Effective Tour Searching for Large TSP Instances. Gerold Jäger

Size: px
Start display at page:

Download "Effective Tour Searching for Large TSP Instances. Gerold Jäger"

Transcription

1 Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg (Germany) joint work with Changxing Dong, Paul Molitor, Dirk Richter German Research Foundation Grant Tolerance Based Algorithms for Solving the Traveling Salesman Problem

2 Overview 1 Introduction Definition Graph Model Importance of TSP

3 Overview 2 Algorithms for the TSP Exact Algorithms Helsgaun s Heuristic

4 Overview 3 Description of the Algorithm Experimental Results Work on World-TSP

5 Introduction Definition A traveling salesman wants to visit a given number of cities. Finally he wants to return to the starting point. This is called a tour through all cities. Each pair of cities receives a cost value for the distance between these cities. The Traveling Salesman Problem (TSP) is to find a tour with minimum costs.

6 Introduction Graph Model Let G = (V, E) be a graph defined by the set of vertices (cities) V the set of edges (connections) E = V V i.e., an edge is a pair of distinct vertices Let c : E R + 0 be a cost function. Let V = n. Find a tour (v 1, v 2,..., v n, v 1 ) such that the following term is minimized: n 1 c(v n, v 1 ) + c(v i, v i+1 ) i=1

7 Introduction Importance of TSP Easy to understand. Hard to solve: NP-Hard. Gap between few performance guarantees good practical results Many important applications: public transport tour planning design of microchips genome sequencing

8 Algorithms for the TSP Exact Algorithms Largest solved example instances Year Research Team # Vertices 1954 Dantzig, Fulkerson, Johnson Held, Karp Camerini, Fratta, Maffioli Grötschel Crowder, Padberg Padberg, Rinaldi Grötschel, Holland Padberg, Rinaldi 2, Applegate, Bixby, Chvátal, Cook Applegate, Bixby, Chvátal, Cook 13,509 (USA tour) 2001 Applegate, Bixby, Chvátal, Cook 15,112 (D tour) 2004 App., Bixby, Chvátal, Cook, Helsgaun 24,978 (Swe tour) 2006 App., Bixby, Chvátal, Cook, Helsgaun 85,900 The 5 largest instances were solved by Concorde which is based on branch-and-cut.

9 Algorithms for the TSP Exact Algorithms Shortest tour through 15, 112 cities in Germany

10 Algorithms for the TSP Helsgaun s Heuristic 1 Start with an arbitrary vertex. 2 In each step go to the nearest non-visited vertex. 3 If all vertices are visited, return to the starting point. 4 Use the resulted tour as starting tour for the next steps. 5 For k n apply a k-opt step, i.e.: Replace tour edges by non-tour edges, such that the edges are still a tour the tour is better than the original one 6 Repeat step 5 as often as possible.

11 Algorithms for the TSP Helsgaun s Heuristic Example of a 2-OPT step

12 Algorithms for the TSP Helsgaun s Heuristic Best TSP heuristic: [Helsgaun, 1998, improved: 2007] Main ideas: [Lin, Kernighan, 1971] Optimizations: 1 Choose k small. 2 For each vertex consider only the s best neighboring edges, the so-called candidate system. Helsgaun s main improvement: For each vertex do not consider the s shortest neighboring edges, but the s neighboring edges with a criterion based on the minimum spanning tree. 3 Apply t (nearly) independent runs of the algorithm. The larger the algorithm parameters k, s and t are, the slower, but more effective is Helsgaun s Algorithm.

13 Description of the Algorithm 1 Using known algorithms, e.g., Helsgaun s Algorithm, find good starting tours. a b c

14 Such edges are called pseudo backbone edges. Effective Tour Searching for Large TSP Instances Description of the Algorithm 2 Find all common edges in these starting tours. a b c d

15 Description of the Algorithm 3 Create a new instance by omitting the vertices, which lie on a path of pseudo backbone edges: d e Contract all edges of paths of pseudo backbone edges to one edge. Fix these edges, i.e., these edges are forced to be in the final tour.

16 Description of the Algorithm 6 Apply Helsgaun s Algorithm to the new instance. e e

17 Description of the Algorithm 7 Re-contract the tour of the new instance to a tour of the original instance. e f Indeed, the last tour is the optimum one.

