Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger

Size: px
Start display at page:

Download "Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger"

Transcription

1 Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order Gerold Jäger joint work with Paul Molitor University Halle-Wittenberg, Germany August 22, 2008

2 Overview 1 Introduction Traveling Salesman Problem of Second Order Applications Related Problems Complexity Results 2 Heuristics for the Traveling Salesman Problem of Second Order Cheapest-Insert Algorithm Nearest-Neighbor Algorithm Two-Directional-Nearest-Neighbor Algorithm General-Assignment-Patching Algorithm k-opt Algorithm

3 Overview 3 Exact Algorithms for the Traveling Salesman Problem of Second Order Branch-and-Bound Algorithm Integer-Programming Algorithm 4 Experimental Comparison of Algorithms Experiments Experimental Comparison of Heuristics Experimental Comparison of Exact Algorithms

4 Introduction Traveling Salesman Problem of Second Order Traveling Salesman Problem of Second Order (2-TSP) Input: Output: Complete directed graph with n vertices v 1,..., v n. Three-dimensional cost matrix C = (c ijk ) R n,n,n with costs c ijk of a sequence of vertices (v i, v j, v k ). Complete tour T = (v i1,..., v in, v i1 ), Tour costs c(t ) = c in 1,i n,i 1 + c in,i 1,i 2 + n 2 l=1 c i l,i l+1,i l+2 are minimum.

5 Introduction Applications Bioinformatics: Models for transcription factor binding sites in gene regulation. Two models are the Permuted Markow (PM) Model and the Permuted Variable Length Markow (PVLM) Model. Solving order 1 of the PM/PVLM Model requires the solution of an ATSP instance. Solving order 2 of the PM/PVLM Model requires the solution of a 2-TSP instance.

6 Introduction Related Problems Asymmetric Traveling Salesman Problem (ATSP) Input: Output: Complete directed graph with n vertices v 1,..., v n. Cost matrix C = (c ij ) R n,n with costs c ij for an arc (v i, v j ). Complete tour T = (v i1,..., v in, v i1 ), Tour costs c(t ) = c in,i 1 + n 1 l=1 c i l,i l+1 are minimum.

7 Introduction Related Problems Assignment Problem (AP) Input: Output: Complete directed graph with n vertices v 1,..., v n. Cost matrix C = (c ij ) R n,n with costs c ij for an arc (v i, v j ). Set of cycles Z 1,..., Z k, where each vertex is visited exactly once. Sum of costs of all cycles c(t ) = c(z 1 ) + + c(z k ) is minimum, where cycle Z j = (v 1,..., v t ) has costs c(z j ) = c it,i 1 + t 1 l=1 c i l,i l+1.

8 Introduction Related Problems Assignment Problem of Second Order (2-AP) Input: Output: Complete directed graph with n vertices v 1,..., v n. Three-dimensional cost matrix C = (c ijk ) R n,n,n with costs c ijk of a sequence of vertices (v i, v j, v k ). Set of cycles Z 1,..., Z k, where each vertex is visited exactly once. Sum of costs of all cycles c(t ) = c(z 1 ) + + c(z k ) is minimum, where cycle Z j = (v 1,..., v t ) has costs c(z j ) = c it 1,i t,i 1 + c it,i 1,i 2 + t 2 l=1 c i l,i l+1,i l+2.

9 Introduction Complexity Results ATSP is NP-hard. [Karp, 1972] 2-TSP is NP-hard. Reduction from ATSP. AP is solvable in O(n 3 ). Hungarian Method [Kuhn, 1955] 2-AP is NP-hard. [Fischer, Lau, 2008]

10 Heuristics for the Traveling Salesman Problem of Second Order Eight heuristics are described in the paper. In the following five of them are presented.

11 Heuristics for the Traveling Salesman Problem of Second Order Cheapest-Insert Algorithm Generalization of an ATSP Algorithm of [Rosenkrantz, Stearns, Lewis, 1977]. Start with a good arc e = (v, w), and consider the subtour T := (v, w, v). Insert a good new vertex in T at a good place of the tour T. Repeat the last step, until T contains all vertices.

