Tutorial 3. Correlated Random Hydraulic Conductivity Field

Size: px
Start display at page:

Download "Tutorial 3. Correlated Random Hydraulic Conductivity Field"

Transcription

1 Tutorial 3 Correlated Random Hydraulic Conductivity Field Table of Contents Objective. 1 Step-by-Step Procedure... 2 Section 1 Generation of Correlated Random Hydraulic Conductivity Field 2 Step 1: Open Adaptive Groundwater Input (.agw) File 2 Step 2: Change Porous Media Type to Correlated Random K Region. 3 Step 3: Open Random K Field Dialog.. 4 Step 4: Define Random K Field Parameter Values... 5 Step 5: Generate Random K Field and View Plan-View Contour Map 6 Step 6: Generate Cross-Section Flood Map of K Values.. 8 Step 7: 3D Volume Plot of Random K.. 9 Step 8: 3D Surface Plot. 11 Section 2 Simulation Results Visualization.. 12 Step 1: Generate Plan-View Map of Simulated Solute Concentrations 12 Step 2: Plot Groundwater Pathline. 16 Step 3: Cross-Section View of Plume 16 Step 4: 3D Volume Plot of Plume. 20 Step 5: 3D Fence Diagram of Plume. 23 Step 6: Define Fence Diagram Type and Slice Locations. 23 Step 7: Add Concentration Blanking to Fence Diagram 24 Objective Illustrate the generation of a three-dimensional, correlated random hydraulic conductivity field (K). The completed Adaptive Groundwater input files for this tutorial are included in the Tutorial_3 subdirectory of the tutorials directory under the Adaptive_Groundwater program folder: C:\Adaptive_Groundwater\Tutorials\Tutorial_3\Tutorial_3_Completed.agw Because Tutorial 3 builds upon the input data and boundary conditions for Tutorial 1, you can refer to this first tutorial for illustrations of basic input data preparation (e.g., grid design, basic 1

2 boundary condition specification, time step control, etc.). The completed Tutorial 3 project files are provided to you as a reference (you can check the completed input data if you have questions while working through the tutorial). Many output times are also provided so that you can view the variations of hydraulic heads and solute concentrations over a long time period. As discussed below, you will work with a separate set of project files. This tutorial is divided into two sections. The first part covers the random K field generation. The second section shows how to create two- and three-dimensional visualizations of the simulation results. Step-by-Step Procedure Section 1 Generation of Correlated Random Hydraulic Conductivity Field Step 1 - Open Adaptive Groundwater Input (.agw) File Go to File > Open in the main menu to open the file Tutorial_3_Start.agw that is stored in the following subdirectory: C:\Adaptive_Groundwater\Tutorials\Tutorial_3 The Base Grid is initially displayed on the screen (Figure 1). 2

3 Figure 1 Step 2 Change Porous Media Type to Correlated Random K Region On the main menu select Simulation > Simulation Control Parameters and in the Simulation Control Parameters dialog select the Media tab (Figure 2). Observe that the hydraulic conductivity type has been changed to Correlated Random K Region. The Porous Media Zones > Correlated Random K Field menu selection is inactive unless this media tab is changed to Correlated Random K Region. Note that you still must define material property zones for the solute transport solution, as illustrated in Tutorial 1. 3

4 Figure 2 Step 3 Open Random K Field Dialog On the main menu select Porous Media Zones > Correlated Random K Field (Figure 1). Because you have not yet generated a random permeability field, you will receive the message in Figure 3. Click OK in this dialog and the Assign Random Hydraulic Conductivity Field dialog pops up (Figure 4). Note that the initial parameter values in the various fields of this dialog will be different than those shown in Figure 4. Figure 3 4

5 Figure 4 Step 4 -Define Random K Field Parameter Values Enter the parameter values from Figure 4 in the various fields of your random K field dialog. The following is an overview of the four key parameters groups (color boxes) in the random K dialog (Figure 4). You can read a full discussion of the parameters and options in this dialog by clicking the Help button. In this example, the average K of the lognormal distribution (the geometric mean; red box) is equal to 8.64 m/day (0.01 cm/sec). A ln(k) variance of 1.0 (purple box), which is representative of coarse-grained sediments, is used (see Help discussion). Because random field generators approximate the target input parameters, the dialog shows the actual computed ln(k) variance. Therefore, if necessary, you can adjust your target value so that the computed variance satisfies your objectives. 5

6 For this hypothetical example (and to illustrate macrodispersivity) we have selected correlation lengths (green box) that create several thin (z-dir.) high- and low-k lenses that are elongated in the flow (x) direction. Note: To generate different random K field realizations (i.e., same statistical parameters but different values from cell to cell) you must vary the Random Seed integer number (light blue box). The Random K Region (blue box) is the portion of the model domain where the hydraulic conductivity is randomly distributed. This region is delineated by the Base Grid column, row, and layer ranges. Any cells that lie outside of this region are assigned the geometric mean K. In this example, the three columns at both ends of the grid are not included because the random field generator requires that the mesh spacing is uniform in each coordinate direction (but cell dimensions may vary with direction). (The random K distribution in this area is shown in Step 5). As explained in the Help discussion, the random K field is generated using the finest cell size (i.e., highest level Subgrid cell sizes) in the AMR mesh. Therefore, field generation can be computationally intensive when many levels of AMR refinement are used. One approach to lowering this computational overhead is to limit the random K region to the plume area. Step 5 Generate Random K Field and View Plan-View Contour Map To generate a random K field select the Compute K Field button (orange box in Figure 4) to start the computation of the random hydraulic conductivity distribution for all levels of the AMR mesh. This computation may take a few minutes for larger grids. The progress dialog in Figure 5 provides updates on the computational effort. You can use the Figure 4 parameter values or perform your own sensitivity analyses [e.g., vary the ln(k) variance and/or the correlation length scales]. To reduce the computational time for sensitivity analyses you can limit the size of the Random K Region (e.g., only use one Base Grid layer). Figure 5 6

7 When the computation is complete a horizontal slice through the random permeability field is shown (Figure 6). You can change the slice location by varying the layer number (corresponds to the Base Grid layers) or entering a coordinate ( View Plane Coord. ); refer to Figure 4. Figure 6 Figure 7 is a plan view of the grid near the left-hand boundary showing the assigned geometric mean K to the first three columns. 7

8 Figure 7 Step 6 Generate Cross-Section Flood Map of K Values Figure 8 is an x-z cross-section through the aquifer. To create this view, click on the Switch to XZ view button (circled in Figure 6) and then use your mouse to select a model slice (any row). You can also change the view by selecting View > Change View Plane on the main menu. When you first switch to the cross-section view, you will want to add vertical exaggeration (e.g., VE = 10-20) by going to View > Vertical Exaggeration in the main menu. 8