18 Description of the Algorithm Two advantages: 1 Reduction of the set of vertices. 2 Fixing of a part of the edges. Helsgaun s Algorithm can be applied with larger algorithm parameters k, s and t. It is much more effective than applied for the original instance. The algorithm works rather good, if the starting tours are 1 good ones 2 not too similar (as otherwise the search space is restricted too strongly)

19 Experimental Results Competition: TSP homepage ( Large datasets from practice exist for comparison of exact algorithms and heuristics. 74 unsolved example instances exist: VLSI and national instances For 19 of 74 instances we have set a new record. 10 of 19 records are still up to date.

20 Experimental Results Our new records Date # Vertices Date # Vertices , , , , , , , , , , , , , , , , , ,608

21 Work on World-TSP joint work also with Christian Ernst The most difficult instance of the TSP homepage is the World-TSP with 1, 904, 711 cities. (Ambitious) aim: Computation of a new record World-Tour. Current record World-Tour

22 Work on World-TSP Problem: Finding many good starting tours is too difficult for the World-TSP. Idea: Combine Pseudo Backbone Contraction Algorithm with Partitioning.

23 Each vertex is contained in exactly 4 windows, unless it is located near the boundary. Effective Tour Searching for Large TSP Instances Work on World-TSP 1 Compute good tours in overlapping windows. The overlap size is chosen half the width (height) of the window frame.

24 Work on World-TSP 2 Use edges contained in all tours of 4 overlapping windows as pseudo backbone edges. 3 Apply the Pseudo Backbone Contraction Algorithm.

25 Work on World-TSP Our current tour: 1 0.1% over the current best tour 2 found in a few days

26 Work on World-TSP Thanks for your attention!

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg joint work with Changxing Dong, Paul Molitor, Dirk Richter November 14, 2008 Overview 1 Introduction

More information

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg (Germany) joint work with Changxing Dong, Paul Molitor, Dirk Richter German Research Foundation Grant

More information

Tolerance based Greedy Heuristics for the Asymmetric TSP. Gerold Jäger Martin Luther University Halle-Wittenberg

Tolerance based Greedy Heuristics for the Asymmetric TSP. Gerold Jäger Martin Luther University Halle-Wittenberg Tolerance based Greedy Heuristics for the Asymmetric TSP Gerold Jäger Martin Luther University Halle-Wittenberg Cooperation with Boris Goldengorin DFG Project: Paul Molitor December 21, 200 Overview 1

More information

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order Gerold Jäger joint work with Paul Molitor University Halle-Wittenberg, Germany August 22, 2008 Overview 1 Introduction

More information

A COMPARATIVE STUDY OF BRUTE FORCE METHOD, NEAREST NEIGHBOUR AND GREEDY ALGORITHMS TO SOLVE THE TRAVELLING SALESMAN PROBLEM

A COMPARATIVE STUDY OF BRUTE FORCE METHOD, NEAREST NEIGHBOUR AND GREEDY ALGORITHMS TO SOLVE THE TRAVELLING SALESMAN PROBLEM IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 6, Jun 2014, 59-72 Impact Journals A COMPARATIVE STUDY OF BRUTE

More information

Heuristic Approaches to Solve Traveling Salesman Problem

Heuristic Approaches to Solve Traveling Salesman Problem TELKOMNIKA Indonesian Journal of Electrical Engineering Vol. 15, No. 2, August 2015, pp. 390 ~ 396 DOI: 10.11591/telkomnika.v15i2.8301 390 Heuristic Approaches to Solve Traveling Salesman Problem Malik

More information

Some Basics on Tolerances. Gerold Jäger

Some Basics on Tolerances. Gerold Jäger Some Basics on Tolerances Gerold Jäger University Halle, Germany joint work with Boris Goldengorin and Paul Molitor June 21, 2006 Acknowledgement This paper is dedicated to Jop Sibeyn, who is missed since

More information

The Traveling Salesman Problem: State of the Art

The Traveling Salesman Problem: State of the Art The Traveling Salesman Problem: State of the Art Thomas Stützle stuetzle@informatik.tu-darmstadt.de http://www.intellektik.informatik.tu-darmstadt.de/ tom. Darmstadt University of Technology Department

