13. (a) G,G. A circuit of length 1 is a loop. 14. (a) E,E. (c) A,B,C,A. 16. (a) BF, FG

Size: px
Start display at page:

Download "13. (a) G,G. A circuit of length 1 is a loop. 14. (a) E,E. (c) A,B,C,A. 16. (a) BF, FG"

Transcription

1 13. (a) G,G. A circuit of length 1 is a loop. There are none. Such a circuit would consist of two vertices and two (different) edges connecting the vertices. 10. (a) 11. (a) C, B, A, H, F Other answers such as C, B, A, H, G, F are also possible. C, B, D, A, H, F Again, more than one answer is possible. C, B, A, H, F (d) C, D, B, A, H, G, G, F (e) 4 (It can be helpful to list them from shortest to longest as C, B, A; C, D, A; C, B, D, A; C, D, B, A) (f) 3 (H, F; H, G, F; H, G, G, F) (g) 12 (Any one of the 4 paths in (e) followed by edge AH followed by any one of the 3 paths in (f).) 12. (a) D, A, H, G, F, E D, B, A, H, G, G, F, E D, A, H, F, E (d) D, C, B, A, H, G, G, F, E (e) 5 (D, A; D, B, A; D, B, C, D, A; D, C, B, A; D, C, B, D, A) A,B,D,A; B,C,D,B; F,G,H,F (d) A,B,C,D,A; F,G,G,H,F (e) 6; The longest circuit has length 4. So using the results from (a)-(d) there are a total of 6 circuits in the graph. 14. (a) E,E F,H,F A,B,C,A (d) A,B,E,D,A (e) A,C,B,E,D,A; A,B,E,E,D,A (f) (a) AH, EF; If either of these edges were removed from the graph, the graph would be disconnected. There are none. This graph is just one circuit connecting five vertices. Circuits do not have bridges. AB, BC, BE, CD; That is, every edge is a bridge. 16. (a) BF, FG There are none. The graph consists of two cycles (A,B,C,E,A and A,D,E,A). AB, BC, CD, DE (i.e. every edge is a bridge) B. Graph Models 17. Such a graph will have five vertices (representing North Kingsburg, South Kingsburg, and islands A, B, and C) and seven edges (representing the seven bridges). (f) 3 (H, F, E; H, G, F, E; H, G, G, F, E) (g) 15 (Any one of the paths in (e) followed by AH followed by any one of the paths in (f).) 87

2 ISM: Excursions in Modern Mathematics C. Euler s Theorems 23. (a) (i); The graph has an Euler circuit because all vertices have even degree. (iii); The graph has neither an Euler circuit nor an Euler path because there are four vertices of odd degree. 20. (iv); See exercises 9(a) where an Euler circuit exists and 9 where an Euler circuit does not exist. 24. (a) (ii); exactly two vertices are odd (iii); 10 vertices are odd (v); the graph may be disconnected 21. Let the vertices represent the teams A, B, C, D, E, and F. The edges will correspond to the tournament pairings. Putting the vertices at the corners of a regular hexagon will make drawing and interpreting the graph a bit easier. 25. (a) (iii); The graph has neither an Euler circuit nor an Euler path because there are more than two (exactly 4 in fact) vertices of odd degree. (i); The graph has an Euler circuit because all vertices have even degree. (iii); The graph is disconnected. Disconnected graphs have neither Euler circuits nor Euler paths. 26. (a) (ii); exactly two vertices are odd 22. (a) (i); all vertices are even (iii); the graph is disconnected 27. (a) (ii); Exactly two vertices are odd. (i); All the vertices are even. (iii); More than two vertices (6 in this case) are odd. 28. (a) (ii); exactly two vertices are odd (iii); the graph is disconnected (iii); more than two vertices are odd 88

3 D. Finding Euler Circuits and Euler Paths Note that the starting and ending vertices of the Euler path are shown in black. 35. Again, there is more than one answer The starting and ending vertices of the Euler path (both having odd degree of course!) are shown in black. Naturally, other answers are possible. 89

4 F. Eulerizations and Semi-eulerizations 37. Adding as few duplicate edges as possible in eliminating the odd vertices gives an optimal eulerization. ISM: Excursions in Modern Mathematics 41. In an optimal semi-eulerization two vertices will remain odd. Again, since this graph has vertical symmetry, a mirror image of this answer is also an optimal semieulerization In an optimal semi-eulerization two vertices will remain odd. 39. Since this graph has vertical symmetry, a mirror image of this answer is also an optimal eulerization. G. Miscellaneous 43. (a) 40. (d) 44. (a) 90