9 Figure 8 Step 7 3D Volume Plot of Random K To create a three-dimensional Volume Plot of the computed random K field simply (i) click the Contour Options button (Figure 4) and (ii) in the Contour Parameters dialog select the 3D Volume radio button next to Contour Type (Figure 9). As a result, the volume plot in Figure 10 is generated. 9

10 Figure 9 10

11 Figure 10 Step 8 3D Surface Plot To create a three-dimensional Surface Plot of the computed random K field select the 3D Surface radio button (Figure 9) next to Contour Type, and Figure 11 is automatically generated for an x-y slice through the mid-depth of the aquifer. Vary the slice plane coordinate by using either the +/- layer selection buttons or directly entering a coordinate (see bottom Random K Field dialog; Figure 4). 11

12 Figure 11 Section 2 Simulation Results Visualization In this section we show how to create various two- and three-dimensional plots of the simulation results for Tutorial 3. You can use either the supplied Tutorial_3_Completed project files or your working copy of the Adaptive Groundwater files for this tutorial: Tutorial_3_Start.agw. It does not matter if you have made new runs with shorter simulation times than those shown here; select whatever output time that you want. Step 1 Generate Plan-View Map of Simulated Solute Concentrations In the main menu select Output > Solute Concentration and the View Simulation Results dialog appears (Figure 12). Click the Go To button at the top of the dialog to pop up a child dialog with available output times; click on any output time you want and select OK in the Go to 12

13 Output Time dialog. You may also use the + / - buttons to toggle through the output times. Under Plot and Contour Types you see that 2D (i.e., two-dimensional) plots are the default. Figure 12 A plan-view flood map through the middle of the aquifer is automatically generated (Figure 13). The AMR mesh is also shown as an overlay. The mesh overlay can be turned off by unchecking the Mesh box in the Contour Options dialog (under the Overlays tab; Figure 14). Figure 15 is the same x-y slice through the plume without the grid overlay. 13

14 Figure 13 Figure 14 14

15 Figure 15 You can change the slice coordinate by selecting the Go To button or the Layer no. +/- buttons (Figure 12). Further, you can view an animation of the different plan-view slices by changing the Animation Type to Layer (K-plane) and clicking the Start Animation button. Note: the layer number refers to the Adaptive Mesh Refinement (AMR) mesh associated with the multi-level AMR grid created during the simulation. In highly-refined mesh areas the vertical discretization is equal to the grid spacing in the highest-level subgrid (e.g, Level 5 in this example which utilizes five AMR levels). In less-refined areas the grid layer thickness for the output is equal to the grid spacing in the most-refined subgrid (e.g., Level 1, 2, 3, or 4). For any of these illustrations, you can save the plot format (and import it later) by clicking on the Save Plot Format button at the bottom of the View Simulation Results dialog. You can also print or export drawings in various graphics formats using the File > Print/Export option in the main menu. 15

16 Step 2 Plot Groundwater Pathline If groundwater pathline starting locations are defined in the input data (Pathlines > Assign in the main menu) their computed trajectories can be shown in the output by checking the Show Pathlines box in the Contour Options dialog (under the Pathlines tab; Figure 16). Check the with Time Markers box to add specified travel-time symbols. If the Include Retardation box is checked the pathline length and travel-time markers are based on the pore velocity divided by the retardation factor. Figure 16 Step 3 Cross-Section View of Plume To display the cross-sectional view of the plume in Figure 17, click on the X-Z Slice (Row) button in the lower left hand corner (red circle), and then select a row of cells going through the center of the plume (or select View > Change View Plane in the main menu). When you first switch to the cross-section view, you will want to add vertical exaggeration (e.g., VE = 10-20) by going to View > Vertical Exaggeration in the main menu. 16

17 Figure 17 Figures 18 (no grid overlay; see travel-time marker specification in red box) and 19 (with AMR mesh overlay) are vertical (x-z) cross-section views of the plume, including a groundwater pathline with 5-year travel time markers. 17

18 Figure 18 18

19 Figure 19 Figure 20 is a close-up view of the plume and the pore velocity vectors (activate under the Vectors tab in the Contour Options dialog). You can change the vector length [ V Length(%) ] and spacing ( Vector Indices Skip ) under the Vectors tab. 19

20 Figure 20 As usual, you can Zoom In, Zoom Last, or Translate the view by clicking one of the icons in the upper-left corner of the display (Figure 17) or by making the appropriate selection under View in the main menu. Step 4 3D Volume Plot of Plume Create a three-dimensional volume plot of the plume by selecting the 3D Volume radio button in the View Simulation Results dialog. Click on the Contour Options button to load the Contour Parameters and Overlays dialog (Figure 21). Click on the Contour Options tab and change the concentration contour range to mg/l. 20

21 Figure 21 Select the 3D Option tab in the Contour Parameters and Overlays dialog (Figure 21). Activate the first blanking parameter (click checkbox) and select C (mg/l) as the blanking parameter. Select the.le. operator and enter a value of mg/l to blank all cells with C.LE mg/l. Click the Redraw Contours button to view an isosurface of the central core of the plume. Now add a second blanking parameter to also view a slice through the plume. Click the + button and activate Y (m) (y-coordinate) as a blanking variable and enter y.le. 880 m. Click the - button to return to the first blanking variable (C) and select.or. as the logical operator. Click the Redraw Contours button to view a drawing similar to Figure

22 Figure 22 Note: the two blanking variables and logical operator are now: C.LE mg/l.or. y.le. 880 m Zoom in by increasing the Magnification to 1.5 and reduce the vertical exaggeration by increasing the Aspect Ratio to 2.0. Translate the drawing to the left by changing the x Translation to -10. Click Redraw Contours. Finally, show the computed groundwater pathline (activate under the Pathlines tab). You may also generate a higher resolution plot by changing to the High Graphics Resolution under the Contour Options tab (click Redraw Contours to generate). 22

23 Step 5 3D Fence Diagram of Plume Under Plot and Contour Types, choose the 3D Fence Diagram radio button (Figure 23). Click the Set Fence Type button, and in the Fence Diagram Type child dialog change (scroll) the fence diagram type to I- & K-planes. Click OK in the Fence Diagram Type child dialog. NOTE: you can increase the plot resolution to high resolution for final hardcopy output by selecting the Contour Options button, but the screen redraw times are longer. Figure 23 Step 6 Define Fence Diagram Type and Slice Locations Click on the Set Fence Location button, and choose the following locations (Figure 24; you can also vary the values as you wish): y-z planes: x =1617 m, x = 2001 m, x = 2348 m, x = 2610 m, and x = 2995 m (hold down the ctrl key to select multiple planes); x-y plane: z = 26.4 m. When you are finished, click the OK button and the plot is automatically regenerated (C blanking is added in the next step). 23