More information

The Subtour LP for the Traveling Salesman Problem

The Subtour LP for the Traveling Salesman Problem The Subtour LP for the Traveling Salesman Problem David P. Williamson Cornell University November 22, 2011 Joint work with Jiawei Qian, Frans Schalekamp, and Anke van Zuylen The Traveling Salesman Problem

More information

Improving the Efficiency of Helsgaun s Lin-Kernighan Heuristic for the Symmetric TSP

Improving the Efficiency of Helsgaun s Lin-Kernighan Heuristic for the Symmetric TSP Improving the Efficiency of Helsgaun s Lin-Kernighan Heuristic for the Symmetric TSP Dirk Richter 1, Boris Goldengorin 2,3,4, Gerold Jäger 5, and Paul Molitor 1 1 Computer Science Institute, University

More information

Discrete Optimization

Discrete Optimization Discrete Optimization Quentin Louveaux ULg - Institut Montefiore 2016 Quentin Louveaux (ULg - Institut Montefiore) Discrete Optimization 2016 1 / 28 Discrete optimization problems What is a discrete optimization

More information

Improving the Held and Karp Approach with Constraint Programming

Improving the Held and Karp Approach with Constraint Programming Improving the Held and Karp Approach with Constraint Programming Pascal Benchimol 1, Jean-Charles Régin 2, Louis-Martin Rousseau 1, Michel Rueher 2, Willem-Jan van Hoeve 3 1 CIRRELT,École Polytechnique

More information

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21 . Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, 2011 1 / 21 THE TRAVELING SALESMAN PROBLEM Amanur Rahman Saiyed Indiana State University November 22, 2011

More information

Constraint-based solution methods for vehicle routing problems

Constraint-based solution methods for vehicle routing problems EWO Seminar - November 17, 2009 Constraint-based solution methods for vehicle routing problems Willem-Jan van Hoeve Tepper School of Business, Carnegie Mellon University Based on joint work with Michela

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

A constant-factor approximation algorithm for the asymmetric travelling salesman problem

A constant-factor approximation algorithm for the asymmetric travelling salesman problem A constant-factor approximation algorithm for the asymmetric travelling salesman problem London School of Economics Joint work with Ola Svensson and Jakub Tarnawski cole Polytechnique F d rale de Lausanne

More information

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij Travelling Salesman Problem Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

Math for Liberal Arts MAT 110: Chapter 13 Notes

Math for Liberal Arts MAT 110: Chapter 13 Notes Math for Liberal Arts MAT 110: Chapter 13 Notes Graph Theory David J. Gisch Networks and Euler Circuits Network Representation Network: A collection of points or objects that are interconnected in some

More information

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij Traveling Salesman Problem Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

Seismic Vessel Problem

Seismic Vessel Problem Seismic Vessel Problem Gregory Gutin, Helmut Jakubowicz, Shuki Ronen and Alexei Zverovitch November 14, 2003 Abstract We introduce and study a new combinatorial optimization problem, the Seismic Vessel

More information

Combinatorial Optimization - Lecture 14 - TSP EPFL

Combinatorial Optimization - Lecture 14 - TSP EPFL Combinatorial Optimization - Lecture 14 - TSP EPFL 2012 Plan Simple heuristics Alternative approaches Best heuristics: local search Lower bounds from LP Moats Simple Heuristics Nearest Neighbor (NN) Greedy

More information

Assignment 3b: The traveling salesman problem

Assignment 3b: The traveling salesman problem Chalmers University of Technology MVE165 University of Gothenburg MMG631 Mathematical Sciences Linear and integer optimization Optimization with applications Emil Gustavsson Assignment information Ann-Brith

More information

Efficient Algorithms for Graph Bisection of Sparse Planar Graphs. Gerold Jäger University of Halle Germany

Efficient Algorithms for Graph Bisection of Sparse Planar Graphs. Gerold Jäger University of Halle Germany Efficient Algorithms for Graph Bisection of Sparse Planar Graphs Gerold Jäger University of Halle Germany Overview 1 Definition of MINBISECTION 2 Approximation Results 3 Previous Algorithms Notations Simple-Greedy-Algorithm

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu P, NP-Problems Class

More information

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25 Curve and Surface Reconstruction Kurt Mehlhorn MPI für Informatik Curve and Surface Reconstruction p.1/25 Curve Reconstruction: An Example probably, you see more than a set of points Curve and Surface

