Topology: Basic ideas

Size: px
Start display at page:

Download "Topology: Basic ideas"

Transcription

1 For I will give you a mouth and wisdom, which all your adversaries shall not be able to gainsay nor resist. Topology: Basic ideas Yuri Dabaghian Baylor College of Medicine & Rice University dabaghian at rice.edu

2 Historical background Topology appeared in late XIX early XX century H. Poincare (1895) F. Hausdorff (1914) XIX century geometry century N. Lobachevsky (1826) J. Boliai (1829) K. F. Gauss (1830s) Erlangen Program, F. Klein (1872)

3 What defines geometric properties? Geometric characteristics: angles, lengths, etc = 2, 3 = , 5 6, 5 7, etc. How to match figures in Euclidean geometry: use translations + rotations Other geometries other transformations, other geometric characteristics The larger the group of transformations, the fewer geometric properties What is the largest group of transformations?

4 Continuous transformations What is the largest group of transformations that does not violate the structure of the space itself? What is space? What is spatial continuity?

5 The fabric of space 1. Space consists of points 2. What turns a set of points into a space? 3. The notion of spatial proximity

6 The fabric of space, constructively Take a subset of points Tour de magie: define this set as a proximity neighborhood. From now on the red points are neighbors

7 The fabric of space, constructively Take another subset of points Tour de magie 2: define this set as a proximity neighborhood. From now on the blue points are also neighbors

8 The fabric of space, constructively Take another subset of points Tour de magie 3: define this set as another proximity neighborhood. From now on the green points are also neighbors

9 The fabric of space, constructively Take another subset of points Tour de magie 4: define this set as another proximity neighborhood. From now on the purple points are also neighbors

10 Topology, definition A set X with a system of neighborhoods, T, such that: 1. The whole set X and the empty set are neighborhoods, X T, 2. A finite intersection of neighborhoods is a neighborhood, 3. Any union of neighborhoods is a neighborhood i N i ii N i T n i1 T N i T

11 Continuous maps Continuous maps: maps that preserve topological structure Topology: area of mathematics concerned with spatial properties that are preserved under continuous deformations of spaces and geometric objects Intuitively: elastic stretches and deformations are allowed, cutting and gluing is not

12 Topological properties, examples What are the topological properties? How to define them? How to describe them? How to compute them?

13

14 Topological properties, examples A space can have many pieces C 3 C 1 C 2

15 Topological properties, examples z γ y w γ 3 C 3 x γ 1 C 1 u γ 2 v C2 Path connectedness

16 Topological properties, examples x γ 1 C 1 z γ y w γ 3 C 3 Path: I u γ 2 0,1 ( t) v C 2 Path connectedness

17 Topological properties, examples γ z γ 3 C 3 y w Path: x γ 1 C 1 I u γ 2 0,1 ( t) v C 2 (0) y, 1 w...? Path connectedness

18 Topological properties, examples z [γ 3 ] γ y w C 3 x [γ 1 ] C 1 [γ] 1 C 1, [γ] 2 C 2, [γ] 3 C 3. [γ 2 ] u v C 2 Path connectedness: there are 3 types of paths

19 Paths Path γ x y I 0,1 ( t) Are there path types,[γ]?

20 Fundamental group X Path γ x γ I 0,1 ( t) 1. Use closed paths S 1 () t Equivalence class,[γ], is defined, m Topological index m of the path [γ] m

21 Fundamental group X 1. Use closed paths S 1 () t x γ 2. Paths combine: Equivalence classes combine: Topological index combines: 1 m 2 n 3 n m ( paths) ( indexes) (n,m) n+m Fundamental group, π 1 (X)= Z

22 Two holes ( index?) x γ

23 Two holes ( mn, ) x γ 1 ( m, m ) 2 ( n, n ) 3 ( m n, m n ) Fundamental group, π 1 = Z Z

24 3 holes ( m, n, k ) x γ Fundamental group, π 1 = Z Z Z

25 Fundamental group, examples Circle π 1 = Z Sphere π 1 = 0 Torus π 1 = Z Z

26 How useful are topological indexes? π 1 = 0 No loops π 1 = Z? 1 loop π 1 = Z Z? 2 loops

27 Topological equivalence and homotopies hollow

28 Topological equivalence and homotopies

29 Applied Topology: knots 2 3 1

30 Applied Topology: embedding aspect The fundamental group of the knot complements in R 3 are different knots are different π 1 (R 3 \ ) π 1 (R 3 \ )