24 Figure 24 Step 7 Add Concentration Blanking to Fence Diagram Concentration blanking is also used to generate the fence diagram. Click on the Contour Options button and make the following changes in the 3D Options tab (Figure 25). The C blanking option renders any model areas with concentrations less than mg/l transparent. Click the Redraw Contours button to refresh the screen. Figure 26 is the final plot. Figure 25 24

25 In Figure 26 you could also blank parts of the plot based different combinations of x-, y-, and z- coordinates. For example, you could activate x.ge. 1,000 m as the second blanking variable and use.or. as the logical operator. In this case, any portion of the 3D model domain in which either C.LE mg/l or x.ge. 1,000 m would be blanked. Conversely, selecting.and. as the logical operator would only blank regions where both C.LE mg/l and x.ge. 1,000 m. Similarly, you could blank portions of the model domain in the y- and/or z-directions by adding third or fourth blanking variables. Figure 26 The 3D Graphics Viewing options include: view angle [ Rotation (around z-axis) and Elevation (tilt about horizontal axes)]; translations of the plot in any of the three coordinate directions; changes in the overall plot size ( Magnification ; increasing the magnification is similar to zooming in); and the plot aspect ratio (increasing the Aspect Ratio reduces the 25

26 vertical size of the plot; decreasing the Aspect Ratio is analogous to vertical exaggeration in cross-section diagrams). Selecting the Fit to Full Size button restores the default view parameter values and fits the simulation domain to the axes. 26

Tutorial 6. Pumping Well and River

Tutorial 6. Pumping Well and River Tutorial 6 Pumping Well and River Table of Contents Objective. 1 Step-by-Step Procedure... 2 Section 1 Data Input. 2 Step 1: Open Adaptive Groundwater Input (.agw) File. 2 Step 2: Pumping Well Design Database

More information

Tutorial 7. Water Table and Bedrock Surface

Tutorial 7. Water Table and Bedrock Surface Tutorial 7 Water Table and Bedrock Surface Table of Contents Objective. 1 Step-by-Step Procedure... 2 Section 1 Data Input. 2 Step 1: Open Adaptive Groundwater Input (.agw) File. 2 Step 2: Assign Material

More information

Tutorial 1. Getting Started

Tutorial 1. Getting Started Tutorial 1 Getting Started Table of Contents Objective 2 Step-by-Step Procedure... 2 Section 1 Input Data Preparation and Main Menu Options. 2 Step 1: Create New Project... 2 Step 2: Define Base Grid Size

More information

Tutorial 9. Changing the Global Grid Resolution

Tutorial 9. Changing the Global Grid Resolution Tutorial 9 Changing the Global Grid Resolution Table of Contents Objective and Overview 1 Step-by-Step Procedure... 2 Section 1 Changing the Global Grid Resolution.. 2 Step 1: Open Adaptive Groundwater

More information

Tutorial: MODFLOW-USG Tutorial

Tutorial: MODFLOW-USG Tutorial Tutorial: Visual MODFLOW Flex 5.0 Integrated Conceptual & Numerical Groundwater Modeling Software 1 1 Visual MODFLOW Flex 5.0 The following example is a walk through of creating a MODFLOW-USG groundwater

More information

v SRH-2D Post-Processing SMS 12.3 Tutorial Prerequisites Requirements Time Objectives

v SRH-2D Post-Processing SMS 12.3 Tutorial Prerequisites Requirements Time Objectives v. 12.3 SMS 12.3 Tutorial SRH-2D Post-Processing Objectives This tutorial illustrates some techniques for manipulating the solution generated by the Sedimentation and River Hydraulics Two-Dimensional (SRH-2D)

More information

Learn the various 3D interpolation methods available in GMS

Learn the various 3D interpolation methods available in GMS v. 10.4 GMS 10.4 Tutorial Learn the various 3D interpolation methods available in GMS Objectives Explore the various 3D interpolation algorithms available in GMS, including IDW and kriging. Visualize the

More information

Creating and Displaying Multi-Layered Cross Sections in Surfer 11

Creating and Displaying Multi-Layered Cross Sections in Surfer 11 Creating and Displaying Multi-Layered Cross Sections in Surfer 11 The ability to create a profile in Surfer has always been a powerful tool that many users take advantage of. The ability to combine profiles

More information

Tutorial 7 Finite Element Groundwater Seepage. Steady state seepage analysis Groundwater analysis mode Slope stability analysis

Tutorial 7 Finite Element Groundwater Seepage. Steady state seepage analysis Groundwater analysis mode Slope stability analysis Tutorial 7 Finite Element Groundwater Seepage Steady state seepage analysis Groundwater analysis mode Slope stability analysis Introduction Within the Slide program, Slide has the capability to carry out

More information

v Overview SMS Tutorials Prerequisites Requirements Time Objectives

v Overview SMS Tutorials Prerequisites Requirements Time Objectives v. 12.2 SMS 12.2 Tutorial Overview Objectives This tutorial describes the major components of the SMS interface and gives a brief introduction to the different SMS modules. Ideally, this tutorial should

More information

RT3D Instantaneous Aerobic Degradation

RT3D Instantaneous Aerobic Degradation GMS TUTORIALS RT3D Instantaneous Aerobic Degradation This tutorial illustrates the steps involved in performing a reactive transport simulation using the RT3D model. Several types of contaminant reactions

More information

Geostatistics 3D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents

Geostatistics 3D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents GMS 7.0 TUTORIALS Geostatistics 3D 1 Introduction Three-dimensional geostatistics (interpolation) can be performed in GMS using the 3D Scatter Point module. The module is used to interpolate from sets

More information

v Prerequisite Tutorials Required Components Time

v Prerequisite Tutorials Required Components Time v. 10.0 GMS 10.0 Tutorial MODFLOW Stochastic Modeling, Parameter Randomization Run MODFLOW in Stochastic (Monte Carlo) Mode by Randomly Varying Parameters Objectives Learn how to develop a stochastic (Monte

More information

GMS 10.0 Tutorial SEAWAT Conceptual Model Approach Create a SEAWAT model in GMS using the conceptual model approach

GMS 10.0 Tutorial SEAWAT Conceptual Model Approach Create a SEAWAT model in GMS using the conceptual model approach v. 10.0 GMS 10.0 Tutorial Create a SEAWAT model in GMS using the conceptual model approach Objectives Create a SEAWAT model in GMS using the conceptual model approach, which involves using the GIS tools

More information

v MODFLOW Stochastic Modeling, Parameter Randomization GMS 10.3 Tutorial

v MODFLOW Stochastic Modeling, Parameter Randomization GMS 10.3 Tutorial v. 10.3 GMS 10.3 Tutorial MODFLOW Stochastic Modeling, Parameter Randomization Run MODFLOW in Stochastic (Monte Carlo) Mode by Randomly Varying Parameters Objectives Learn how to develop a stochastic (Monte

More information

1. Open a MODFLOW simulation and run MODFLOW. 2. Initialize MT3D and enter the data for several MT3D packages. 3. Run MT3D and read the solution.