More information

LKH User Guide Version 2.0 (November 2007)

LKH User Guide Version 2.0 (November 2007) LKH User Guide Version 2.0 (November 2007) by Keld Helsgaun E-mail: keld@ruc.dk 1. Introduction The Lin-Kernighan heuristic [1] is generally considered to be one of the most successful methods for generating

More information

1 date: September 15, 1998 file: mitche1

1 date: September 15, 1998 file: mitche1 1 date: September 15, 1998 file: mitche1 CUTTING PLANE ALGORITHMS FOR INTEGER PROGRAMMING, Cutting plane algorithms Cutting plane methods are exact algorithms for integer programming problems. Theyhave

More information

Using Python to Solve Computationally Hard Problems

Using Python to Solve Computationally Hard Problems Using Python to Solve Computationally Hard Problems Using Python to Solve Computationally Hard Problems Rachael Madsen Optimal Design Software LLC BS in Mathematics Software Engineer & Architect Python

More information

Case Studies: Bin Packing & The Traveling Salesman Problem. TSP: Part II. David S. Johnson AT&T Labs Research

Case Studies: Bin Packing & The Traveling Salesman Problem. TSP: Part II. David S. Johnson AT&T Labs Research Case Studies: Bin Packing & The Traveling Salesman Problem TSP: Part II David S. Johnson AT&T Labs Research 2010 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of

More information

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information

Recent PTAS Algorithms on the Euclidean TSP

Recent PTAS Algorithms on the Euclidean TSP Recent PTAS Algorithms on the Euclidean TSP by Leonardo Zambito Submitted as a project for CSE 4080, Fall 2006 1 Introduction The Traveling Salesman Problem, or TSP, is an on going study in computer science.

More information

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R

More information

A Distributed Chained Lin-Kernighan Algorithm for TSP Problems

A Distributed Chained Lin-Kernighan Algorithm for TSP Problems A Distributed Chained Lin-Kernighan Algorithm for TSP Problems Thomas Fischer Department of Computer Science University of Kaiserslautern fischer@informatik.uni-kl.de Peter Merz Department of Computer

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

A Polynomial-Time Deterministic Approach to the Traveling Salesperson Problem

A Polynomial-Time Deterministic Approach to the Traveling Salesperson Problem A Polynomial-Time Deterministic Approach to the Traveling Salesperson Problem Ali Jazayeri and Hiroki Sayama Center for Collective Dynamics of Complex Systems Department of Systems Science and Industrial

More information

Combinatorial Optimization Lab No. 10 Traveling Salesman Problem

Combinatorial Optimization Lab No. 10 Traveling Salesman Problem Combinatorial Optimization Lab No. 10 Traveling Salesman Problem Industrial Informatics Research Center http://industrialinformatics.cz/ May 29, 2018 Abstract In this lab we review various ways how to

More information

Using Travelling Salesman Problem Algorithms to. Plan the Most Time-efficient Route for Robots

Using Travelling Salesman Problem Algorithms to. Plan the Most Time-efficient Route for Robots Using Travelling Salesman Problem Algorithms to Plan the Most Time-efficient Route for Robots Zhaoxin Xue The High School Affiliated to Renmin University of China, 14-0646 Using Travelling Salesman Problem

More information

Overview. H. R. Alvarez A., Ph. D.

Overview. H. R. Alvarez A., Ph. D. Network Modeling Overview Networks arise in numerous settings: transportation, electrical, and communication networks, for example. Network representations also are widely used for problems in such diverse

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 97 E-mail: natarajan.meghanathan@jsums.edu Optimization vs. Decision

More information

Optimal tree for Genetic Algorithms in the Traveling Salesman Problem (TSP).

Optimal tree for Genetic Algorithms in the Traveling Salesman Problem (TSP). Optimal tree for Genetic Algorithms in the Traveling Salesman Problem (TSP). Liew Sing liews_ryan@yahoo.com.sg April 1, 2012 Abstract In this paper, the author proposes optimal tree as a gauge for the

More information

TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.!

TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.! TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.! Local Search! TSP! 1 3 5 6 4 What should be the neighborhood?! 2-opt: Find two edges in the current

More information

Chapter 14 Section 3 - Slide 1

Chapter 14 Section 3 - Slide 1 AND Chapter 14 Section 3 - Slide 1 Chapter 14 Graph Theory Chapter 14 Section 3 - Slide WHAT YOU WILL LEARN Graphs, paths and circuits The Königsberg bridge problem Euler paths and Euler circuits Hamilton

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 397 E-mail: natarajan.meghanathan@jsums.edu Optimization vs. Decision

More information

val(y, I) α (9.0.2) α (9.0.3)

val(y, I) α (9.0.2) α (9.0.3) CS787: Advanced Algorithms Lecture 9: Approximation Algorithms In this lecture we will discuss some NP-complete optimization problems and give algorithms for solving them that produce a nearly optimal,

More information

Introduction to Approximation Algorithms

Introduction to Approximation Algorithms Introduction to Approximation Algorithms Dr. Gautam K. Das Departmet of Mathematics Indian Institute of Technology Guwahati, India gkd@iitg.ernet.in February 19, 2016 Outline of the lecture Background

More information

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?)

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?) P vs. NP What now? Attribution These slides were prepared for the New Jersey Governor s School course The Math Behind the Machine taught in the summer of 2011 by Grant Schoenebeck Large parts of these

More information

Figurative Tours and Braids

Figurative Tours and Braids Figurative Tours and Braids Robert Bosch Dept. of Mathematics Oberlin College rbosch@oberlin.edu Tom Wexler Dept. of Computer Science Oberlin College wexler@cs.oberlin.edu Abstract We start with a rectangular

More information

Implementation Analysis of Efficient Heuristic Algorithms for the Traveling Salesman Problem

Implementation Analysis of Efficient Heuristic Algorithms for the Traveling Salesman Problem Implementation Analysis of Efficient Heuristic Algorithms for the Traveling Salesman Problem Dorabela Gamboa a, César Rego b, Fred Glover c a b c Escola Superior de Tecnologia e Gestão de Felgueiras, Instituto

More information

Approximating TSP Solution by MST based Graph Pyramid

Approximating TSP Solution by MST based Graph Pyramid Approximating TSP Solution by MST based Graph Pyramid Y. Haxhimusa 1,2, W. G. Kropatsch 2, Z. Pizlo 1, A. Ion 2 and A. Lehrbaum 2 1 Department of Psychological Sciences, Purdue University 2 PRIP, Vienna

More information

Solving the Railway Traveling Salesman Problem via a Transformation into the Classical Traveling Salesman Problem

Solving the Railway Traveling Salesman Problem via a Transformation into the Classical Traveling Salesman Problem Solving the Railway Traveling Salesman Problem via a Transformation into the Classical Traveling Salesman Problem Bin Hu Günther R. Raidl Vienna University of Technology Favoritenstraße 9 11/1861 1040

More information

EXACT METHODS FOR THE ASYMMETRIC TRAVELING SALESMAN PROBLEM

EXACT METHODS FOR THE ASYMMETRIC TRAVELING SALESMAN PROBLEM EXACT METHODS FOR THE ASYMMETRIC TRAVELING SALESMAN PROBLEM Matteo Fischetti D.E.I, University of Padova Via Gradenigo 6/A, 35100 Padova, Italy fisch@dei.unipd.it (2013) Abstract In the present chapter

More information

Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems?

Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems? Even More NP Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems? Reduction We say that problem A reduces to problem B, if there

More information

A Meta-heuristic Applied for a Topologic Pickup and Delivery Problem with Time Windows Constraints

A Meta-heuristic Applied for a Topologic Pickup and Delivery Problem with Time Windows Constraints A Meta-heuristic Applied for a Topologic Pickup and Delivery Problem with Time Windows Constraints Jesús Fabián López Pérez Post-Graduate Program of Management Science, FACPYA UANL, Monterrey, México fabian.lopez@e-arca.com.mx

More information

Constructing arbitrarily large graphs with a specified number of Hamiltonian cycles

Constructing arbitrarily large graphs with a specified number of Hamiltonian cycles Electronic Journal of Graph Theory and Applications 4 (1) (2016), 18 25 Constructing arbitrarily large graphs with a specified number of Hamiltonian cycles Michael School of Computer Science, Engineering