12 Heuristics for the Traveling Salesman Problem of Second Order Nearest-Neighbor Algorithm Generalization of an ATSP Algorithm of [Rosenkrantz, Stearns, Lewis, 1977]. Start with a good arc e = (v, w), and consider the path P = (v, w). Add a good new vertex to the tail of P, until P contains all vertices. Repeat the last step, until P contains all vertices. Close the path P, and receive a tour T.

13 Heuristics for the Traveling Salesman Problem of Second Order Two-Directional-Nearest-Neighbor Algorithm Generalization of the Nearest-Neighbor Algorithm. Vertices are added in both directions. At each step the direction is added in such a way that the difference between the second-best and the best vertex in each direction is larger, not from the best vertex over both directions.

14 Heuristics for the Traveling Salesman Problem of Second Order General-Assignment-Patching Algorithm Generalization of an ATSP Algorithm of [Karp, Steele, 1985]. Start with a good set of cycles Z 1,..., Z k, such that each vertex is visited exactly once. Which set is chosen? The set of cycles of a 2-AP solution is the set with the smallest costs. Problem: 2-AP is NP-hard. Idea: Compute a lower bound for the solution of the 2-AP instance by the solution of a corresponding AP instance. Solvable in O(n 3 ).

15 Heuristics for the Traveling Salesman Problem of Second Order General-Assignment-Patching Algorithm Choose two cycles Z 1 and Z 2 with the most vertices. Replace two arcs (v 1, w 1 ) Z 1 and (v 2, w 2 ) Z 2 by (v 1, w 2 ) and (v 2, w 1 ).

16 Heuristics for the Traveling Salesman Problem of Second Order General-Assignment-Patching Algorithm The arcs are chosen in such a way, that (v 1, w 1 ), (v 2, w 2 ) is as bad as possible and (v 1, w 2 ), (v 2, w 1 ) is as good as possible. Receive from Z 1 and Z 2 a new cycle Z 3. Repeat these steps, until you have only one cycle, which is a tour.

17 Heuristics for the Traveling Salesman Problem of Second Order k-opt Algorithm Generalization of an ATSP Algorithm of [Lin, Kernighan, 1973]. All previously presented algorithms are construction heuristics, i.e., they construct a tour. The k-opt Algorithm is an improvement heuristic, i.e., it starts with a tour (received by a construction heuristic) and improves it. A k-opt step changes a given tour T in such a way, that k tour arcs are replaced by k non-tour arcs and the set of arcs after the change is still a tour. The k-opt Algorithm applies tour improving k-opt steps with r k to a starting tour as long as such steps exist.

18 Exact Algorithms for the Traveling Salesman Problem of Second Order Branch-and-Bound Algorithm Compute with a heuristic a good upper bound for the instance. Go through all (n 1)! possible tours in lexicographical order. If an improvement occurs, the current optimum tour and the upper bound are updated. Go through all subpaths, first through subpaths with smaller number of vertices. Contract the subpath to a vertex. Compute the corresponding approximated 2-AP solution to the subpath. This solutions gives a local lower bound.

19 Exact Algorithms for the Traveling Salesman Problem of Second Order Branch-and-Bound Algorithm If the local lower bound of a subpath is not smaller than the current upper bound, all tours and subpaths, starting with this subpath, can be omitted from consideration.

20 Exact Algorithms for the Traveling Salesman Problem of Second Order Integer-Programming Algorithm 2-AP can be solved by the following IP model: n n n min c ijk x ijk (1) i=1,i j,k j=1,j k k=1 x ijk {0; 1} 1 i, j, k n, i j, i k, j k (2) n n x ijk = 1 1 k n (3) i=1,i j,k j=1,j k n n i=1,i j,k k=1,k j n n j=1,j i,k k=1,k j x ijk = 1 1 j n (4) x ijk = 1 1 i n (5)

21 Exact Algorithms for the Traveling Salesman Problem of Second Order Integer-Programming Algorithm n k=1,k i,k j x ijk = k=1,k i,k j x kij 1 i j n (6) For solving not only the 2-AP, but also the 2-TSP, all possible subtours have to be forbidden. For the subtour (v s1,..., v st, v s1 ) the following inequality has to be added: t 2 x st 1,s t,s 1 + x st,s 1,s 2 + x si,s i+1,s i+2 t 1 (7) i=1 Unfortunately an exponential number of such subtours exists.