1. Open a MODFLOW simulation and run MODFLOW. 2. Initialize MT3D and enter the data for several MT3D packages. 3. Run MT3D and read the solution. GMS TUTORIALS This tutorial describes how to perform an MT3DMS simulation within GMS. An MT3DMS model can be constructed in GMS using one of two approaches: the conceptual model approach or the grid approach.

More information

GMS 9.2 Tutorial SEAWAT Conceptual Model Approach Create a SEAWAT model in GMS using the conceptual model approach

GMS 9.2 Tutorial SEAWAT Conceptual Model Approach Create a SEAWAT model in GMS using the conceptual model approach v. 9.2 GMS 9.2 Tutorial Create a SEAWAT model in GMS using the conceptual model approach Objectives Create a SEAWAT model in GMS using the conceptual model approach which involves using the GIS tools in

More information

Importing VMOD Classic Projects. Visual MODFLOW Flex. Integrated Conceptual & Numerical Groundwater Modeling

Importing VMOD Classic Projects. Visual MODFLOW Flex. Integrated Conceptual & Numerical Groundwater Modeling Importing VMOD Classic Projects Visual MODFLOW Flex Integrated Conceptual & Numerical Groundwater Modeling Importing Visual MODFLOW Classic Models Tutorial The following example is a quick walk through

More information

v TUFLOW-2D Hydrodynamics SMS Tutorials Time minutes Prerequisites Overview Tutorial

v TUFLOW-2D Hydrodynamics SMS Tutorials Time minutes Prerequisites Overview Tutorial v. 12.2 SMS 12.2 Tutorial TUFLOW-2D Hydrodynamics Objectives This tutorial describes the generation of a TUFLOW project using the SMS interface. This project utilizes only the two dimensional flow calculation

More information

v mod-path3du Transient Particle tracking with a transient MODFLOW-USG model GMS Tutorials Time minutes Prerequisite Tutorials mod-path3du

v mod-path3du Transient Particle tracking with a transient MODFLOW-USG model GMS Tutorials Time minutes Prerequisite Tutorials mod-path3du v. 10.3 GMS 10.3 Tutorial Particle tracking with a transient MODFLOW-USG model Objectives Learn more about GMS's mod-path3du interface and how transient simulations are done. Prerequisite Tutorials mod-path3du

More information

v Introduction to WMS WMS 11.0 Tutorial Become familiar with the WMS interface Prerequisite Tutorials None Required Components Data Map

v Introduction to WMS WMS 11.0 Tutorial Become familiar with the WMS interface Prerequisite Tutorials None Required Components Data Map s v. 11.0 WMS 11.0 Tutorial Become familiar with the WMS interface Objectives Import files into WMS and change modules and display options to become familiar with the WMS interface. Prerequisite Tutorials

More information

Objectives Build a 3D mesh and a FEMWATER flow model using the conceptual model approach. Run the model and examine the results.

Objectives Build a 3D mesh and a FEMWATER flow model using the conceptual model approach. Run the model and examine the results. v. 10.0 GMS 10.0 Tutorial Build a FEMWATER model to simulate flow Objectives Build a 3D mesh and a FEMWATER flow model using the conceptual model approach. Run the model and examine the results. Prerequisite

More information

MT3DMS Grid Approach GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents

MT3DMS Grid Approach GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents GMS 7.0 TUTORIALS 1 Introduction This tutorial describes how to perform an MT3DMS simulation within GMS. An MT3DMS model can be constructed in GMS using one of two approaches: the conceptual model approach

More information

v MODFLOW Grid Approach Build a MODFLOW model on a 3D grid GMS Tutorials Time minutes Prerequisite Tutorials None

v MODFLOW Grid Approach Build a MODFLOW model on a 3D grid GMS Tutorials Time minutes Prerequisite Tutorials None v. 10.2 GMS 10.2 Tutorial Build a MODFLOW model on a 3D grid Objectives The grid approach to MODFLOW pre-processing is described in this tutorial. In most cases, the conceptual model approach is more powerful

More information

Chapter 2 Surfer Tutorial

Chapter 2 Surfer Tutorial Chapter 2 Surfer Tutorial Overview This tutorial introduces you to some of Surfer s features and shows you the steps to take to produce maps. In addition, the tutorial will help previous Surfer users learn

More information

v Importing Rasters SMS 11.2 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial

v Importing Rasters SMS 11.2 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial v. 11.2 SMS 11.2 Tutorial Objectives This tutorial teaches how to import a Raster, view elevations at individual points, change display options for multiple views of the data, show the 2D profile plots,

More information

Simulation of Flow Development in a Pipe

Simulation of Flow Development in a Pipe Tutorial 4. Simulation of Flow Development in a Pipe Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D turbulent fluid flow in a pipe. The pipe networks are common

More information

SEAWAT Conceptual Model Approach Create a SEAWAT model in GMS using the conceptual model approach

SEAWAT Conceptual Model Approach Create a SEAWAT model in GMS using the conceptual model approach v. 10.1 GMS 10.1 Tutorial Create a SEAWAT model in GMS using the conceptual model approach Objectives Learn to create a SEAWAT model in GMS using the conceptual model approach. Use the GIS tools in the

More information

µ = Pa s m 3 The Reynolds number based on hydraulic diameter, D h = 2W h/(w + h) = 3.2 mm for the main inlet duct is = 359

µ = Pa s m 3 The Reynolds number based on hydraulic diameter, D h = 2W h/(w + h) = 3.2 mm for the main inlet duct is = 359 Laminar Mixer Tutorial for STAR-CCM+ ME 448/548 March 30, 2014 Gerald Recktenwald gerry@pdx.edu 1 Overview Imagine that you are part of a team developing a medical diagnostic device. The device has a millimeter

More information

WMS 10.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results

WMS 10.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results v. 10.1 WMS 10.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results Objectives This tutorial demonstrates different ways

More information

WMS 9.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results

WMS 9.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results v. 9.1 WMS 9.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results Objectives This tutorial demonstrates different ways of

More information

Tutorial: Importing VMOD/MODFLOW Models

Tutorial: Importing VMOD/MODFLOW Models Tutorial: Visual MODFLOW Flex 5.0 Integrated Conceptual & Numerical Groundwater Modeling Software 1 1 Visual MODFLOW Flex 5.0 The following example is a quick walk-through of the basics of importing an