31 Applied Topology: links The topological cycle of a replicon, EMBO reports (2004)

32

33 Summary 1. Topology, the idea 2. The notion of continuity 3. Topological indexes 4. Fundamental group Next: Simplicial complexes and homologies Literature: 1. J. Munkres, Topology (2000) and Elements Of Algebraic Topology (1996) 2. A. Zomorodian, Topology for computing, (2009) 3. A. Hatcher, Algebraic Topology, (2002),

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

The Fundamental Group, Braids and Circles

The Fundamental Group, Braids and Circles The Fundamental Group, Braids and Circles Pete Goetz Mathematics Colloquium Humboldt State University April 17, 2014 Outline 1) Topology 2) Path Homotopy and The Fundamental Group 3) Covering Spaces and

More information

Geometric structures on 2-orbifolds

Geometric structures on 2-orbifolds Geometric structures on 2-orbifolds Section 1: Manifolds and differentiable structures S. Choi Department of Mathematical Science KAIST, Daejeon, South Korea 2010 Fall, Lectures at KAIST S. Choi (KAIST)

More information

Lecture 7: Jan 31, Some definitions related to Simplical Complex. 7.2 Topological Equivalence and Homeomorphism

Lecture 7: Jan 31, Some definitions related to Simplical Complex. 7.2 Topological Equivalence and Homeomorphism CS 6170 Computational Topology: Topological Data Analysis University of Utah Spring 2017 School of Computing Lecture 7: Jan 31, 2017 Lecturer: Prof. Bei Wang Scribe: Avani Sharma,

More information

Manifolds. Chapter X. 44. Locally Euclidean Spaces

Manifolds. Chapter X. 44. Locally Euclidean Spaces Chapter X Manifolds 44. Locally Euclidean Spaces 44 1. Definition of Locally Euclidean Space Let n be a non-negative integer. A topological space X is called a locally Euclidean space of dimension n if

More information

6.3 Poincare's Theorem

6.3 Poincare's Theorem Figure 6.5: The second cut. for some g 0. 6.3 Poincare's Theorem Theorem 6.3.1 (Poincare). Let D be a polygon diagram drawn in the hyperbolic plane such that the lengths of its edges and the interior angles

More information

Notes on Topology. Andrew Forrester January 28, Notation 1. 2 The Big Picture 1

Notes on Topology. Andrew Forrester January 28, Notation 1. 2 The Big Picture 1 Notes on Topology Andrew Forrester January 28, 2009 Contents 1 Notation 1 2 The Big Picture 1 3 Fundamental Concepts 2 4 Topological Spaces and Topologies 2 4.1 Topological Spaces.........................................

More information

Topological space - Wikipedia, the free encyclopedia

Topological space - Wikipedia, the free encyclopedia Page 1 of 6 Topological space From Wikipedia, the free encyclopedia Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity.

More information

INTRODUCTION TO TOPOLOGY

INTRODUCTION TO TOPOLOGY INTRODUCTION TO TOPOLOGY MARTINA ROVELLI These notes are an outline of the topics covered in class, and are not substitutive of the lectures, where (most) proofs are provided and examples are discussed

More information

Homology of Simplicial Complexes

Homology of Simplicial Complexes Homology of Simplicial Complexes Math, David Perkinson Introduction. This is an introduction to the homology of simplicial complexes suitable for a first course in linear algebra. It uses little more than

More information

CSE 5559 Computational Topology: Theory, algorithms, and applications to data analysis. Lecture 0: Introduction. Instructor: Yusu Wang

CSE 5559 Computational Topology: Theory, algorithms, and applications to data analysis. Lecture 0: Introduction. Instructor: Yusu Wang CSE 5559 Computational Topology: Theory, algorithms, and applications to data analysis Lecture 0: Introduction Instructor: Yusu Wang Lecture 0: Introduction What is topology Why should we be interested

More information

A Flavor of Topology. Shireen Elhabian and Aly A. Farag University of Louisville January 2010

A Flavor of Topology. Shireen Elhabian and Aly A. Farag University of Louisville January 2010 A Flavor of Topology Shireen Elhabian and Aly A. Farag University of Louisville January 2010 In 1670 s I believe that we need another analysis properly geometric or linear, which treats place directly

More information

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

6.2 Classification of Closed Surfaces

6.2 Classification of Closed Surfaces Table 6.1: A polygon diagram 6.1.2 Second Proof: Compactifying Teichmuller Space 6.2 Classification of Closed Surfaces We saw that each surface has a triangulation. Compact surfaces have finite triangulations.