22 Exact Algorithms for the Traveling Salesman Problem of Second Order Integer-Programming Algorithm Therefore at each step only the necessary subtour inequalities are added: 1 Define IP by the conditions (1), (2), (3), (4), (5), (6). 2 Solve IP. 3 Receive a solution with k cycles Z 1,..., Z k and cycle Z = (v s1,..., v st, v s1 ) with the minimum number of vertices t. 4 IF k = 1 5 THEN TERMINATE with solution Z. 6 ELSE Add condition (7) for cycle Z to IP. 7 GOTO 2. If an IP solver (as CPLEX) is started with a good upper bound (received by a heuristic), the solver can be accelerated.

23 Experimental Comparison of Algorithms Experiments We compare all basic heuristics and all basic heuristics followed by a 5-OPT step in quality (upper bound) and time. We compare the upper bound of all basic and OPT heuristics with the optima. We compare all exact algorithms in time. All experiments were done for two classes: real and random instances.

24 Experimental Comparison of Algorithms Experimental Comparison of Heuristics The times of the OPT versions are much larger than for the basic versions. The times of all basic versions are similar. The times of all OPT versions are similar. The quality of the OPT versions is much better than for the basic versions. The quality results for the random and real instances completely differ: For the real instances, the OPT Cheapest-Insert Algorithm and the OPT General Assignment Patching Algorithm are the best algorithms. For the random instances, the OPT Two-Directional- Nearest-Neighbor Algorithm is the best algorithm.

25 Experimental Comparison of Algorithms Experimental Comparison of Heuristics Real instances: for 44 of 45 instances at least one (of seven) OPT heuristics finds the optimum. Random instances: the upper bounds are more far away from the optimum.

26 Experimental Comparison of Algorithms Experimental Comparison of Exact Algorithms Random instances can be solved faster than real instances. Random instances and real instances of smaller dimensions: BnB Algorithm faster. Real instances of larger dimensions (21 and 26 ): Only IP-Algorithm successful.

27 Experimental Comparison of Algorithms Experimental Comparison of Exact Algorithms Thanks for your attention!

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg (Germany) joint work with Changxing Dong, Paul Molitor, Dirk Richter German Research Foundation Grant

More information

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg (Germany) joint work with Changxing Dong, Paul Molitor, Dirk Richter German Research Foundation Grant

More information

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg joint work with Changxing Dong, Paul Molitor, Dirk Richter November 14, 2008 Overview 1 Introduction

More information

Some Basics on Tolerances. Gerold Jäger

Some Basics on Tolerances. Gerold Jäger Some Basics on Tolerances Gerold Jäger University Halle, Germany joint work with Boris Goldengorin and Paul Molitor June 21, 2006 Acknowledgement This paper is dedicated to Jop Sibeyn, who is missed since

More information

Tolerance based Greedy Heuristics for the Asymmetric TSP. Gerold Jäger Martin Luther University Halle-Wittenberg

Tolerance based Greedy Heuristics for the Asymmetric TSP. Gerold Jäger Martin Luther University Halle-Wittenberg Tolerance based Greedy Heuristics for the Asymmetric TSP Gerold Jäger Martin Luther University Halle-Wittenberg Cooperation with Boris Goldengorin DFG Project: Paul Molitor December 21, 200 Overview 1

More information

ALGORITHM CHEAPEST INSERTION

ALGORITHM CHEAPEST INSERTION Version for STSP ALGORITHM CHEAPEST INSERTION. Choose the two furthest vertices i and k as initial subtour (c ik = max {c hj : (h, j) A}); set V := V \ {i} \ {k} (set of the unvisited vertices).. For each

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

Combinatorial Optimization - Lecture 14 - TSP EPFL

Combinatorial Optimization - Lecture 14 - TSP EPFL Combinatorial Optimization - Lecture 14 - TSP EPFL 2012 Plan Simple heuristics Alternative approaches Best heuristics: local search Lower bounds from LP Moats Simple Heuristics Nearest Neighbor (NN) Greedy

More information

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R

More information

Assignment 3b: The traveling salesman problem

Assignment 3b: The traveling salesman problem Chalmers University of Technology MVE165 University of Gothenburg MMG631 Mathematical Sciences Linear and integer optimization Optimization with applications Emil Gustavsson Assignment information Ann-Brith

More information

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij Travelling Salesman Problem Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.!

TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.! TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.! Local Search! TSP! 1 3 5 6 4 What should be the neighborhood?! 2-opt: Find two edges in the current

More information

(Refer Slide Time: 01:00)

(Refer Slide Time: 01:00) Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture minus 26 Heuristics for TSP In this lecture, we continue our discussion

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information

Practice Final Exam 1

Practice Final Exam 1 Algorithm esign Techniques Practice Final xam Instructions. The exam is hours long and contains 6 questions. Write your answers clearly. You may quote any result/theorem seen in the lectures or in the

More information

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem L. De Giovanni M. Di Summa The Traveling Salesman Problem (TSP) is an optimization problem on a directed

More information

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij Traveling Salesman Problem Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far:

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: I Strength of formulations; improving formulations by adding valid inequalities I Relaxations and dual problems; obtaining

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

Greedy algorithms Or Do the right thing

Greedy algorithms Or Do the right thing Greedy algorithms Or Do the right thing March 1, 2005 1 Greedy Algorithm Basic idea: When solving a problem do locally the right thing. Problem: Usually does not work. VertexCover (Optimization Version)

More information

More NP-complete Problems. CS255 Chris Pollett May 3, 2006.

More NP-complete Problems. CS255 Chris Pollett May 3, 2006. More NP-complete Problems CS255 Chris Pollett May 3, 2006. Outline More NP-Complete Problems Hamiltonian Cycle Recall a hamiltonian cycle is a permutation of the vertices v i_1,, v i_n of a graph G so

More information

Polynomial time approximation algorithms

Polynomial time approximation algorithms Polynomial time approximation algorithms Doctoral course Optimization on graphs - Lecture 5.2 Giovanni Righini January 18 th, 2013 Approximation algorithms There are several reasons for using approximation

More information

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed Dynamic programming Solves a complex problem by breaking it down into subproblems Each subproblem is broken down recursively until a trivial problem is reached Computation itself is not recursive: problems

More information

NP-Hard (A) (B) (C) (D) 3 n 2 n TSP-Min any Instance V, E Question: Hamiltonian Cycle TSP V, n 22 n E u, v V H

NP-Hard (A) (B) (C) (D) 3 n 2 n TSP-Min any Instance V, E Question: Hamiltonian Cycle TSP V, n 22 n E u, v V H Hard Problems What do you do when your problem is NP-Hard? Give up? (A) Solve a special case! (B) Find the hidden parameter! (Fixed parameter tractable problems) (C) Find an approximate solution. (D) Find

More information

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science Volume 118 No. 20 2018, 419-424 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan

More information

Introduction to Approximation Algorithms

Introduction to Approximation Algorithms Introduction to Approximation Algorithms Dr. Gautam K. Das Departmet of Mathematics Indian Institute of Technology Guwahati, India gkd@iitg.ernet.in February 19, 2016 Outline of the lecture Background

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu P, NP-Problems Class

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

Construction Heuristics and Local Search Methods for VRP/VRPTW

Construction Heuristics and Local Search Methods for VRP/VRPTW DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING Lecture 31 Construction Heuristics and Local Search Methods for VRP/VRPTW Marco Chiarandini Department of Mathematics & Computer Science University of Southern

More information

Outline. Construction Heuristics for CVRP. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING

Outline. Construction Heuristics for CVRP. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING Lecture 27 Vehicle Routing Heuristics Marco Chiarandini 1. for CVRP for VRPTW 2. 3. 4. Constraint Programming for VRP 2 Outline for CVRP TSP based heuristics

More information

Design and Analysis of Algorithms CS404/504. Razvan Bunescu School of EECS.

Design and Analysis of Algorithms CS404/504. Razvan Bunescu School of EECS. Welcome Design and Analysis of Algorithms Razvan Bunescu School of EECS bunescu@ohio.edu 1 Course Description Course Description: This course provides an introduction to the modern study of computer algorithms.