More information

Tutorial: Conceptual Modeling Tutorial. Integrated Conceptual & Numerical Groundwater Modeling Software by Waterloo Hydrogeologic

Tutorial: Conceptual Modeling Tutorial. Integrated Conceptual & Numerical Groundwater Modeling Software by Waterloo Hydrogeologic Tutorial: Visual MODFLOW Flex 5.1 Integrated Conceptual & Numerical Groundwater Modeling Software 1 1 Visual MODFLOW Flex 5.1 The following example is a quick walk-through of the basics of building a conceptual

More information

Tutorial - Importing VMOD Classic Projects. Visual MODFLOW Flex. Integrated Conceptual & Numerical Groundwater Modeling

Tutorial - Importing VMOD Classic Projects. Visual MODFLOW Flex. Integrated Conceptual & Numerical Groundwater Modeling Tutorial - Importing VMOD Classic Projects Visual MODFLOW Flex Integrated Conceptual & Numerical Groundwater Modeling Importing Visual MODFLOW Classic Models Tutorial The following example is a quick walk

More information

v. 9.0 GMS 9.0 Tutorial UTEXAS Dam with Seepage Use SEEP2D and UTEXAS to model seepage and slope stability of a earth dam Prerequisite Tutorials None

v. 9.0 GMS 9.0 Tutorial UTEXAS Dam with Seepage Use SEEP2D and UTEXAS to model seepage and slope stability of a earth dam Prerequisite Tutorials None v. 9.0 GMS 9.0 Tutorial Use SEEP2D and UTEXAS to model seepage and slope stability of a earth dam Objectives Learn how to build an integrated SEEP2D/UTEXAS model in GMS. Prerequisite Tutorials None Required

More information

v. 9.0 GMS 9.0 Tutorial MODPATH The MODPATH Interface in GMS Prerequisite Tutorials None Time minutes

v. 9.0 GMS 9.0 Tutorial MODPATH The MODPATH Interface in GMS Prerequisite Tutorials None Time minutes v. 9.0 GMS 9.0 Tutorial The Interface in GMS Objectives Setup a simulation in GMS and view the results. Learn about assigning porosity, creating starting locations, different ways to display pathlines,

More information

Create a SEAWAT model in GMS using the conceptual model approach

Create a SEAWAT model in GMS using the conceptual model approach v. 10.4 GMS 10.4 Tutorial Create a SEAWAT model in GMS using the conceptual model approach Objectives Learn to create a SEAWAT model in GMS using the conceptual model approach. Use the GIS tools in the

More information

v GMS 10.0 Tutorial UTEXAS Dam with Seepage Use SEEP2D and UTEXAS to model seepage and slope stability of an earth dam

v GMS 10.0 Tutorial UTEXAS Dam with Seepage Use SEEP2D and UTEXAS to model seepage and slope stability of an earth dam v. 10.0 GMS 10.0 Tutorial Use SEEP2D and UTEXAS to model seepage and slope stability of an earth dam Objectives Learn how to build an integrated SEEP2D/UTEXAS model in GMS. Prerequisite Tutorials SEEP2D

More information

Prerequisites: This tutorial assumes that you are familiar with the menu structure in FLUENT, and that you have solved Tutorial 1.

Prerequisites: This tutorial assumes that you are familiar with the menu structure in FLUENT, and that you have solved Tutorial 1. Tutorial 22. Postprocessing Introduction: In this tutorial, the postprocessing capabilities of FLUENT are demonstrated for a 3D laminar flow involving conjugate heat transfer. The flow is over a rectangular

More information

v GMS 10.4 Tutorial FEMWATER Transport Model Build a FEMWATER model to simulate salinity intrusion

v GMS 10.4 Tutorial FEMWATER Transport Model Build a FEMWATER model to simulate salinity intrusion v. 10.4 GMS 10.4 Tutorial FEMWATER Transport Model Build a FEMWATER model to simulate salinity intrusion Objectives This tutorial demonstrates building a FEMWATER transport model using the conceptual model

More information

v SMS Tutorials SRH-2D Prerequisites Requirements SRH-2D Model Map Module Mesh Module Data files Time

v SMS Tutorials SRH-2D Prerequisites Requirements SRH-2D Model Map Module Mesh Module Data files Time v. 11.2 SMS 11.2 Tutorial Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional () simulation using SMS version 11.2 or later. Prerequisites SMS Overview tutorial

More information

Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional (SRH-2D) simulation.

Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional (SRH-2D) simulation. v. 12.1 SMS 12.1 Tutorial Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional () simulation. Prerequisites SMS Overview tutorial Requirements Model Map Module

More information

3.1 Conceptual Modeling

3.1 Conceptual Modeling Quick Start Tutorials 35 3.1 Conceptual Modeling Conceptual Modeling Tutorial The following example is a quick walk through of the basics of building a conceptual model and converting this to a numerical

More information

v MODPATH GMS 10.3 Tutorial The MODPATH Interface in GMS Prerequisite Tutorials MODFLOW Conceptual Model Approach I

v MODPATH GMS 10.3 Tutorial The MODPATH Interface in GMS Prerequisite Tutorials MODFLOW Conceptual Model Approach I v. 10.3 GMS 10.3 Tutorial The Interface in GMS Objectives Setup a simulation in GMS and view the results. Learn about assigning porosity, creating starting locations, displaying pathlines in different

More information

Geostatistics 2D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents

Geostatistics 2D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents GMS 7.0 TUTORIALS 1 Introduction Two-dimensional geostatistics (interpolation) can be performed in GMS using the 2D Scatter Point module. The module is used to interpolate from sets of 2D scatter points

More information

Modeling Evaporating Liquid Spray

Modeling Evaporating Liquid Spray Tutorial 17. Modeling Evaporating Liquid Spray Introduction In this tutorial, the air-blast atomizer model in ANSYS FLUENT is used to predict the behavior of an evaporating methanol spray. Initially, the

More information

v GMS 10.0 Tutorial MODFLOW Grid Approach Build a MODFLOW model on a 3D grid Prerequisite Tutorials None Time minutes

v GMS 10.0 Tutorial MODFLOW Grid Approach Build a MODFLOW model on a 3D grid Prerequisite Tutorials None Time minutes v. 10.0 GMS 10.0 Tutorial Build a MODFLOW model on a 3D grid Objectives The grid approach to MODFLOW pre-processing is described in this tutorial. In most cases, the conceptual model approach is more powerful

More information

Transient Groundwater Analysis

Transient Groundwater Analysis Transient Groundwater Analysis 18-1 Transient Groundwater Analysis A transient groundwater analysis may be important when there is a time-dependent change in pore pressure. This will occur when groundwater

More information

MODFLOW-USG Complex Stratigraphy Create a MODFLOW-USG model of a site with complex 3D stratigraphy using GMS

MODFLOW-USG Complex Stratigraphy Create a MODFLOW-USG model of a site with complex 3D stratigraphy using GMS v. 10.1 GMS 10.1 Tutorial MODFLOW-USG Complex Stratigraphy Create a MODFLOW-USG model of a site with complex 3D stratigraphy using GMS Objectives GMS supports building MODFLOW-USG models with multiple

More information

Guide to Using GW3D. Version 1. by Environmental Simulations, Inc.