5 None. If a vertex had degree 1, then the single edge incident to that vertex would be a bridge. 52. (a) If each vertex were of odd degree, then the graph has an odd number of odd vertices. This is not possible! So, it must be that each vertex is in fact of even degree. By Euler s Circuit Theorem, the graph would have an Euler circuit. The following graph is regular (all vertices are of degree 2) and it has an Euler circuit. 46. The graph below is also regular (all vertices have degree 3) but it does not have an Euler circuit. 47. You would need to lift your pencil 4 times. There are 10 vertices of odd degree. Two can be used as the starting and ending vertices. The remaining eight odd degree vertices can be paired so that each pair forces one lifting of the pencil ; There are 14 odd vertices. Two can be used as the starting and ending vertices. The remaining 12 can be paired so that each pair forces one lifting of the pencil. JOGGING 49. (a) An edge XY contributes 2 to the sum of the degrees of all vertices (1 to the degree of X, and 1 to the degree of Y). If there were an odd number of odd vertices, the sum of the degrees of all the vertices would be odd. That would contradict the result found in (a). 50. (k 2)/2. Two of the vertices of odd degree can be used as the starting and ending vertices. For the remaining vertices of odd degree the pencil will have to be lifted at least once for every two vertices of odd degree. 53. (a) Both m and n must be even. Why? If the graph has an Euler circuit, then the degree of each degree must be even. Suppose that m is odd (i.e. A has an odd number of vertices). Then the degree of each vertex in B would be an odd number (namely m). But this contradicts the existence of an Euler circuit. Similarly, if n is odd, the degree of each vertex in A would need to be odd (a contradiction). So, both m and n must be even. Either m = 1 and n = 1 or 2 or m = 2 and n is odd. Remember that a graph will have an Euler path if it has exactly two odd vertices. If m = 1 and n = 1 or 2, then it is easy to see that the graph has an Euler path. If m = 1 and n > 2, then the vertices in B are all odd (which can t happen since an Euler path has exactly 2 odd vertices). If m = 2, then n must be odd in order to have exactly two odd vertices (both will be in A). If m > 2, then so is n. If either is odd, then the graph has more than 2 odd vertices. If neither is odd, then the graph has no odd vertices (and hence no Euler path). So m > 2 is not possible. 54. (a) Keep adding edges as long as you can without creating any circuits. N 1 dollars 91

6 All graphs that have at least one vertex of degree 0 (i.e. isolated vertices). 62. The only possible value of k is 0. The graph G must have an Euler circuit since it is connected and every vertex is even. In a circuit it is possible to get from any vertex to any other vertex two different ways traveling the circuit forward and backward. Consequently, the removal of a single edge will not disconnect the graph. 63. The possible values of k are k = 0, 1, 2, 3,, N-3, and N-1. To have k = 0 bridges in G, place the N vertices at the corners of a polygon, connect adjacent corners with an edge and connect one pair of nonadjacent corners. To have k = 1 bridge, attach a single vertex to a graph formed by putting vertices at the corners of a regular N-1 polygon. To have k = 2 bridges, consider the following graph formed by attaching two vertices to a graph formed by putting vertices at the corners of a regular N-2 polygon. Adding more single vertices to the left also explains how to get k = 3, 4,, N-3 bridges. If the graph G is a complete graph, then it will clearly have an Euler circuit (since N is odd so that every vertex has even degree). However, the complement will not since it has no edges. The following example illustrates how such a graph G and its complement may both have an Euler circuit. 67. (a) The circuit kissing A, D, C, A is A, B, D, F, C, E, A. Two circuits that kiss A, B, D, A are C, D, F, C and A, C, E, A. Suppose C is a circuit in G. Consider the complement of C in G. If C is an Euler circuit then the complement is empty. So when C is not an Euler circuit, the complement must contain an edge leading to a vertex in C for otherwise G is not connected. Also, the complement of C has all even vertices. So, the complement has an Euler circuit and that circuit will be one that kisses C. 68. (a) There are many ways to implement this algorithm. The following figures illustrate one possibility. To get k = N-1 bridges, consider the following example: 64. Each component of the graph is a graph in its own right and so, according to Euler s Sum of Degrees Theorem, the number of vertices of odd degree (in each component) must be even. Therefore the 2 vertices of odd degree must be in the same component. 65. Suppose the graph has N vertices. Since there are no multiple edges or loops, the maximum degree a vertex can have is N 1. If the degrees of the N vertices are all different, they must be 0, 1, 2,..., N 1, but this is impossible because the vertex of degree N 1 would have to be adjacent to all the other vertices and then we couldn t have a vertex of degree (a) Since N is even, in the complement each vertex will have odd degree. So, the complement cannot have an Euler circuit. 93