More information

Surfaces Beyond Classification

Surfaces Beyond Classification Chapter XII Surfaces Beyond Classification In most of the textbooks which present topological classification of compact surfaces the classification is the top result. However the topology of 2- manifolds

More information

Topology of Surfaces

Topology of Surfaces EM225 Topology of Surfaces Geometry and Topology In Euclidean geometry, the allowed transformations are the so-called rigid motions which allow no distortion of the plane (or 3-space in 3 dimensional geometry).

More information

Math 734 Aug 22, Differential Geometry Fall 2002, USC

Math 734 Aug 22, Differential Geometry Fall 2002, USC Math 734 Aug 22, 2002 1 Differential Geometry Fall 2002, USC Lecture Notes 1 1 Topological Manifolds The basic objects of study in this class are manifolds. Roughly speaking, these are objects which locally

More information

Lecture 5: Simplicial Complex

Lecture 5: Simplicial Complex Lecture 5: Simplicial Complex 2-Manifolds, Simplex and Simplicial Complex Scribed by: Lei Wang First part of this lecture finishes 2-Manifolds. Rest part of this lecture talks about simplicial complex.

More information

Geometrization and the Poincaré conjecture

Geometrization and the Poincaré conjecture Geometrization and the Poincaré conjecture Jan Metzger BRIGFOS, 2008 History of the Poincaré conjecture In 1904 Poincaré formulated his conjecture. It is a statement about three dimensional geometric objects,

More information

Assignment 8; Due Friday, March 10

Assignment 8; Due Friday, March 10 Assignment 8; Due Friday, March 10 The previous two exercise sets covered lots of material. We ll end the course with two short assignments. This one asks you to visualize an important family of three

More information

Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary?

Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Is the converse true? What happens in the classical special case?

More information

Topology Hmwk 3 All problems are from Allen Hatcher Algebraic Topology (online) ch 1

Topology Hmwk 3 All problems are from Allen Hatcher Algebraic Topology (online) ch 1 Topology Hmwk 3 All problems are from Allen Hatcher Algebraic Topology (online) ch Andrew Ma December 23, 203 This assignment has been corrected post - grading...6 (a) Proof. Assume for a contradiction

More information

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY KARL L. STRATOS Abstract. The conventional method of describing a graph as a pair (V, E), where V and E repectively denote the sets of vertices and edges,

More information

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Definition 1.1. Let X be a set and T a subset of the power set P(X) of X. Then T is a topology on X if and only if all of the following

More information

The Classification Problem for 3-Manifolds

The Classification Problem for 3-Manifolds The Classification Problem for 3-Manifolds Program from ca. 1980: 1. Canonical decomposition into simpler pieces. 2. Explicit classification of special types of pieces. 3. Generic pieces are hyperbolic

More information

The geometry and combinatorics of closed geodesics on hyperbolic surfaces

The geometry and combinatorics of closed geodesics on hyperbolic surfaces The geometry and combinatorics of closed geodesics on hyperbolic surfaces CUNY Graduate Center September 8th, 2015 Motivating Question: How are the algebraic/combinatoric properties of closed geodesics

More information

Part 3. Topological Manifolds

Part 3. Topological Manifolds Part 3 Topological Manifolds This part is devoted to study of the most important topological spaces, the spaces which provide a scene for most of geometric branches in mathematics such as Differential

More information

Directed algebraic topology and applications

Directed algebraic topology and applications Department of Mathematical Sciences, Aalborg University, Denmark Discrete Structures in Algebra, Geometry, Topology and Computer Science 6ECM July 3, 2012 Algebraic Topology Homotopy Homotopy: 1-parameter

More information

Some examples: Fundamental groups of graphs: Every finite connected graph Γ has a maximal tree T, a connected subgraph with no simple circuits.