Guide to Using GW3D. Version 1. by Environmental Simulations, Inc. Guide to Using GW3D Version 1 by Environmental Simulations, Inc. Copyright 2005 Environmental Simulations, Inc. All Rights Reserved. Microsoft is a registered trademark and Windows is a trademark of Microsoft.

More information

Objectives Import DEMs from an online database. Set the display options of an imported DEM and view and edit the DEM attributes.

Objectives Import DEMs from an online database. Set the display options of an imported DEM and view and edit the DEM attributes. v. 10.0 WMS 10.0 Tutorial Import, view, and edit digital elevation models Objectives Import DEMs from an online database. Set the display options of an imported DEM and view and edit the DEM attributes.

More information

SETTLEMENT OF A CIRCULAR FOOTING ON SAND

SETTLEMENT OF A CIRCULAR FOOTING ON SAND 1 SETTLEMENT OF A CIRCULAR FOOTING ON SAND In this chapter a first application is considered, namely the settlement of a circular foundation footing on sand. This is the first step in becoming familiar

More information

FOUNDATION IN OVERCONSOLIDATED CLAY

FOUNDATION IN OVERCONSOLIDATED CLAY 1 FOUNDATION IN OVERCONSOLIDATED CLAY In this chapter a first application of PLAXIS 3D is considered, namely the settlement of a foundation in clay. This is the first step in becoming familiar with the

More information

MODFLOW - Conceptual Model Approach

MODFLOW - Conceptual Model Approach GMS 7.0 TUTORIALS MODFLOW - Conceptual Model Approach 1 Introduction Two approaches can be used to construct a MODFLOW simulation in GMS: the grid approach or the conceptual model approach. The grid approach

More information

v SMS Tutorials Working with Rasters Prerequisites Requirements Time Objectives

v SMS Tutorials Working with Rasters Prerequisites Requirements Time Objectives v. 12.2 SMS 12.2 Tutorial Objectives Learn how to import a Raster, view elevations at individual points, change display options for multiple views of the data, show the 2D profile plots, and interpolate

More information

Data Visualization SURFACE WATER MODELING SYSTEM. 1 Introduction. 2 Data sets. 3 Open the Geometry and Solution Files

Data Visualization SURFACE WATER MODELING SYSTEM. 1 Introduction. 2 Data sets. 3 Open the Geometry and Solution Files SURFACE WATER MODELING SYSTEM Data Visualization 1 Introduction It is useful to view the geospatial data utilized as input and generated as solutions in the process of numerical analysis. It is also helpful

More information

v Working with Rasters SMS 12.1 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial

v Working with Rasters SMS 12.1 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial v. 12.1 SMS 12.1 Tutorial Objectives This tutorial teaches how to import a Raster, view elevations at individual points, change display options for multiple views of the data, show the 2D profile plots,

More information

v STWAVE Analysis SMS 11.2 Tutorial Requirements Map Module STWAVE Cartesian Grid Module Scatter Module Prerequisites Time minutes

v STWAVE Analysis SMS 11.2 Tutorial Requirements Map Module STWAVE Cartesian Grid Module Scatter Module Prerequisites Time minutes v. 11.2 SMS 11.2 Tutorial Objectives This workshop gives a brief introduction to the STWAVE modules. Data from the Shinnecock Inlet, Long Island, New York, have been set up as an example. This example

More information

GMS 10.0 Tutorial MODFLOW Conceptual Model Approach I Build a basic MODFLOW model using the conceptual model approach

GMS 10.0 Tutorial MODFLOW Conceptual Model Approach I Build a basic MODFLOW model using the conceptual model approach v. 10.0 GMS 10.0 Tutorial Build a basic MODFLOW model using the conceptual model approach Objectives The conceptual model approach involves using the GIS tools in the Map module to develop a conceptual

More information

3.2 Importing VMOD/MODFLOW Models

3.2 Importing VMOD/MODFLOW Models 52 In addition, this new model run will appear in the model tree. The model run has a grid and corresponding inputs; this can also be seen in the figure above. When the conversion is complete, click (Next

More information

v SMS 11.1 Tutorial Data Visualization Requirements Map Module Mesh Module Time minutes Prerequisites None Objectives

v SMS 11.1 Tutorial Data Visualization Requirements Map Module Mesh Module Time minutes Prerequisites None Objectives v. 11.1 SMS 11.1 Tutorial Data Visualization Objectives It is useful to view the geospatial data utilized as input and generated as solutions in the process of numerical analysis. It is also helpful to

More information

v Data Visualization SMS 12.3 Tutorial Prerequisites Requirements Time Objectives Learn how to import, manipulate, and view solution data.

v Data Visualization SMS 12.3 Tutorial Prerequisites Requirements Time Objectives Learn how to import, manipulate, and view solution data. v. 12.3 SMS 12.3 Tutorial Objectives Learn how to import, manipulate, and view solution data. Prerequisites None Requirements GIS Module Map Module Time 30 60 minutes Page 1 of 16 Aquaveo 2017 1 Introduction...

More information

GMS 9.1 Tutorial MODFLOW Conceptual Model Approach I Build a basic MODFLOW model using the conceptual model approach

GMS 9.1 Tutorial MODFLOW Conceptual Model Approach I Build a basic MODFLOW model using the conceptual model approach v. 9.1 GMS 9.1 Tutorial Build a basic MODFLOW model using the conceptual model approach Objectives The conceptual model approach involves using the GIS tools in the Map module to develop a conceptual model

More information

v Getting Started An introduction to GMS GMS Tutorials Time minutes Prerequisite Tutorials None

v Getting Started An introduction to GMS GMS Tutorials Time minutes Prerequisite Tutorials None v. 10.3 GMS 10.3 Tutorial An introduction to GMS Objectives This tutorial introduces GMS and covers the basic elements of the user interface. It is the first tutorial that new users should complete. Prerequisite

More information

v. 9.2 GMS 9.2 Tutorial MODFLOW MNW2 Package Use the MNW2 package with the sample problem and a conceptual model Prerequisite Tutorials

v. 9.2 GMS 9.2 Tutorial MODFLOW MNW2 Package Use the MNW2 package with the sample problem and a conceptual model Prerequisite Tutorials v. 9.2 GMS 9.2 Tutorial Use the MNW2 package with the sample problem and a conceptual model Objectives Learn how to use the MNW2 package in GMS and compare it to the WEL package. Both packages can be used