Excursions in Modern Mathematics Sixth Edition. Chapter 5 Euler Circuits. The Circuit Comes to Town. Peter Tannenbaum

Excursions in Modern Mathematics Sixth Edition. Chapter 5 Euler Circuits. The Circuit Comes to Town. Peter Tannenbaum Excursions in Modern Mathematics Sixth Edition Chapter 5 Peter Tannenbaum The Circuit Comes to Town 1 2 Outline/learning Objectives Outline/learning Objectives (cont.) To identify and model Euler circuit

More information

MA 111 Review for Exam 3

MA 111 Review for Exam 3 MA 111 Review for Exam 3 Exam 3 (given in class on Tuesday, March 27, 2012) will cover Chapter 5. You should: know what a graph is and how to use graphs to model geographic relationships. know how to describe

More information

Sections 5.2, 5.3. & 5.4

Sections 5.2, 5.3. & 5.4 MATH 11008: Graph Theory Terminology Sections 5.2, 5.3. & 5.4 Routing problem: A routing problem is concerned with finding ways to route the delivery of good and/or services to an assortment of destinations.

More information

Chapter 8 Topics in Graph Theory

Chapter 8 Topics in Graph Theory Chapter 8 Topics in Graph Theory Chapter 8: Topics in Graph Theory Section 8.1: Examples {1,2,3} Section 8.2: Examples {1,2,4} Section 8.3: Examples {1} 8.1 Graphs Graph A graph G consists of a finite

More information

Chapter 5: The Mathematics of Getting Around. 5.4 Eulerizing and Semi to Eulerizing Graphs

Chapter 5: The Mathematics of Getting Around. 5.4 Eulerizing and Semi to Eulerizing Graphs Chapter 5: The Mathematics of Getting Around 5.4 Eulerizing and Semi to Eulerizing Graphs Bell Work Determine if each has an Euler path or an Euler circuit, then describe an example of one. 1. 2. Copyright

More information

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC January 26, 2011

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC   January 26, 2011 Graph Theory Martin Stynes Department of Mathematics, UCC email: m.stynes@ucc.ie January 26, 2011 1 Introduction to Graphs 1 A graph G = (V, E) is a non-empty set of nodes or vertices V and a (possibly

More information

Characterization of Graphs with Eulerian Circuits

Characterization of Graphs with Eulerian Circuits Eulerian Circuits 3. 73 Characterization of Graphs with Eulerian Circuits There is a simple way to determine if a graph has an Eulerian circuit. Theorems 3.. and 3..2: Let G be a pseudograph that is connected

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

Graphs and networks Mixed exercise

Graphs and networks Mixed exercise Graphs and networks Mixed exercise E.g. 2 a, e and h are isomorphic. b and i are isomorphic. c and g are isomorphic. d and f are isomorphic. 3 a b i ii iii Pearson Education Ltd 208. Copying permitted

More information

Undirected Network Summary

Undirected Network Summary Undirected Network Summary Notice that the network above has multiple edges joining nodes a to d and the network has a loop at node d. Also c is called an isolated node as it is not connected to any other

More information

WUCT121. Discrete Mathematics. Graphs

WUCT121. Discrete Mathematics. Graphs WUCT121 Discrete Mathematics Graphs WUCT121 Graphs 1 Section 1. Graphs 1.1. Introduction Graphs are used in many fields that require analysis of routes between locations. These areas include communications,

More information

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.1 Graphs, Paths, and Circuits What You Will Learn Graphs Paths Circuits Bridges 14.1-2 Definitions A graph is a finite set of points called vertices (singular form is vertex) connected by line

More information

a) Graph 2 and Graph 3 b) Graph 2 and Graph 4 c) Graph 1 and Graph 4 d) Graph 1 and Graph 3 e) Graph 3 and Graph 4 f) None of the above

a) Graph 2 and Graph 3 b) Graph 2 and Graph 4 c) Graph 1 and Graph 4 d) Graph 1 and Graph 3 e) Graph 3 and Graph 4 f) None of the above Mathematics 105: Math as a Liberal Art. Final Exam. Name Instructor: Ramin Naimi Spring 2008 Close book. Closed notes. No Calculators. NO CELL PHONES! Please turn off your cell phones and put them away.