More information

Supporting hyperplanes

Supporting hyperplanes Supporting hyperplanes General approach when using Lagrangian methods Lecture 1 homework Shadow prices A linear programming problem The simplex tableau Simple example with cycling The pivot rule being

More information

Algorithms for Euclidean TSP

Algorithms for Euclidean TSP This week, paper [2] by Arora. See the slides for figures. See also http://www.cs.princeton.edu/~arora/pubs/arorageo.ps Algorithms for Introduction This lecture is about the polynomial time approximation

More information

ON THE SOLUTION OF TRAVELING SALESMAN UNDER CONDITIONS OF SPARSENESS A THESIS. Presented. The Faculty of the Division of Graduate

ON THE SOLUTION OF TRAVELING SALESMAN UNDER CONDITIONS OF SPARSENESS A THESIS. Presented. The Faculty of the Division of Graduate ON THE SOLUTION OF TRAVELING SALESMAN UNDER CONDITIONS OF SPARSENESS PROBLEMS A THESIS Presented to The Faculty of the Division of Graduate Studies and Research by Norman Jon Bau In Partial Fulfillment

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

TSP Infrastructure for the Traveling Salesperson Problem

TSP Infrastructure for the Traveling Salesperson Problem TSP Infrastructure for the Traveling Salesperson Problem Michael Hahsler, Kurt Hornik Department of Statistics and Mathematics Wirtschaftsuniversität Wien Research Report Series Report 45 December 2006

More information

An Experimental Evaluation of the Best-of-Many Christofides Algorithm for the Traveling Salesman Problem

An Experimental Evaluation of the Best-of-Many Christofides Algorithm for the Traveling Salesman Problem An Experimental Evaluation of the Best-of-Many Christofides Algorithm for the Traveling Salesman Problem David P. Williamson Cornell University Joint work with Kyle Genova, Cornell University July 14,

More information

Improving Lin-Kernighan-Helsgaun with Crossover on Clustered Instances of the TSP

Improving Lin-Kernighan-Helsgaun with Crossover on Clustered Instances of the TSP Improving Lin-Kernighan-Helsgaun with Crossover on Clustered Instances of the TSP Doug Hains, Darrell Whitley, and Adele Howe Colorado State University, Fort Collins CO, USA Abstract. Multi-trial Lin-Kernighan-Helsgaun

More information

An Experimental Evaluation of Ejection Chain Algorithms for the Traveling Salesman Problem

An Experimental Evaluation of Ejection Chain Algorithms for the Traveling Salesman Problem An Experimental Evaluation of Ejection Chain Algorithms for the Traveling Salesman Problem Dorabela Gamboa a, Colin Osterman b, César Rego b, Fred Glover c a b c Escola Superior de Tecnologia e Gestão

More information

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science Volume 118 No. 20 2018, 419-424 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan

More information

Study Guide Mods: Date:

Study Guide Mods: Date: Graph Theory Name: Study Guide Mods: Date: Define each of the following. It may be helpful to draw examples that illustrate the vocab word and/or counterexamples to define the word. 1. Graph ~ 2. Vertex

More information

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I MCA 312: Design and Analysis of Algorithms [Part I : Medium Answer Type Questions] UNIT I 1) What is an Algorithm? What is the need to study Algorithms? 2) Define: a) Time Efficiency b) Space Efficiency

More information

A Theoretical Framework to Solve the TSPs as Classification Problems and Shortest Hamiltonian Path Problems

A Theoretical Framework to Solve the TSPs as Classification Problems and Shortest Hamiltonian Path Problems American Journal of Intelligent Systems 2014, 4(1): 1-8 DOI: 10.5923/j.ajis.20140401.01 A Theoretical Framework to Solve the TSPs as Classification Problems and Shortest Hamiltonian Path Problems Akihiko

More information

The Traveling Salesman Problem

The Traveling Salesman Problem The Traveling Salesman Problem Hamilton path A path that visits each vertex of the graph once and only once. Hamilton circuit A circuit that visits each vertex of the graph once and only once (at the end,

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

Implementation analysis of efficient heuristic algorithms for the traveling salesman problem

Implementation analysis of efficient heuristic algorithms for the traveling salesman problem Computers & Operations Research ( ) www.elsevier.com/locate/cor Implementation analysis of efficient heuristic algorithms for the traveling salesman problem Dorabela Gamboa a, César Rego b,, Fred Glover