Some examples: Fundamental groups of graphs: Every finite connected graph Γ has a maximal tree T, a connected subgraph with no simple circuits. Some examples: Fundamental groups of graphs: Every finite connected graph Γ has a maximal tree T, a connected subgraph with no simple circuits. Since any tree is the union of smaller trees joined at a

More information

Teichmüller Space and Fenchel-Nielsen Coordinates

Teichmüller Space and Fenchel-Nielsen Coordinates Teichmüller Space and Fenchel-Nielsen Coordinates Nathan Lopez November 30, 2015 Abstract Here we give an overview of Teichmüller space and its realization as a smooth manifold through Fenchel- Nielsen

More information

Extension as the background of substance a formal approach

Extension as the background of substance a formal approach Extension as the background of substance a formal approach Bart lomiej Skowron Wroc law University The Pontifical University of John Paul II, Kraków bartlomiej.skowron@gmail.com February 11, 2013 Presentation

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Mathematical Tools for 3D Shape Analysis and Description

Mathematical Tools for 3D Shape Analysis and Description outline Mathematical Tools for 3D Shape Analysis and Description SGP 2013 Graduate School Silvia Biasotti, Andrea Cerri, Michela Spagnuolo Istituto di Matematica Applicata e Tecnologie Informatiche E.

More information

A Multicover Nerve for Geometric Inference. Don Sheehy INRIA Saclay, France

A Multicover Nerve for Geometric Inference. Don Sheehy INRIA Saclay, France A Multicover Nerve for Geometric Inference Don Sheehy INRIA Saclay, France Computational geometers use topology to certify geometric constructions. Computational geometers use topology to certify geometric

More information

Surfaces. 14 April Surfaces 14 April /29

Surfaces. 14 April Surfaces 14 April /29 Surfaces 14 April 2014 Surfaces 14 April 2014 1/29 Last Week Last week, when we discussed graph theory, we saw that the maximum colors any map might need depends on the surface on which the map is drawn.

More information

THE POINCARÉ CONJECTURE The Mathematics of Smooth Behavior

THE POINCARÉ CONJECTURE The Mathematics of Smooth Behavior THE POINCARÉ CONJECTURE The Mathematics of Smooth Behavior Freshman Seminar University of California, Irvine Bernard Russo University of California, Irvine Spring 2015 Bernard Russo (UCI) THE POINCARÉ

More information

Ratcliffe, Foundations of hyperbolic manifolds, Springer (elementary)

Ratcliffe, Foundations of hyperbolic manifolds, Springer (elementary) 1 Introduction About this lecture P SL(2, C) and hyperbolic 3-spaces. Subgroups of P SL(2, C) Hyperbolic manifolds and orbifolds Examples 3-manifold topology and Dehn surgery Rigidity Volumes and ideal

More information

Euler s Theorem. Brett Chenoweth. February 26, 2013

Euler s Theorem. Brett Chenoweth. February 26, 2013 Euler s Theorem Brett Chenoweth February 26, 2013 1 Introduction This summer I have spent six weeks of my holidays working on a research project funded by the AMSI. The title of my project was Euler s

More information

Algebraic Topology: A brief introduction

Algebraic Topology: A brief introduction Algebraic Topology: A brief introduction Harish Chintakunta This chapter is intended to serve as a brief, and far from comprehensive, introduction to Algebraic Topology to help the reading flow of this

More information

Homework Set #2 Math 440 Topology Topology by J. Munkres

Homework Set #2 Math 440 Topology Topology by J. Munkres Homework Set #2 Math 440 Topology Topology by J. Munkres Clayton J. Lungstrum October 26, 2012 Exercise 1. Prove that a topological space X is Hausdorff if and only if the diagonal = {(x, x) : x X} is

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Heegaard splittings and virtual fibers

Heegaard splittings and virtual fibers Heegaard splittings and virtual fibers Joseph Maher maher@math.okstate.edu Oklahoma State University May 2008 Theorem: Let M be a closed hyperbolic 3-manifold, with a sequence of finite covers of bounded

More information

Lectures on topology. S. K. Lando

Lectures on topology. S. K. Lando Lectures on topology S. K. Lando Contents 1 Reminder 2 1.1 Topological spaces and continuous mappings.......... 3 1.2 Examples............................. 4 1.3 Properties of topological spaces.................