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around 1 Finite Math A Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around Academic Standards Covered in this Chapter: *************************************************************************************

More information

2. CONNECTIVITY Connectivity

2. CONNECTIVITY Connectivity 2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics An Introduction to Graph Theory. Introduction. Definitions.. Vertices and Edges... The Handshaking Lemma.. Connected Graphs... Cut-Points and Bridges.

More information

Chapter 5: The Mathematics of Getting Around

Chapter 5: The Mathematics of Getting Around Euler Paths and Circuits Chapter 5: The Mathematics of Getting Around 5.1 Street-Routing Problem Our story begins in the 1700s in the medieval town of Königsberg, in Eastern Europe. At the time, Königsberg

More information

Eulerian tours. Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck. April 20, 2016

Eulerian tours. Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck.  April 20, 2016 Eulerian tours Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck http://cseweb.ucsd.edu/classes/sp16/cse21-bd/ April 20, 2016 Seven Bridges of Konigsberg Is there a path that crosses each

More information

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around 1 Finite Math A Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around Academic Standards Covered in this Chapter: *************************************************************************************

More information

SEVENTH EDITION and EXPANDED SEVENTH EDITION

SEVENTH EDITION and EXPANDED SEVENTH EDITION SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide 14-1 Chapter 14 Graph Theory 14.1 Graphs, Paths and Circuits Definitions A graph is a finite set of points called vertices (singular form is vertex) connected

More information

February Regional Geometry Team: Question #1

February Regional Geometry Team: Question #1 February Regional Geometry Team: Question #1 A = area of an equilateral triangle with a side length of 4. B = area of a square with a side length of 3. C = area of a regular hexagon with a side length

More information

HOMEWORK 4 SOLUTIONS. Solution: The Petersen graph contains a cycle of odd length as a subgraph. Hence,

HOMEWORK 4 SOLUTIONS. Solution: The Petersen graph contains a cycle of odd length as a subgraph. Hence, HOMEWORK 4 SOLUTIONS (1) Determine the chromatic number of the Petersen graph. Solution: The Petersen graph contains a cycle of odd length as a subgraph. Hence, 3 χ(c 5 ) χ(p ). As the Petersen graph is

More information

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ - artale/z

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ -  artale/z CHAPTER 10 GRAPHS AND TREES Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/z SECTION 10.1 Graphs: Definitions and Basic Properties Copyright Cengage Learning. All rights reserved. Graphs: Definitions

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7 CS 70 Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7 An Introduction to Graphs A few centuries ago, residents of the city of Königsberg, Prussia were interested in a certain problem.

More information

Math 443/543 Graph Theory Notes

Math 443/543 Graph Theory Notes Math 443/543 Graph Theory Notes David Glickenstein September 8, 2014 1 Introduction We will begin by considering several problems which may be solved using graphs, directed graphs (digraphs), and networks.

More information

Eulerian Tours and Fleury s Algorithm

Eulerian Tours and Fleury s Algorithm Eulerian Tours and Fleury s Algorithm CSE21 Winter 2017, Day 12 (B00), Day 8 (A00) February 8, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Vocabulary Path (or walk): describes a route from one vertex

More information

13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 Automata Theory EUR solutions

13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 Automata Theory EUR solutions 13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 011 Automata Theory EUR solutions Problem 1 (5 points). Prove that any surjective map between finite sets of the same cardinality is a

More information

Graph Theory. Defining a Graph

Graph Theory. Defining a Graph Graph Theory This topic is one of the most applicable to real-life applications because all networks (computer, transportation, communication, organizational, etc.) can be represented with a graph. For

More information

PAIRED-DOMINATION. S. Fitzpatrick. Dalhousie University, Halifax, Canada, B3H 3J5. and B. Hartnell. Saint Mary s University, Halifax, Canada, B3H 3C3

PAIRED-DOMINATION. S. Fitzpatrick. Dalhousie University, Halifax, Canada, B3H 3J5. and B. Hartnell. Saint Mary s University, Halifax, Canada, B3H 3C3 Discussiones Mathematicae Graph Theory 18 (1998 ) 63 72 PAIRED-DOMINATION S. Fitzpatrick Dalhousie University, Halifax, Canada, B3H 3J5 and B. Hartnell Saint Mary s University, Halifax, Canada, B3H 3C3

