TRAVELLING SALESMAN PROBLEM Harshala Ingole 1, V.B.Kute 2 1,2 Computer Engineering & RTM Nagpur University, (India) ABSTRACT Travelling salesman problem acts as an

More information

Coping with NP-Completeness

Coping with NP-Completeness Coping with NP-Completeness Siddhartha Sen Questions: sssix@cs.princeton.edu Some figures obtained from Introduction to Algorithms, nd ed., by CLRS Coping with intractability Many NPC problems are important

More information

ON THE SOLUTION OF TRAVELING SALESMAN UNDER CONDITIONS OF SPARSENESS A THESIS. Presented. The Faculty of the Division of Graduate

ON THE SOLUTION OF TRAVELING SALESMAN UNDER CONDITIONS OF SPARSENESS A THESIS. Presented. The Faculty of the Division of Graduate ON THE SOLUTION OF TRAVELING SALESMAN UNDER CONDITIONS OF SPARSENESS PROBLEMS A THESIS Presented to The Faculty of the Division of Graduate Studies and Research by Norman Jon Bau In Partial Fulfillment

More information

A Polynomial-Time Deterministic Approach to the Traveling Salesperson Problem

A Polynomial-Time Deterministic Approach to the Traveling Salesperson Problem A Polynomial-Time Deterministic Approach to the Traveling Salesperson Problem Ali Jazayeri and Hiroki Sayama Center for Collective Dynamics of Complex Systems Department of Systems Science and Industrial

More information

A combination of clustering algorithms with Ant Colony Optimization for large clustered Euclidean Travelling Salesman Problem

A combination of clustering algorithms with Ant Colony Optimization for large clustered Euclidean Travelling Salesman Problem A combination of clustering algorithms with Ant Colony Optimization for large clustered Euclidean Travelling Salesman Problem TRUNG HOANG DINH, ABDULLAH AL MAMUN Department of Electrical and Computer Engineering

More information

Match twice and stitch:a new TSP tour construction heuristic

Match twice and stitch:a new TSP tour construction heuristic Operations Research Letters 32 (2004) 499 509 Operations Research Letters www.elsevier.com/locate/dsw Match twice and stitch:a new TSP tour construction heuristic Andrew B. Kahng, Sherief Reda UCSD Computer

More information