More information

An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference

An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference Sophia-Antipolis, January 2016 Winter School An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference Frédéric Chazal INRIA Saclay - Ile-de-France frederic.chazal@inria.fr

More information

DOWNLOAD OR READ : TOPOLOGICAL SPACES INCLUDING A TREATMENT OF MULTI VALUED FUNCTIONS VECTOR SPACES AND CONVEXITY PDF EBOOK EPUB MOBI

DOWNLOAD OR READ : TOPOLOGICAL SPACES INCLUDING A TREATMENT OF MULTI VALUED FUNCTIONS VECTOR SPACES AND CONVEXITY PDF EBOOK EPUB MOBI DOWNLOAD OR READ : TOPOLOGICAL SPACES INCLUDING A TREATMENT OF MULTI VALUED FUNCTIONS VECTOR SPACES AND CONVEXITY PDF EBOOK EPUB MOBI Page 1 Page 2 convexity topological spaces including a pdf convexity

More information

INTRODUCTION TO 3-MANIFOLDS

INTRODUCTION TO 3-MANIFOLDS INTRODUCTION TO 3-MANIFOLDS NIK AKSAMIT As we know, a topological n-manifold X is a Hausdorff space such that every point contained in it has a neighborhood (is contained in an open set) homeomorphic to

More information

1 Euler characteristics

1 Euler characteristics Tutorials: MA342: Tutorial Problems 2014-15 Tuesday, 1-2pm, Venue = AC214 Wednesday, 2-3pm, Venue = AC201 Tutor: Adib Makroon 1 Euler characteristics 1. Draw a graph on a sphere S 2 PROBLEMS in such a

More information

Topic: Orientation, Surfaces, and Euler characteristic

Topic: Orientation, Surfaces, and Euler characteristic Topic: Orientation, Surfaces, and Euler characteristic The material in these notes is motivated by Chapter 2 of Cromwell. A source I used for smooth manifolds is do Carmo s Riemannian Geometry. Ideas of

More information

751 Problem Set I JWR. Due Sep 28, 2004

751 Problem Set I JWR. Due Sep 28, 2004 751 Problem Set I JWR Due Sep 28, 2004 Exercise 1. For any space X define an equivalence relation by x y iff here is a path γ : I X with γ(0) = x and γ(1) = y. The equivalence classes are called the path

More information

Classifications in Low Dimensions

Classifications in Low Dimensions Chapter XI Classifications in Low Dimensions In different geometric subjects there are different ideas which dimensions are low and which high. In topology of manifolds low dimension means at most 4. However,

More information

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 6 - Slide 1 AND

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 6 - Slide 1 AND Copyright 2009 Pearson Education, Inc. Chapter 9 Section 6 - Slide 1 AND Chapter 9 Geometry Copyright 2009 Pearson Education, Inc. Chapter 9 Section 6 - Slide 2 WHAT YOU WILL LEARN Transformational geometry,

More information

Final Exam, F11PE Solutions, Topology, Autumn 2011

Final Exam, F11PE Solutions, Topology, Autumn 2011 Final Exam, F11PE Solutions, Topology, Autumn 2011 Question 1 (i) Given a metric space (X, d), define what it means for a set to be open in the associated metric topology. Solution: A set U X is open if,

More information

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University)

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University) Math 395: Topology Bret Benesh (College of Saint Benedict/Saint John s University) October 30, 2012 ii Contents Acknowledgments v 1 Topological Spaces 1 2 Closed sets and Hausdorff spaces 7 iii iv CONTENTS

More information

CLASSIFICATION OF SURFACES

CLASSIFICATION OF SURFACES CLASSIFICATION OF SURFACES YUJIE ZHANG Abstract. The sphere, Möbius strip, torus, real projective plane and Klein bottle are all important examples of surfaces (topological 2-manifolds). In fact, via the

More information

Section 9.5. Tessellations. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 9.5. Tessellations. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 9.5 Tessellations What You Will Learn Tessellations 9.5-2 Tessellations A tessellation (or tiling) is a pattern consisting of the repeated use of the same geometric figures to entirely cover a