More information

Topic 10 Part 2 [474 marks]

Topic 10 Part 2 [474 marks] Topic Part 2 [474 marks] The complete graph H has the following cost adjacency matrix Consider the travelling salesman problem for H a By first finding a minimum spanning tree on the subgraph of H formed

More information

Unit 7 Day 2 Section Vocabulary & Graphical Representations Euler Circuits and Paths

Unit 7 Day 2 Section Vocabulary & Graphical Representations Euler Circuits and Paths Unit 7 Day 2 Section 4.3-4.5 Vocabulary & Graphical Representations Euler Circuits and Paths 1 Warm Up ~ Day 2 List the tasks and earliest start times in a table, as in exercise #1. Determine the minimum

More information

Matching Theory. Figure 1: Is this graph bipartite?

Matching Theory. Figure 1: Is this graph bipartite? Matching Theory 1 Introduction A matching M of a graph is a subset of E such that no two edges in M share a vertex; edges which have this property are called independent edges. A matching M is said to

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 The University of Sydney MTH 009 GRPH THEORY Tutorial solutions 00. Show that the graph on the left is Hamiltonian, but that the other two are not. To show that the graph is Hamiltonian, simply find a

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 7 Graph properties By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com 2 Module-2: Eulerian

More information

Math 443/543 Graph Theory Notes

Math 443/543 Graph Theory Notes Math 443/543 Graph Theory Notes David Glickenstein September 3, 2008 1 Introduction We will begin by considering several problems which may be solved using graphs, directed graphs (digraphs), and networks.

More information

Exercise set 2 Solutions

Exercise set 2 Solutions Exercise set 2 Solutions Let H and H be the two components of T e and let F E(T ) consist of the edges of T with one endpoint in V (H), the other in V (H ) Since T is connected, F Furthermore, since T

More information

Chapter 11: Graphs and Trees. March 23, 2008

Chapter 11: Graphs and Trees. March 23, 2008 Chapter 11: Graphs and Trees March 23, 2008 Outline 1 11.1 Graphs: An Introduction 2 11.2 Paths and Circuits 3 11.3 Matrix Representations of Graphs 4 11.5 Trees Graphs: Basic Definitions Informally, a

More information

14 Graph Theory. Exercise Set 14-1

14 Graph Theory. Exercise Set 14-1 14 Graph Theory Exercise Set 14-1 1. A graph in this chapter consists of vertices and edges. In previous chapters the term was used as a visual picture of a set of ordered pairs defined by a relation or

More information

14 More Graphs: Euler Tours and Hamilton Cycles

14 More Graphs: Euler Tours and Hamilton Cycles 14 More Graphs: Euler Tours and Hamilton Cycles 14.1 Degrees The degree of a vertex is the number of edges coming out of it. The following is sometimes called the First Theorem of Graph Theory : Lemma

More information

Graphs and Puzzles. Eulerian and Hamiltonian Tours.

Graphs and Puzzles. Eulerian and Hamiltonian Tours. Graphs and Puzzles. Eulerian and Hamiltonian Tours. CSE21 Winter 2017, Day 11 (B00), Day 7 (A00) February 3, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Exam Announcements Seating Chart on Website Good

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 9 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes February 8 (1) HW4 is due

More information

Network Topology and Graph

Network Topology and Graph Network Topology Network Topology and Graph EEE442 Computer Method in Power System Analysis Any lumped network obeys 3 basic laws KVL KCL linear algebraic constraints Ohm s law Anawach Sangswang Dept.

More information

GRAPH THEORY: AN INTRODUCTION

GRAPH THEORY: AN INTRODUCTION GRAPH THEORY: AN INTRODUCTION BEGINNERS 3/4/2018 1. GRAPHS AND THEIR PROPERTIES A graph G consists of two sets: a set of vertices V, and a set of edges E. A vertex is simply a labeled point. An edge is

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 2 (Week 9) 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 2 (Week 9) 2008 The University of Sydney MATH99/09 Graph Theory Tutorial (Week 9) 00. Show that the graph on the left is Hamiltonian, but that the other two are not. To show that the graph is Hamiltonian, simply find

More information

MAS341 Graph Theory 2015 exam solutions

MAS341 Graph Theory 2015 exam solutions MAS4 Graph Theory 0 exam solutions Question (i)(a) Draw a graph with a vertex for each row and column of the framework; connect a row vertex to a column vertex if there is a brace where the row and column

More information

Modules. 6 Hamilton Graphs (4-8 lectures) Introduction Necessary conditions and sufficient conditions Exercises...