More information

Depth-First Branch-and-Bound versus Local Search: A Case Study

Depth-First Branch-and-Bound versus Local Search: A Case Study From: AAAI-00 Proceedings. Copyright 2000, AAAI (www.aaai.org). All rights reserved. Depth-First Branch-and-Bound versus Local Search: A Case Study Weixiong Zhang Information Sciences Institute and Computer

More information

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 2. Modeling AEA 2018/2019 Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 Content Introduction Modeling phases Modeling Frameworks Graph Based Models Mixed

More information

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21 . Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, 2011 1 / 21 THE TRAVELING SALESMAN PROBLEM Amanur Rahman Saiyed Indiana State University November 22, 2011

More information

Seismic Vessel Problem

Seismic Vessel Problem Seismic Vessel Problem Gregory Gutin, Helmut Jakubowicz, Shuki Ronen and Alexei Zverovitch November 14, 2003 Abstract We introduce and study a new combinatorial optimization problem, the Seismic Vessel

More information

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 Answer #1 and any five of the remaining six problems! possible score 1. Multiple Choice 25 2. Traveling Salesman Problem 15 3.

More information

A constant-factor approximation algorithm for the asymmetric travelling salesman problem

A constant-factor approximation algorithm for the asymmetric travelling salesman problem A constant-factor approximation algorithm for the asymmetric travelling salesman problem London School of Economics Joint work with Ola Svensson and Jakub Tarnawski cole Polytechnique F d rale de Lausanne

More information

Lower Bounds for Insertion Methods for TSP. Yossi Azar. Abstract. optimal tour. The lower bound holds even in the Euclidean Plane.

Lower Bounds for Insertion Methods for TSP. Yossi Azar. Abstract. optimal tour. The lower bound holds even in the Euclidean Plane. Lower Bounds for Insertion Methods for TSP Yossi Azar Abstract We show that the random insertion method for the traveling salesman problem (TSP) may produce a tour (log log n= log log log n) times longer

More information

Combinatorial Optimization Lab No. 10 Traveling Salesman Problem

Combinatorial Optimization Lab No. 10 Traveling Salesman Problem Combinatorial Optimization Lab No. 10 Traveling Salesman Problem Industrial Informatics Research Center http://industrialinformatics.cz/ May 29, 2018 Abstract In this lab we review various ways how to

More information

Modified Order Crossover (OX) Operator

Modified Order Crossover (OX) Operator Modified Order Crossover (OX) Operator Ms. Monica Sehrawat 1 N.C. College of Engineering, Israna Panipat, Haryana, INDIA. Mr. Sukhvir Singh 2 N.C. College of Engineering, Israna Panipat, Haryana, INDIA.

More information

Polynomial Time Approximation Schemes for the Euclidean Traveling Salesman Problem

Polynomial Time Approximation Schemes for the Euclidean Traveling Salesman Problem PROJECT FOR CS388G: ALGORITHMS: TECHNIQUES/THEORY (FALL 2015) Polynomial Time Approximation Schemes for the Euclidean Traveling Salesman Problem Shanshan Wu Vatsal Shah October 20, 2015 Abstract In this

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu

More information

A Note on the Separation of Subtour Elimination Constraints in Asymmetric Routing Problems

A Note on the Separation of Subtour Elimination Constraints in Asymmetric Routing Problems Gutenberg School of Management and Economics Discussion Paper Series A Note on the Separation of Subtour Elimination Constraints in Asymmetric Routing Problems Michael Drexl March 202 Discussion paper

More information

Efficient Algorithms for Graph Bisection of Sparse Planar Graphs. Gerold Jäger University of Halle Germany

Efficient Algorithms for Graph Bisection of Sparse Planar Graphs. Gerold Jäger University of Halle Germany Efficient Algorithms for Graph Bisection of Sparse Planar Graphs Gerold Jäger University of Halle Germany Overview 1 Definition of MINBISECTION 2 Approximation Results 3 Previous Algorithms Notations Simple-Greedy-Algorithm

More information

A Tabu Search Heuristic for the Generalized Traveling Salesman Problem

A Tabu Search Heuristic for the Generalized Traveling Salesman Problem A Tabu Search Heuristic for the Generalized Traveling Salesman Problem Jacques Renaud 1,2 Frédéric Semet 3,4 1. Université Laval 2. Centre de Recherche sur les Technologies de l Organisation Réseau 3.