More information

Introduction to Topology

Introduction to Topology Renzo s Math 490 Introduction to Topology Tom Babinec Chris Best Michael Bliss Nikolai Brendler Eric Fu Adriane Fung Tyler Klein Alex Larson Topcue Lee John Madonna Joel Mousseau Nick Posavetz Matt Rosenberg

More information

POINT SET TOPOLOGY. Introduction

POINT SET TOPOLOGY. Introduction POINT SET TOPOLOGY Introduction In order to establish a foundation for topological evolution, an introduction to topological ideas and definitions is presented in terms of point set methods for which the

More information

PERSISTENT HOMOLOGY OF FINITE TOPOLOGICAL SPACES

PERSISTENT HOMOLOGY OF FINITE TOPOLOGICAL SPACES PERSISTENT HOMOLOGY OF FINITE TOPOLOGICAL SPACES HANEY MAXWELL Abstract. We introduce homology and finite topological spaces. From the basis of that introduction, persistent homology is applied to finite

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD of π 1 (M 2 )onπ 1 (M 4 ) by conjugation. π 1 (M 4 ) has a trivial center, so in other words the action of π 1 (M 4 ) on itself is effective.

More information

EXPERIENCING GEOMETRY

EXPERIENCING GEOMETRY EXPERIENCING GEOMETRY EUCLIDEAN AND NON-EUCLIDEAN WITH HISTORY THIRD EDITION David W. Henderson Daina Taimina Cornell University, Ithaca, New York PEARSON Prentice Hall Upper Saddle River, New Jersey 07458

More information

Introduction to Topology MA3F1

Introduction to Topology MA3F1 Introduction to Introduction to Topology MA3F1 David Mond 1 Conventions September 2016 Topologists use a lot of diagrams showing spaces and maps. For example X f Y h q p W g Z has four spaces and five

More information

CONNECTED SPACES AND HOW TO USE THEM

CONNECTED SPACES AND HOW TO USE THEM CONNECTED SPACES AND HOW TO USE THEM 1. How to prove X is connected Checking that a space X is NOT connected is typically easy: you just have to find two disjoint, non-empty subsets A and B in X, such

More information

ALGEBRAIC CURVES OVER R

ALGEBRAIC CURVES OVER R ALGEBRAIC CURVES OVER R KIRSTEN WICKELGREN 1. ALGEBRAIC CURVES OVER R Graphing y = x 2 gives the familiar picture of the parabola, and it is reasonable to call this graph a curve. More generally, we could

More information

The Cyclic Cycle Complex of a Surface

The Cyclic Cycle Complex of a Surface The Cyclic Cycle Complex of a Surface Allen Hatcher A recent paper [BBM] by Bestvina, Bux, and Margalit contains a construction of a cell complex that gives a combinatorial model for the collection of

More information

Introduction to the Mathematical Concepts of CATIA V5

Introduction to the Mathematical Concepts of CATIA V5 CATIA V5 Training Foils Introduction to the Mathematical Concepts of CATIA V5 Version 5 Release 19 January 2009 EDU_CAT_EN_MTH_FI_V5R19 1 About this course Objectives of the course Upon completion of this

More information

Topology notes. Basic Definitions and Properties.

Topology notes. Basic Definitions and Properties. Topology notes. Basic Definitions and Properties. Intuitively, a topological space consists of a set of points and a collection of special sets called open sets that provide information on how these points

More information

Topology I Test 1 Solutions October 13, 2008

Topology I Test 1 Solutions October 13, 2008 Topology I Test 1 Solutions October 13, 2008 1. Do FIVE of the following: (a) Give a careful definition of connected. A topological space X is connected if for any two sets A and B such that A B = X, we

More information

Hyperbolic Geometry on the Figure-Eight Knot Complement

Hyperbolic Geometry on the Figure-Eight Knot Complement Hyperbolic Geometry on the Figure-Eight Knot Complement Alex Gutierrez Arizona State University December 10, 2012 Hyperbolic Space Hyperbolic Space Hyperbolic space H n is the unique complete simply-connected

More information

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Computing the Betti Numbers of Arrangements Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Arrangements in Computational Geometry An arrangement in R k is