Modules. 6 Hamilton Graphs (4-8 lectures) Introduction Necessary conditions and sufficient conditions Exercises... Modules 6 Hamilton Graphs (4-8 lectures) 135 6.1 Introduction................................ 136 6.2 Necessary conditions and sufficient conditions............. 137 Exercises..................................

More information

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings.

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings. 1: Draw K 7 on a torus with no edge crossings. A quick calculation reveals that an embedding of K 7 on the torus is a -cell embedding. At that point, it is hard to go wrong if you start drawing C 3 faces,

More information

Recognizing Interval Bigraphs by Forbidden Patterns

Recognizing Interval Bigraphs by Forbidden Patterns Recognizing Interval Bigraphs by Forbidden Patterns Arash Rafiey Simon Fraser University, Vancouver, Canada, and Indiana State University, IN, USA arashr@sfu.ca, arash.rafiey@indstate.edu Abstract Let

More information

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples Section 9.5 Euler and Hamilton Paths Page references correspond to locations of Extra Examples icons in the textbook. p.634,

More information

14.2 Euler Paths and Circuits filled in.notebook November 18, Euler Paths and Euler Circuits

14.2 Euler Paths and Circuits filled in.notebook November 18, Euler Paths and Euler Circuits 14.2 Euler Paths and Euler Circuits The study of graph theory can be traced back to the eighteenth century when the people of the town of Konigsberg sought a solution to a popular problem. They had sections

More information

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.1 Graphs, Paths, and Circuits INB Table of Contents Date Topic Page # January 27, 2014 Test #1 14 January 27, 2014 Test # 1 Corrections 15 January 27, 2014 Section 14.1 Examples 16 January 27,

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 12:00, Friday 17 th February 2012 Outline 1 Graphs 2 Paths and cycles 3 Graphs and

More information

10/30/2013. Chapter 7: The Mathematics of Networks. Network. Network. Network. Network. Optimal Network. 7.1 Networks and Trees

10/30/2013. Chapter 7: The Mathematics of Networks. Network. Network. Network. Network. Optimal Network. 7.1 Networks and Trees Network Chapter 7: The Mathematics of Networks Our definition of a network is going to be really simple essentially, a network is a graph that is connected. In this context the term is most commonly used

More information

Chapter 4 Answers. Lesson 4.1. Chapter 4 Answers 1

Chapter 4 Answers. Lesson 4.1. Chapter 4 Answers 1 Chapter 4 Answers Lesson 4.1 1. 2. 3. 4. Chapter 4 Answers 1 5. Answers vary. Sample answer: a. A: 2, none; B: 4, A; C: 3, B; D: 7, C; E: 5, A; F: 10, E; G: 8, A; H: 3, A; I: 4, D, F, G, and H b. c. In

More information

Chapter 3: Paths and Cycles

Chapter 3: Paths and Cycles Chapter 3: Paths and Cycles 5 Connectivity 1. Definitions: Walk: finite sequence of edges in which any two consecutive edges are adjacent or identical. (Initial vertex, Final vertex, length) Trail: walk

More information

11.2 Eulerian Trails

11.2 Eulerian Trails 11.2 Eulerian Trails K.. onigsberg, 1736 Graph Representation A B C D Do You Remember... Definition A u v trail is a u v walk where no edge is repeated. Do You Remember... Definition A u v trail is a u

More information

Ma/CS 6a Class 8: Eulerian Cycles

Ma/CS 6a Class 8: Eulerian Cycles Ma/CS 6a Class 8: Eulerian Cycles By Adam Sheffer The Bridges of Königsberg Can we travel the city while crossing every bridge exactly once? 1 How Graph Theory was Born Leonhard Euler 1736 Eulerian Cycle

More information

Practice Exam #3, Math 100, Professor Wilson. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice Exam #3, Math 100, Professor Wilson. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Practice Exam #3, Math 100, Professor Wilson MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A tree is A) any graph that is connected and every

More information

6.2. Paths and Cycles

6.2. Paths and Cycles 6.2. PATHS AND CYCLES 85 6.2. Paths and Cycles 6.2.1. Paths. A path from v 0 to v n of length n is a sequence of n+1 vertices (v k ) and n edges (e k ) of the form v 0, e 1, v 1, e 2, v 2,..., e n, v n,