More information

TexGraf4 GRAPHICS PROGRAM FOR UTEXAS4. Stephen G. Wright. May Shinoak Software Austin, Texas

TexGraf4 GRAPHICS PROGRAM FOR UTEXAS4. Stephen G. Wright. May Shinoak Software Austin, Texas TexGraf4 GRAPHICS PROGRAM FOR UTEXAS4 By Stephen G. Wright May 1999 Shinoak Software Austin, Texas Copyright 1999, 2007 by Stephen G. Wright - All Rights Reserved i TABLE OF CONTENTS Page LIST OF TABLES...v

More information

v SMS 11.1 Tutorial Overview Time minutes

v SMS 11.1 Tutorial Overview Time minutes v. 11.1 SMS 11.1 Tutorial Overview Objectives This tutorial describes the major components of the SMS interface and gives a brief introduction to the different SMS modules. It is suggested that this tutorial

More information

TOUGH2 Example: Initial State and Production Analyses in a Layered Model

TOUGH2 Example: Initial State and Production Analyses in a Layered Model 403 Poyntz Avenue, Suite B Manhattan, KS 66502 USA +1.785.770.8511 www.thunderheadeng.com TOUGH2 Example: Initial State and Production Analyses in a Layered Model PetraSim 5 Table of Contents Acknowledgements...

More information

Mesh Quality Tutorial

Mesh Quality Tutorial Mesh Quality Tutorial Figure 1: The MeshQuality model. See Figure 2 for close-up of bottom-right area This tutorial will illustrate the importance of Mesh Quality in PHASE 2. This tutorial will also show

More information

GMS 8.0 Tutorial MODFLOW Generating Data from Solids Using solid models to represent complex stratigraphy with MODFLOW

GMS 8.0 Tutorial MODFLOW Generating Data from Solids Using solid models to represent complex stratigraphy with MODFLOW v. 8.0 GMS 8.0 Tutorial MODFLOW Generating Data from Solids Using solid models to represent complex stratigraphy with MODFLOW Objectives Learn the steps necessary to convert solid models to MODFLOW data

More information

GMS 10.3 Tutorial MODFLOW Stochastic Modeling, Indicator

GMS 10.3 Tutorial MODFLOW Stochastic Modeling, Indicator v. 10.3 GMS 10.3 Tutorial MODFLOW Stochastic Modeling, Indicator Simulations Use T-PROGS to create multiple material sets and run MODFLOW stochastically Objectives This tutorial teaches how to use the

More information

Lab Practical - Limit Equilibrium Analysis of Engineered Slopes

Lab Practical - Limit Equilibrium Analysis of Engineered Slopes Lab Practical - Limit Equilibrium Analysis of Engineered Slopes Part 1: Planar Analysis A Deterministic Analysis This exercise will demonstrate the basics of a deterministic limit equilibrium planar analysis

More information

for the Analysis of Flow Cytometry Listmode Data Files

for the Analysis of Flow Cytometry Listmode Data Files Purdue University Cytometry Laboratories Introduction to WinMDI 2.8 (J. Trotter 1993-1998) for the Analysis of Flow Cytometry Listmode Data Files Objectives of this tutorial: - Open a listmode data file

More information

MODFLOW Generating Data from Solids Using solid models to represent complex stratigraphy with MODFLOW

MODFLOW Generating Data from Solids Using solid models to represent complex stratigraphy with MODFLOW v. 10.3 GMS 10.3 Tutorial MODFLOW Generating Data from Solids Using solid models to represent complex stratigraphy with MODFLOW Objectives Learn the steps necessary to convert solid models to MODFLOW data

More information

First AnAqSim Tutorial Building a single-layer heterogeneous, anisotropic model with various boundary conditions

First AnAqSim Tutorial Building a single-layer heterogeneous, anisotropic model with various boundary conditions First AnAqSim Tutorial Building a single-layer heterogeneous, anisotropic model with various boundary conditions Contents Introduction... 2 Starting AnAqSim... 2 Interface Overview... 2 Setting up a Basemap...

More information

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE Getting Started with Abaqus: Interactive Edition Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE The following section is a basic tutorial for the experienced Abaqus user. It leads you

More information

Beginning Paint 3D A Step by Step Tutorial. By Len Nasman

Beginning Paint 3D A Step by Step Tutorial. By Len Nasman A Step by Step Tutorial By Len Nasman Table of Contents Introduction... 3 The Paint 3D User Interface...4 Creating 2D Shapes...5 Drawing Lines with Paint 3D...6 Straight Lines...6 Multi-Point Curves...6

More information

MODFLOW Lake Package GMS TUTORIALS

MODFLOW Lake Package GMS TUTORIALS GMS TUTORIALS MODFLOW Lake Package This tutorial illustrates the steps involved in using the Lake (LAK3) Package as part of a MODFLOW simulation. The Lake Package is a more sophisticated alternative to

More information

Background on Kingdom Suite for the Imperial Barrel Competition 3D Horizon/Fault Interpretation Parts 1 & 2 - Fault Interpretation and Correlation

Background on Kingdom Suite for the Imperial Barrel Competition 3D Horizon/Fault Interpretation Parts 1 & 2 - Fault Interpretation and Correlation Background on Kingdom Suite for the Imperial Barrel Competition 3D Horizon/Fault Interpretation Parts 1 & 2 - Fault Interpretation and Correlation Wilson (2010) 1 Fault/Horizon Interpretation Using Seismic

More information

v Mesh Editing SMS 11.2 Tutorial Requirements Mesh Module Time minutes Prerequisites None Objectives

v Mesh Editing SMS 11.2 Tutorial Requirements Mesh Module Time minutes Prerequisites None Objectives v. 11.2 SMS 11.2 Tutorial Objectives This tutorial lesson teaches manual mesh generation and editing techniques that can be performed using SMS. It should be noted that manual methods are NOT recommended.

More information

SURFACE WATER MODELING SYSTEM. 2. Change to the Data Files Folder and open the file poway1.xyz.