More information

1 Introduction and Review

1 Introduction and Review Figure 1: The torus. 1 Introduction and Review 1.1 Group Actions, Orbit Spaces and What Lies in Between Our story begins with the torus, which we will think of initially as the identification space pictured

More information

Math 6510 Homework 3

Math 6510 Homework 3 Notational Note: In any presentation of a group G, I will explicitly set the relation equal to e as opposed to simply writing a presentation like G = a, b, c, d abcd 1. This is a bit untraditional, but

More information

Topological Graph Theory and Graphs of Positive Combinatorial Curvature. Marissa L. Childs

Topological Graph Theory and Graphs of Positive Combinatorial Curvature. Marissa L. Childs Topological Graph Theory and Graphs of Positive Combinatorial Curvature by Marissa L. Childs A thesis submitted in partial fulfillment of the requirements for graduation with Honors in Mathematics. Whitman

More information

Lecture-12: Closed Sets

Lecture-12: Closed Sets and Its Examples Properties of Lecture-12: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Introduction and Its Examples Properties of 1 Introduction

More information

Math 528 Jan 11, Geometry and Topology II Fall 2005, USC

Math 528 Jan 11, Geometry and Topology II Fall 2005, USC Math 528 Jan 11, 2005 1 Geometry and Topology II Fall 2005, USC Lecture Notes 2 1.4 Definition of Manifolds By a basis for a topological space (X, T), we mean a subset B of T such that for any U T and

More information

Planar Graphs and Surfaces. Graphs 2 1/58

Planar Graphs and Surfaces. Graphs 2 1/58 Planar Graphs and Surfaces Graphs 2 1/58 Last time we discussed the Four Color Theorem, which says that any map can be colored with at most 4 colors and not have two regions that share a border having

More information

William P. Thurston. The Geometry and Topology of Three-Manifolds

William P. Thurston. The Geometry and Topology of Three-Manifolds William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 2002 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed

More information

Basics of Combinatorial Topology

Basics of Combinatorial Topology Chapter 7 Basics of Combinatorial Topology 7.1 Simplicial and Polyhedral Complexes In order to study and manipulate complex shapes it is convenient to discretize these shapes and to view them as the union

More information

Recent 3D Printed Sculptures

Recent 3D Printed Sculptures Recent 3D Printed Sculptures Henry Segerman November 13, 2011 1 Introduction I am a mathematician and a mathematical artist, currently a research fellow in the Department of Mathematics and Statistics

More information

Lecture 0: Reivew of some basic material

Lecture 0: Reivew of some basic material Lecture 0: Reivew of some basic material September 12, 2018 1 Background material on the homotopy category We begin with the topological category TOP, whose objects are topological spaces and whose morphisms

More information

THE UNIFORMIZATION THEOREM AND UNIVERSAL COVERS

THE UNIFORMIZATION THEOREM AND UNIVERSAL COVERS THE UNIFORMIZATION THEOREM AND UNIVERSAL COVERS PETAR YANAKIEV Abstract. This paper will deal with the consequences of the Uniformization Theorem, which is a major result in complex analysis and differential

More information

Simplicial Hyperbolic Surfaces

Simplicial Hyperbolic Surfaces Simplicial Hyperbolic Surfaces Talk by Ken Bromberg August 21, 2007 1-Lipschitz Surfaces- In this lecture we will discuss geometrically meaningful ways of mapping a surface S into a hyperbolic manifold

More information

ON THE FUNDAMENTAL GROUP OF SURFACES

ON THE FUNDAMENTAL GROUP OF SURFACES ON THE FUNDAMENTAL GROUP OF SURFACES MATTHEW ACTIPES Abstract. This paper begins by reviewing the idea of homotopy while motivating the idea of the fundamental group. We then define free groups and the

More information

Introduction to Algebraic and Geometric Topology Week 5

Introduction to Algebraic and Geometric Topology Week 5 Introduction to Algebraic and Geometric Topology Week 5 Domingo Toledo University of Utah Fall 2017 Topology of Metric Spaces I (X, d) metric space. I Recall the definition of Open sets: Definition U

More information

A Preliminary Study of Klein Knots

A Preliminary Study of Klein Knots A Preliminary Study of Klein Knots Louisa Catalano, David Freund, Rutendo Ruzvidzo, Jennifer Bowen, and John Ramsay The College of Wooster Department of Mathematics Wooster, OH 44691 LCatalano11@wooster.edu,