More information

Graph Theory CS/Math231 Discrete Mathematics Spring2015

Graph Theory CS/Math231 Discrete Mathematics Spring2015 1 Graphs Definition 1 A directed graph (or digraph) G is a pair (V, E), where V is a finite set and E is a binary relation on V. The set V is called the vertex set of G, and its elements are called vertices

More information

Worksheet for the Final Exam - Part I. Graphs

Worksheet for the Final Exam - Part I. Graphs Worksheet for the Final Exam - Part I. Graphs Date and Time: May 10 2012 Thursday 11:50AM~1:50PM Location: Eng 120 Start with the Self-Test Exercises (pp.816) in Prichard. 1. Give the adjacency matrix

More information

Graph Theory

Graph Theory Graph Theory 2012.04.18 Our goal today is to learn some basic concepts in graph theory and explore fun problems using graph theory. A graph is a mathematical object that captures the notion of connection.

More information

Exercises for Discrete Maths

Exercises for Discrete Maths Exercises for Discrete Maths Discrete Maths Teacher: Alessandro Artale Teaching Assistants: Elena Botoeva, Daniele Porello http://www.inf.unibz.it/~artale/dml/dml.htm Week 6 Computer Science Free University

More information

Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015

Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015 Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015 The Seven Bridges of Königsberg In

More information

Degree of nonsimple graphs. Chemistry questions. Degree Sequences. Pigeon party.

Degree of nonsimple graphs. Chemistry questions. Degree Sequences. Pigeon party. 1. WEEK 1 PROBLEMS 1.1. Degree of nonsimple graphs. In the lecture notes we defined the degree d(v) of a vertex v to be the number of vertices adjacent to v. To see why Euler s theorem doesn t hold for

More information

Discharging and reducible configurations

Discharging and reducible configurations Discharging and reducible configurations Zdeněk Dvořák March 24, 2018 Suppose we want to show that graphs from some hereditary class G are k- colorable. Clearly, we can restrict our attention to graphs

More information

8.2 Paths and Cycles

8.2 Paths and Cycles 8.2 Paths and Cycles Degree a b c d e f Definition The degree of a vertex is the number of edges incident to it. A loop contributes 2 to the degree of the vertex. (G) is the maximum degree of G. δ(g) is

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

On the number of quasi-kernels in digraphs

On the number of quasi-kernels in digraphs On the number of quasi-kernels in digraphs Gregory Gutin Department of Computer Science Royal Holloway, University of London Egham, Surrey, TW20 0EX, UK gutin@dcs.rhbnc.ac.uk Khee Meng Koh Department of

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 8 Design Rules Adib Abrishamifar EE Department IUST Contents Design Rules CMOS Process Layers Intra-Layer Design Rules Via s and Contacts Select Layer Example Cell

More information

Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Math 778S Spectral Graph Theory Handout #2: Basic graph theory Math 778S Spectral Graph Theory Handout #: Basic graph theory Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved the Königsberg Bridge problem: Is it possible

More information

Pebble Sets in Convex Polygons

Pebble Sets in Convex Polygons 2 1 Pebble Sets in Convex Polygons Kevin Iga, Randall Maddox June 15, 2005 Abstract Lukács and András posed the problem of showing the existence of a set of n 2 points in the interior of a convex n-gon

More information

11.4 Bipartite Multigraphs

11.4 Bipartite Multigraphs 11.4 Bipartite Multigraphs Introduction Definition A graph G is bipartite if we can partition the vertices into two disjoint subsets U and V such that every edge of G has one incident vertex in U and the

More information

TWO CONTRIBUTIONS OF EULER

TWO CONTRIBUTIONS OF EULER TWO CONTRIBUTIONS OF EULER SIEMION FAJTLOWICZ. MATH 4315 Eulerian Tours. Although some mathematical problems which now can be thought of as graph-theoretical, go back to the times of Euclid, the invention

More information

Eulerian Tours and Fleury s Algorithm

Eulerian Tours and Fleury s Algorithm Eulerian Tours and Fleury s Algorithm CSE21 Winter 2017, Day 12 (B00), Day 8 (A00) February 8, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Vocabulary Path (or walk):describes a route from one vertex

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 7 & 8 Test Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) Which of the following four graphs is a tree?

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite

More information

Geometry Practice. 1. Angles located next to one another sharing a common side are called angles.

Geometry Practice. 1. Angles located next to one another sharing a common side are called angles. Geometry Practice Name 1. Angles located next to one another sharing a common side are called angles. 2. Planes that meet to form right angles are called planes. 3. Lines that cross are called lines. 4.