More information

Package TSP. February 15, 2013

Package TSP. February 15, 2013 Package TSP February 15, 2013 Type Package Title Traveling Salesperson Problem (TSP) Version 1.0-7 Date 2011-08-21 Author Michael Hahsler and Kurt Hornik Maintainer Michael Hahsler

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 25 (S): 199-210 (2017) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Water Flow-Like Algorithm Improvement Using K-Opt Local Search Wu Diyi, Zulaiha

More information

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Optimisation problems Optimisation & search Two Examples The knapsack problem

More information

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems Math. Program., Ser. B 97: 91 153 (2003) Digital Object Identifier (DOI) 10.1007/s10107-003-0440-4 David Applegate Robert Bixby Vašek Chvátal William Cook Implementing the Dantzig-Fulkerson-Johnson algorithm

More information

Part 3: Handling Intractability - a brief introduction

Part 3: Handling Intractability - a brief introduction COMP36111: Advanced Algorithms I Part 3: Handling Intractability - a brief introduction Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk December 2010 Introduction Course Structure

More information

Travelling Salesman Problems

Travelling Salesman Problems STOCHASTIC LOCAL SEARCH FOUNDATIONS & APPLICATIONS Travelling Salesman Problems Presented by Camilo Rostoker rostokec@cs.ubc.ca Department of Computer Science University of British Columbia Outline 1.

More information

1. The Highway Inspector s Problem

1. The Highway Inspector s Problem MATH 100 Survey of Mathematics Fall 2009 1. The Highway Inspector s Problem The Königsberg Bridges over the river Pregel C c d e A g D a B b Figure 1. Bridges f Is there a path that crosses every bridge

More information

Design and Analysis of Algorithms CS404/504. Razvan Bunescu School of EECS.

Design and Analysis of Algorithms CS404/504. Razvan Bunescu School of EECS. Welcome Design and Analysis of Algorithms Razvan Bunescu School of EECS bunescu@ohio.edu 1 Course Description Course Description: This course provides an introduction to the modern study of computer algorithms.

More information

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP:

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP: 6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS Vehicle Routing Problem, VRP: Customers i=1,...,n with demands of a product must be served using a fleet of vehicles for the deliveries. The vehicles, with given

More information

General k-opt submoves for the Lin Kernighan TSP heuristic

General k-opt submoves for the Lin Kernighan TSP heuristic Math. Prog. Comp. (2009) 1:119 163 DOI 10.1007/s12532-009-0004-6 FULL LENGTH PAPER General k-opt submoves for the Lin Kernighan TSP heuristic Keld Helsgaun Received: 25 March 2009 / Accepted: 3 June 2009

More information

P vs. NP. Simpsons: Treehouse of Horror VI

P vs. NP. Simpsons: Treehouse of Horror VI P vs. NP Simpsons: Treehouse of Horror VI Attribution These slides were prepared for the New Jersey Governor s School course The Math Behind the Machine taught in the summer of 2012 by Grant Schoenebeck

More information

Exact Algorithms for NP-hard problems

Exact Algorithms for NP-hard problems 24 mai 2012 1 Why do we need exponential algorithms? 2 3 Why the P-border? 1 Practical reasons (Jack Edmonds, 1965) For practical purposes the difference between algebraic and exponential order is more

More information

Combinatorial Optimization Top Ten List

Combinatorial Optimization Top Ten List Combinatorial Optimization Top Ten List Discrete Mathematics 2000 as selected by William R. Pulleyblank T. J. Watson Research Center IBM Corporation Yorktown Heights, NY Euler's Theorem 1736 Theorem: A

More information

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS)

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS) COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section 35.1-35.2(CLRS) 1 Coping with NP-Completeness Brute-force search: This is usually only a viable option for small

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

A Tabu Search Heuristic for the Generalized Traveling Salesman Problem

A Tabu Search Heuristic for the Generalized Traveling Salesman Problem A Tabu Search Heuristic for the Generalized Traveling Salesman Problem Jacques Renaud 1,2 Frédéric Semet 3,4 1. Université Laval 2. Centre de Recherche sur les Technologies de l Organisation Réseau 3.