More information

Klein Links and Braids

Klein Links and Braids Rose- Hulman Undergraduate Mathematics Journal Klein Links and Braids David Freund a Sarah Smith-Polderman b Volume 14, No. 1, Spring 2013 Sponsored by Rose-Hulman Institute of Technology Department of

More information

CLASSIFICATION OF SURFACES

CLASSIFICATION OF SURFACES CLASSIFICATION OF SURFACES JUSTIN HUANG Abstract. We will classify compact, connected surfaces into three classes: the sphere, the connected sum of tori, and the connected sum of projective planes. Contents

More information

The Use of Repeating Patterns to Teach Hyperbolic Geometry Concepts

The Use of Repeating Patterns to Teach Hyperbolic Geometry Concepts The Use of Repeating Patterns to Teach Hyperbolic Geometry Concepts Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: ddunham@d.umn.edu Web

More information

Geometrically maximal knots

Geometrically maximal knots Geometrically maximal knots Abhijit Champanerkar Department of Mathematics, College of Staten Island & The Graduate Center, CUNY Discussion Meeting on Knot theory and its Applications IISER Mohali, India

More information

The Construction of a Hyperbolic 4-Manifold with a Single Cusp, Following Kolpakov and Martelli. Christopher Abram

The Construction of a Hyperbolic 4-Manifold with a Single Cusp, Following Kolpakov and Martelli. Christopher Abram The Construction of a Hyperbolic 4-Manifold with a Single Cusp, Following Kolpakov and Martelli by Christopher Abram A Thesis Presented in Partial Fulfillment of the Requirement for the Degree Master of

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

Topology and the Analysis of High-Dimensional Data

Topology and the Analysis of High-Dimensional Data Topology and the Analysis of High-Dimensional Data Workshop on Algorithms for Modern Massive Data Sets June 23, 2006 Stanford Gunnar Carlsson Department of Mathematics Stanford University Stanford, California

More information

γ 2 γ 3 γ 1 R 2 (b) a bounded Yin set (a) an unbounded Yin set

γ 2 γ 3 γ 1 R 2 (b) a bounded Yin set (a) an unbounded Yin set γ 1 γ 3 γ γ 3 γ γ 1 R (a) an unbounded Yin set (b) a bounded Yin set Fig..1: Jordan curve representation of a connected Yin set M R. A shaded region represents M and the dashed curves its boundary M that

More information

Homotopy type of the complement. complex lines arrangements

Homotopy type of the complement. complex lines arrangements On the homotopy type of the complement of complex lines arrangements Department of Geometry-Topology Institute of Mathematics, VAST, Hanoi Singapore December 15, 2008 Introduction Let A be an l-arrangement,

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

or else take their intersection. Now define

or else take their intersection. Now define Samuel Lee Algebraic Topology Homework #5 May 10, 2016 Problem 1: ( 1.3: #3). Let p : X X be a covering space with p 1 (x) finite and nonempty for all x X. Show that X is compact Hausdorff if and only

More information

Decomposition of the figure-8 knot

Decomposition of the figure-8 knot CHAPTER 1 Decomposition of the figure-8 knot This book is an introduction to knots, links, and their geometry. Before we begin, we need to define carefully exactly what we mean by knots and links, and

More information

Research in Computational Differential Geomet

Research in Computational Differential Geomet Research in Computational Differential Geometry November 5, 2014 Approximations Often we have a series of approximations which we think are getting close to looking like some shape. Approximations Often

More information

4.2 Simplicial Homology Groups

4.2 Simplicial Homology Groups 4.2. SIMPLICIAL HOMOLOGY GROUPS 93 4.2 Simplicial Homology Groups 4.2.1 Simplicial Complexes Let p 0, p 1,... p k be k + 1 points in R n, with k n. We identify points in R n with the vectors that point

More information

Simplicial Complexes: Second Lecture

Simplicial Complexes: Second Lecture Simplicial Complexes: Second Lecture 4 Nov, 2010 1 Overview Today we have two main goals: Prove that every continuous map between triangulable spaces can be approximated by a simplicial map. To do this,

More information