SURFACE WATER MODELING SYSTEM. 2. Change to the Data Files Folder and open the file poway1.xyz. SURFACE WATER MODELING SYSTEM Mesh Editing This tutorial lesson teaches manual finite element mesh generation techniques that can be performed using SMS. It gives a brief introduction to tools in SMS that

More information

v SMS 12.2 Tutorial Observation Prerequisites Requirements Time minutes

v SMS 12.2 Tutorial Observation Prerequisites Requirements Time minutes v. 12.2 SMS 12.2 Tutorial Observation Objectives This tutorial will give an overview of using the observation coverage in SMS. Observation points will be created to measure the numerical analysis with

More information

Tutorial: Simulating a 3D Check Valve Using Dynamic Mesh 6DOF Model And Diffusion Smoothing

Tutorial: Simulating a 3D Check Valve Using Dynamic Mesh 6DOF Model And Diffusion Smoothing Tutorial: Simulating a 3D Check Valve Using Dynamic Mesh 6DOF Model And Diffusion Smoothing Introduction The purpose of this tutorial is to demonstrate how to simulate a ball check valve with small displacement

More information

GMS 8.3 Tutorial MODFLOW LAK Package Use the MODFLOW Lake (LAK3) package to simulate mine dewatering

GMS 8.3 Tutorial MODFLOW LAK Package Use the MODFLOW Lake (LAK3) package to simulate mine dewatering v. 8.3 GMS 8.3 Tutorial Use the MODFLOW Lake (LAK3) package to simulate mine dewatering Objectives Learn the steps involved in using the MODFLOW Lake (LAK3) package interface in GMS. Use the LAK3 package

More information

GMS 10.4 Tutorial RT3D Instantaneous Aerobic Degradation

GMS 10.4 Tutorial RT3D Instantaneous Aerobic Degradation v. 10.4 GMS 10.4 Tutorial Objectives Simulate the reaction for instantaneous aerobic degradation of hydrocarbons using a predefined user reaction package. Prerequisite Tutorials MT2DMS Grid Approach Required

More information

Rubis (NUM) Tutorial #1

Rubis (NUM) Tutorial #1 Rubis (NUM) Tutorial #1 1. Introduction This example is an introduction to the basic features of Rubis. The exercise is by no means intended to reproduce a realistic scenario. It is assumed that the user

More information

This is the script for the SEEP/W tutorial movie. Please follow along with the movie, SEEP/W Getting Started.

This is the script for the SEEP/W tutorial movie. Please follow along with the movie, SEEP/W Getting Started. SEEP/W Tutorial This is the script for the SEEP/W tutorial movie. Please follow along with the movie, SEEP/W Getting Started. Introduction Here are some results obtained by using SEEP/W to analyze unconfined

More information

Tutorial: Airport Numerical Model with Transport

Tutorial: Airport Numerical Model with Transport Tutorial: Visual MODFLOW Flex 5.0 Integrated Conceptual & Numerical Groundwater Modeling Software 1 1 Visual MODFLOW Flex 5.0 The following example walks through creating a numerical model with groundwater

More information

Objectives Learn how to work with projections in GMS, and how to combine data from different coordinate systems into the same GMS project.

Objectives Learn how to work with projections in GMS, and how to combine data from different coordinate systems into the same GMS project. v. 10.2 GMS 10.2 Tutorial Working with map projections in GMS Objectives Learn how to work with projections in GMS, and how to combine data from different coordinate systems into the same GMS project.

More information

November c Fluent Inc. November 8,

November c Fluent Inc. November 8, MIXSIM 2.1 Tutorial November 2006 c Fluent Inc. November 8, 2006 1 Copyright c 2006 by Fluent Inc. All Rights Reserved. No part of this document may be reproduced or otherwise used in any form without

More information

GMS 10.0 Tutorial MODFLOW Conceptual Model Approach II Build a multi-layer MODFLOW model using advanced conceptual model techniques

GMS 10.0 Tutorial MODFLOW Conceptual Model Approach II Build a multi-layer MODFLOW model using advanced conceptual model techniques v. 10.0 GMS 10.0 Tutorial Build a multi-layer MODFLOW model using advanced conceptual model techniques 00 Objectives The conceptual model approach involves using the GIS tools in the Map Module to develop

More information

Import, view, edit, convert, and digitize triangulated irregular networks

Import, view, edit, convert, and digitize triangulated irregular networks v. 10.1 WMS 10.1 Tutorial Import, view, edit, convert, and digitize triangulated irregular networks Objectives Import survey data in an XYZ format. Digitize elevation points using contour imagery. Edit

More information

GUIDE TO VIEW3D. Introduction to View3D

GUIDE TO VIEW3D. Introduction to View3D View3D Guide Introduction to View3D... 1 Starting Hampson-Russell Software... 2 Starting View3D... 4 A Brief Summary of the View3D Process... 8 Loading the Seismic and Horizon Data... 8 Selection Errors...

More information

Using the Boundary Wrapper

Using the Boundary Wrapper Tutorial 7. Using the Boundary Wrapper Introduction Geometries imported from various CAD packages often contain gaps and/or overlaps between surfaces. Repairing such geometries manually is a tedious and

More information

APPENDIX B STEP-BY-STEP APPLICATIONS OF THE FEMWATER-LHS

APPENDIX B STEP-BY-STEP APPLICATIONS OF THE FEMWATER-LHS APPENDIX B STEP-BY-STEP APPLICATIONS OF THE FEMWATER-LHS Steady Two-Dimensional Drainage Problem 1. Double-click on the Argus ONE icon to open Argus ONE. 2. From the PIEs menu found along the top of the

More information

Cross Sections, Profiles, and Rating Curves. Viewing Results From The River System Schematic. Viewing Data Contained in an HEC-DSS File

Cross Sections, Profiles, and Rating Curves. Viewing Results From The River System Schematic. Viewing Data Contained in an HEC-DSS File C H A P T E R 9 Viewing Results After the model has finished the steady or unsteady flow computations the user can begin to view the output. Output is available in a graphical and tabular format. The current

More information

Face to Face Thermal Link with the Thermal Link Wizard

Face to Face Thermal Link with the Thermal Link Wizard SECTION 1 Face to Face Thermal Link with the 1 SECTION 1 Face to Face Thermal Link with the Thermal Link Wizard The following is a list of files that will be needed for this tutorial. They can be found

More information

Technology Assignment: Scatter Plots

Technology Assignment: Scatter Plots The goal of this assignment is to create a scatter plot of a set of data. You could do this with any two columns of data, but for demonstration purposes we ll work with the data in the table below. You

More information

UTEXAS Embankment on Soft Clay

UTEXAS Embankment on Soft Clay GMS TUTORIALS Figure 1. Sample slope stability problem from the Utexam1.dat file provided with the UTEXAS4 software. 1 Introduction UTEXAS4 is a slope stability software package created by Dr. Stephen

More information

Airport Tutorial - Contaminant Transport Modeling. Visual MODFLOW Flex. Integrated Conceptual & Numerical Groundwater Modeling

Airport Tutorial - Contaminant Transport Modeling. Visual MODFLOW Flex. Integrated Conceptual & Numerical Groundwater Modeling Airport Tutorial - Contaminant Transport Modeling Visual MODFLOW Flex Integrated Conceptual & Numerical Groundwater Modeling Airport Tutorial: Numerical Modeling with Transport The following example is

More information