More information

Exact Algorithms for NP-hard problems

Exact Algorithms for NP-hard problems 24 mai 2012 1 Why do we need exponential algorithms? 2 3 Why the P-border? 1 Practical reasons (Jack Edmonds, 1965) For practical purposes the difference between algebraic and exponential order is more

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff Institute of Operating Systems and Computer Networks Algorithms Group Network Algorithms Tutorial 4: Matching and other stuff Christian Rieck Matching 2 Matching A matching M in a graph is a set of pairwise

More information

to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics

to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics An Application of Lagrangian Relaxation to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics M lardalen University SE-721

More information

Multi-Objective Combinatorial Optimization: The Traveling Salesman Problem and Variants

Multi-Objective Combinatorial Optimization: The Traveling Salesman Problem and Variants Multi-Objective Combinatorial Optimization: The Traveling Salesman Problem and Variants C. Glaßer 1 C. Reitwießner 1 H. Schmitz 2 M. Witek 1 1 University of Würzburg, Germany 2 Trier University of Applied

More information

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP:

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP: 6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS Vehicle Routing Problem, VRP: Customers i=1,...,n with demands of a product must be served using a fleet of vehicles for the deliveries. The vehicles, with given

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Introduction and Motivation Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Organizational Stuff Lectures: Tuesday 11:00 12:30 in room SR015 Cover

More information

CSC 8301 Design and Analysis of Algorithms: Exhaustive Search

CSC 8301 Design and Analysis of Algorithms: Exhaustive Search CSC 8301 Design and Analysis of Algorithms: Exhaustive Search Professor Henry Carter Fall 2016 Recap Brute force is the use of iterative checking or solving a problem by its definition The straightforward

More information

Algorithms for Euclidean TSP

Algorithms for Euclidean TSP This week, paper [2] by Arora. See the slides for figures. See also http://www.cs.princeton.edu/~arora/pubs/arorageo.ps Algorithms for Introduction This lecture is about the polynomial time approximation

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

ON THE SOLUTION OF TRAVELING SALESMAN UNDER CONDITIONS OF SPARSENESS A THESIS. Presented. The Faculty of the Division of Graduate

ON THE SOLUTION OF TRAVELING SALESMAN UNDER CONDITIONS OF SPARSENESS A THESIS. Presented. The Faculty of the Division of Graduate ON THE SOLUTION OF TRAVELING SALESMAN UNDER CONDITIONS OF SPARSENESS PROBLEMS A THESIS Presented to The Faculty of the Division of Graduate Studies and Research by Norman Jon Bau In Partial Fulfillment

More information

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25 Curve and Surface Reconstruction Kurt Mehlhorn MPI für Informatik Curve and Surface Reconstruction p.1/25 Curve Reconstruction: An Example probably, you see more than a set of points Curve and Surface

More information

Improving the Efficiency of Helsgaun s Lin-Kernighan Heuristic for the Symmetric TSP

Improving the Efficiency of Helsgaun s Lin-Kernighan Heuristic for the Symmetric TSP Improving the Efficiency of Helsgaun s Lin-Kernighan Heuristic for the Symmetric TSP Dirk Richter 1, Boris Goldengorin 2,3,4, Gerold Jäger 5, and Paul Molitor 1 1 Computer Science Institute, University

More information

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS)

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS) COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section 35.1-35.2(CLRS) 1 Coping with NP-Completeness Brute-force search: This is usually only a viable option for small

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

Integer Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University

Integer Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University Integer Programming Xi Chen Department of Management Science and Engineering International Business School Beijing Foreign Studies University Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 1 / 42

More information

Approximation Algorithms

Approximation Algorithms 18.433 Combinatorial Optimization Approximation Algorithms November 20,25 Lecturer: Santosh Vempala 1 Approximation Algorithms Any known algorithm that finds the solution to an NP-hard optimization problem

More information

The Subtour LP for the Traveling Salesman Problem

The Subtour LP for the Traveling Salesman Problem The Subtour LP for the Traveling Salesman Problem David P. Williamson Cornell University November 22, 2011 Joint work with Jiawei Qian, Frans Schalekamp, and Anke van Zuylen The Traveling Salesman Problem

More information

Lagrangian Relaxation in CP

Lagrangian Relaxation in CP Lagrangian Relaxation in CP Willem-Jan van Hoeve CPAIOR 016 Master Class Overview 1. Motivation for using Lagrangian Relaxations in CP. Lagrangian-based domain filtering Example: Traveling Salesman Problem.