More information

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G))

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 10 Graphs 10.1 Graphs and Graph Models 1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 2. an edge is present, say e = {u,

More information

Using Euler s Theorem

Using Euler s Theorem Using Euler s Theorem Suppose that a connected, planar graph has 249 vertices and 57 faces. How many edges does it have? A: 106 B: 194 C: 304 D: 306 E: We don t have enough information Using Euler s Theorem

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 13 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite to writing a

More information

Math 575 Exam 3. (t). What is the chromatic number of G?

Math 575 Exam 3. (t). What is the chromatic number of G? Math 575 Exam 3 Name 1 (a) Draw the Grötsch graph See your notes (b) Suppose that G is a graph having 6 vertices and 9 edges and that the chromatic polynomial of G is given below Fill in the missing coefficients

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

K 4,4 e Has No Finite Planar Cover

K 4,4 e Has No Finite Planar Cover K 4,4 e Has No Finite Planar Cover Petr Hliněný Dept. of Applied Mathematics, Charles University, Malostr. nám. 25, 118 00 Praha 1, Czech republic (E-mail: hlineny@kam.ms.mff.cuni.cz) February 9, 2005

More information

Circuits and Paths. April 13, 2014

Circuits and Paths. April 13, 2014 Circuits and Paths April 13, 2014 Warm Up Problem Quandroland is an insect country that has four cities. Draw all possible ways tunnels can join the cities in Quadroland. (Remember that some cities might

More information

Topics Covered. Introduction to Graphs Euler s Theorem Hamiltonian Circuits The Traveling Salesman Problem Trees and Kruskal s Algorithm

Topics Covered. Introduction to Graphs Euler s Theorem Hamiltonian Circuits The Traveling Salesman Problem Trees and Kruskal s Algorithm Graph Theory Topics Covered Introduction to Graphs Euler s Theorem Hamiltonian Circuits The Traveling Salesman Problem Trees and Kruskal s Algorithm What is a graph? A collection of points, called vertices

More information

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1. Define Graph. A graph G = (V, E) consists

More information

For Exercises 1 4, follow these directions. Use the given side lengths.

For Exercises 1 4, follow these directions. Use the given side lengths. A C E Applications Connections Extensions Applications For Exercises 1 4, follow these directions. Use the given side lengths. If possible, build a triangle with the side lengths. Sketch your triangle.

More information

Assignments are handed in on Tuesdays in even weeks. Deadlines are:

Assignments are handed in on Tuesdays in even weeks. Deadlines are: Tutorials at 2 3, 3 4 and 4 5 in M413b, on Tuesdays, in odd weeks. i.e. on the following dates. Tuesday the 28th January, 11th February, 25th February, 11th March, 25th March, 6th May. Assignments are

More information

Symmetric Product Graphs

Symmetric Product Graphs Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 5-20-2015 Symmetric Product Graphs Evan Witz Follow this and additional works at: http://scholarworks.rit.edu/theses

More information

MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS

MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS 1. Question 1 Part i. There are many Hamiltonian cycles; e.g., ABLKJEDFIHGC. We now show that if we remove vertex D, the result G \ {D} is not hamiltonian. Note

More information

Graph Algorithms. Tours in Graphs. Graph Algorithms

Graph Algorithms. Tours in Graphs. Graph Algorithms Graph Algorithms Tours in Graphs Graph Algorithms Special Paths and Cycles in Graphs Euler Path: A path that traverses all the edges of the graph exactly once. Euler Cycle: A cycle that traverses all the

More information

Identify parallel lines, skew lines and perpendicular lines.

Identify parallel lines, skew lines and perpendicular lines. Learning Objectives Identify parallel lines, skew lines and perpendicular lines. Parallel Lines and Planes Parallel lines are coplanar (they lie in the same plane) and never intersect. Below is an example

More information

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur Lecture : Graphs Rajat Mittal IIT Kanpur Combinatorial graphs provide a natural way to model connections between different objects. They are very useful in depicting communication networks, social networks

More information

MTH-129 Review for Test 4 Luczak

MTH-129 Review for Test 4 Luczak MTH-129 Review for Test 4 Luczak 1. On each of three consecutive days the National Weather Service announces that there is a 50-50 chance of rain. Assuming that they are correct, answer the following:

More information

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow Introduction to Engineering Systems, ESD.00 Lecture 7 Networks Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow The Bridges of Königsberg The town of Konigsberg in 18 th century

More information