More information

CSCE 350: Chin-Tser Huang. University of South Carolina

CSCE 350: Chin-Tser Huang. University of South Carolina CSCE 350: Data Structures and Algorithms Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Announcement Homework 2 will be returned on Thursday; solution will be available on class website

More information

THESIS GENERALIZED PARTITION CROSSOVER FOR THE TRAVELING SALESMAN PROBLEM. Submitted by. Douglas R. Hains. Department of Computer Science

THESIS GENERALIZED PARTITION CROSSOVER FOR THE TRAVELING SALESMAN PROBLEM. Submitted by. Douglas R. Hains. Department of Computer Science THESIS GENERALIZED PARTITION CROSSOVER FOR THE TRAVELING SALESMAN PROBLEM Submitted by Douglas R. Hains Department of Computer Science In partial fulfillment of the requirements for the Degree of Master

More information

Graph Applications, Class Notes, CS 3137 1 Traveling Salesperson Problem Web References: http://www.tsp.gatech.edu/index.html http://www-e.uni-magdeburg.de/mertens/tsp/tsp.html TSP applets A Hamiltonian

More information

Comparison of Heuristics for the Colorful Traveling Salesman Problem

Comparison of Heuristics for the Colorful Traveling Salesman Problem Comparison of Heuristics for the Colorful Traveling Salesman Problem John Silberholz R.H. Smith School of Business University of Maryland Joint Work With: Andrea Raiconi, Raffaele Cerulli, Monica Gentili,

More information

Practice Final Exam 1

Practice Final Exam 1 Algorithm esign Techniques Practice Final xam Instructions. The exam is hours long and contains 6 questions. Write your answers clearly. You may quote any result/theorem seen in the lectures or in the

More information

Solution of P versus NP problem

Solution of P versus NP problem Algorithms Research 2015, 4(1): 1-7 DOI: 105923/jalgorithms2015040101 Solution of P versus NP problem Mustapha Hamidi Meknes, Morocco Abstract This paper, taking Travelling Salesman Problem as our object,

More information

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed Dynamic programming Solves a complex problem by breaking it down into subproblems Each subproblem is broken down recursively until a trivial problem is reached Computation itself is not recursive: problems

More information

LKH User Guide. Version 1.3 (July 2002) by Keld Helsgaun

LKH User Guide. Version 1.3 (July 2002) by Keld Helsgaun LKH User Guide Version 1.3 (July 2002) by Keld Helsgaun E-mail: keld@ruc.dk 1. Introduction The Lin-Kernighan heuristic [1] is generally considered to be one of the most successful methods for generating

More information

The metric travelling salesman problem: pareto-optimal heuristic algorithms

The metric travelling salesman problem: pareto-optimal heuristic algorithms 295 The metric travelling salesman problem: pareto-optimal heuristic algorithms Ekaterina Beresneva Faculty of Computer Science National Research University Higher School of Economics Moscow, Russia, +7(925)538-40-58

More information

Two approaches. Local Search TSP. Examples of algorithms using local search. Local search heuristics - To do list

Two approaches. Local Search TSP. Examples of algorithms using local search. Local search heuristics - To do list Unless P=NP, there is no polynomial time algorithm for SAT, MAXSAT, MIN NODE COVER, MAX INDEPENDENT SET, MAX CLIQUE, MIN SET COVER, TSP,. But we have to solve (instances of) these problems anyway what

More information

State Space Reduction for the Symmetric Traveling Salesman Problem through Halves Tour Complement

State Space Reduction for the Symmetric Traveling Salesman Problem through Halves Tour Complement State Space Reduction for the Symmetric Traveling Salesman Problem through Halves Tour omplement Kamal R l-rawi ept of omputer Science, Faculty of Information Technology, Petra University, JORN E-mail:kamalr@uopedujo

More information

Coping with NP-Completeness

Coping with NP-Completeness Coping with NP-Completeness Siddhartha Sen Questions: sssix@cs.princeton.edu Some figures obtained from Introduction to Algorithms, nd ed., by CLRS Coping with intractability Many NPC problems are important

More information

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011 Precept 4: Traveling Salesman Problem, Hierarchical Clustering Qian Zhu 2/23/2011 Agenda Assignment: Traveling salesman problem Hierarchical clustering Example Comparisons with K-means TSP TSP: Given the

More information