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

Ph. D. Thesis. Design, Evaluation and Analysis of Combinatorial Optimization Heuristic Algorithms

Ph. D. Thesis. Design, Evaluation and Analysis of Combinatorial Optimization Heuristic Algorithms arxiv:1207.1794v1 [cs.ds] 7 Jul 2012 Ph. D. Thesis Design, Evaluation and Analysis of Combinatorial Optimization Heuristic Algorithms Author Daniil Karapetyan Supervisor Prof. Gregory Gutin Department

More information

The Pickup and Delivery Traveling Salesman Problem with First-In-First-Out Loading

The Pickup and Delivery Traveling Salesman Problem with First-In-First-Out Loading The Pickup and Delivery Traveling Salesman Problem with First-In-First-Out Loading Güneş Erdoğan, Jean-François Cordeau Gilbert Laporte November 23, 2007 Abstract This paper addresses a variation of the

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1. Overview In this book, we present a generalized framework for formulating hard combinatorial optimization problems (COPs) as polynomial-sized linear programs. The perspective

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

Hybrid approach for solving TSP by using DPX Cross-over operator

Hybrid approach for solving TSP by using DPX Cross-over operator Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2011, 2 (1): 28-32 ISSN: 0976-8610 CODEN (USA): AASRFC Hybrid approach for solving TSP by using DPX Cross-over operator

More information

A Two-Dimensional Mapping for the Traveling Salesman Problem

A Two-Dimensional Mapping for the Traveling Salesman Problem Computers Math. Apphc. Vol. 26, No. 12, pp. 65-73, 1993 0898-1221/93 $6.00 + 0.00 Printed in Great Britain. All rights reserved Copyright 1993 Pergarnon Press Ltd A Two-Dimensional Mapping for the Traveling

More information

Overview. H. R. Alvarez A., Ph. D.

Overview. H. R. Alvarez A., Ph. D. Network Modeling Overview Networks arise in numerous settings: transportation, electrical, and communication networks, for example. Network representations also are widely used for problems in such diverse

More information

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502)

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502) Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik Combinatorial Optimization (MA 4502) Dr. Michael Ritter Problem Sheet 4 Homework Problems Problem

More information

Figurative Tours and Braids

Figurative Tours and Braids Figurative Tours and Braids Robert Bosch Dept. of Mathematics Oberlin College rbosch@oberlin.edu Tom Wexler Dept. of Computer Science Oberlin College wexler@cs.oberlin.edu Abstract We start with a rectangular

More information

P and NP CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang

P and NP CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang P and NP CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang Efficient Algorithms So far, we have developed algorithms for finding shortest paths in graphs, minimum spanning trees in

More information

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two.

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two. Approximation Algorithms and Hardness of Approximation February 19, 2013 Lecture 1 Lecturer: Ola Svensson Scribes: Alantha Newman 1 Class Information 4 credits Lecturers: Ola Svensson (ola.svensson@epfl.ch)

More information

NP-Complete Problems

NP-Complete Problems 1 / 34 NP-Complete Problems CS 584: Algorithm Design and Analysis Daniel Leblanc 1 1 Senior Adjunct Instructor Portland State University Maseeh College of Engineering and Computer Science Winter 2018 2

More information

CSCE 350: Chin-Tser Huang. University of South Carolina

CSCE 350: Chin-Tser Huang. University of South Carolina CSCE 350: Data Structures and Algorithms Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Announcement Homework 2 will be returned on Thursday; solution will be available on class website

More information

A Memetic Algorithm for the Generalized Traveling Salesman Problem

A Memetic Algorithm for the Generalized Traveling Salesman Problem A Memetic Algorithm for the Generalized Traveling Salesman Problem Gregory Gutin Daniel Karapetyan Abstract The generalized traveling salesman problem (GTSP) is an extension of the well-known traveling

More information

Examples of P vs NP: More Problems

Examples of P vs NP: More Problems Examples of P vs NP: More Problems COMP1600 / COMP6260 Dirk Pattinson Australian National University Semester 2, 2017 Catch Up / Drop in Lab When Fridays, 15.00-17.00 Where N335, CSIT Building (bldg 108)

More information

Algorithms for the Precedence Constrained Generalized Travelling Salesperson Problem

Algorithms for the Precedence Constrained Generalized Travelling Salesperson Problem MASTER S THESIS Algorithms for the Precedence Constrained Generalized Travelling Salesperson Problem RAAD SALMAN Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY

More information

Two models of the capacitated vehicle routing problem

Two models of the capacitated vehicle routing problem Croatian Operational Research Review 463 CRORR 8(2017), 463 469 Two models of the capacitated vehicle routing problem Zuzana Borčinová 1, 1 Faculty of Management Science and Informatics, University of

More information

1 The Traveling Salesman Problem

1 The Traveling Salesman Problem Comp 260: Advanced Algorithms Tufts University, Spring 2018 Prof. Lenore Cowen Scribe: Duc Nguyen Lecture 3a: The Traveling Salesman Problem 1 The Traveling Salesman Problem The Traveling Salesman Problem

More information

Improvement heuristics for the Sparse Travelling Salesman Problem

Improvement heuristics for the Sparse Travelling Salesman Problem Improvement heuristics for the Sparse Travelling Salesman Problem FREDRICK MTENZI Computer Science Department Dublin Institute of Technology School of Computing, DIT Kevin Street, Dublin 8 IRELAND http://www.comp.dit.ie/fmtenzi

More information

SLS Methods: An Overview

SLS Methods: An Overview HEURSTC OPTMZATON SLS Methods: An Overview adapted from slides for SLS:FA, Chapter 2 Outline 1. Constructive Heuristics (Revisited) 2. terative mprovement (Revisited) 3. Simple SLS Methods 4. Hybrid SLS

More information

Tutorial on Integer Programming for Visual Computing

Tutorial on Integer Programming for Visual Computing Tutorial on Integer Programming for Visual Computing Peter Wonka and Chi-han Peng November 2018 1 1 Notation The vector space is denoted as R,R n,r m n,v,w Matricies are denoted by upper case, italic,

More information

A COMPARATIVE STUDY OF BRUTE FORCE METHOD, NEAREST NEIGHBOUR AND GREEDY ALGORITHMS TO SOLVE THE TRAVELLING SALESMAN PROBLEM

A COMPARATIVE STUDY OF BRUTE FORCE METHOD, NEAREST NEIGHBOUR AND GREEDY ALGORITHMS TO SOLVE THE TRAVELLING SALESMAN PROBLEM IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 6, Jun 2014, 59-72 Impact Journals A COMPARATIVE STUDY OF BRUTE

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 397 E-mail: natarajan.meghanathan@jsums.edu Optimization vs. Decision

More information

Optimizing the Sailing Route for Fixed Groundfish Survey Stations

Optimizing the Sailing Route for Fixed Groundfish Survey Stations International Council for the Exploration of the Sea CM 1996/D:17 Optimizing the Sailing Route for Fixed Groundfish Survey Stations Magnus Thor Jonsson Thomas Philip Runarsson Björn Ævar Steinarsson Presented

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

P and NP CISC5835, Algorithms for Big Data CIS, Fordham Univ. Instructor: X. Zhang

P and NP CISC5835, Algorithms for Big Data CIS, Fordham Univ. Instructor: X. Zhang P and NP CISC5835, Algorithms for Big Data CIS, Fordham Univ. Instructor: X. Zhang Efficient Algorithms So far, we have developed algorithms for finding shortest paths in graphs, minimum spanning trees

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

Multiple Sequence Alignment Sum-of-Pairs and ClustalW. Ulf Leser

Multiple Sequence Alignment Sum-of-Pairs and ClustalW. Ulf Leser Multiple Sequence Alignment Sum-of-Pairs and ClustalW Ulf Leser This Lecture Multiple Sequence Alignment The problem Theoretical approach: Sum-of-Pairs scores Practical approach: ClustalW Ulf Leser: Bioinformatics,

More information

Assignment 5: Solutions

Assignment 5: Solutions Algorithm Design Techniques Assignment 5: Solutions () Port Authority. [This problem is more commonly called the Bin Packing Problem.] (a) Suppose K = 3 and (w, w, w 3, w 4 ) = (,,, ). The optimal solution

More information

An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem

An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem and more recent developments CATS @ UMD April 22, 2016 The Asymmetric Traveling Salesman Problem (ATSP) Problem

More information

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Dealing with NP-Complete Problems Dealing with NP-Completeness Suppose the problem you need to solve is NP-complete. What

More information