Q-Gorenstein deformation families of Fano varieties or The combinatorics of Mirror Symmetry. Alexander Kasprzyk

Size: px
Start display at page:

Download "Q-Gorenstein deformation families of Fano varieties or The combinatorics of Mirror Symmetry. Alexander Kasprzyk"

Transcription

1 Q-Gorenstein deformation families of Fano varieties or The combinatorics of Mirror Symmetry Alexander Kasprzyk

2 Fano manifolds Smooth varieties, called manifolds, come with a natural notion of curvature, and fall into one of three classes. Negative curvature Flat Positive curvature General type Calabi Yau Fano There are finitely many Fano manifolds in each dimension.

3 Fano manifolds: Basic building blocks of geometry Fano manifolds are the building blocks from which other varieties are formed. Both from the Minimal Model Program And in terms of explicit constructions Fano art by Gemma Anderson

4 Fano manifolds: Classification The classification of Fano manifolds is known up to dimension. Dimension 1: P 1 (i.e. the Reimann sphere) Dimension 2 (del Pezzo, 1880s): P 2 P 1 P 1 The blow-up of P 2 in at most 8 points. These are called del Pezzo surfaces. Dimension (Mori Mukai, 1980s): 105 cases Very little is known in dimension 4.

5 Fano polytopes and toric geometry Fix a lattice N Z n. A convex lattice polytope P N Q = N Q is Fano if: dim(p) = n; 0 int(p); each v vert(p) is a primitive lattice point of N. Two Fano polytopes P and Q are considered to be isomorphic if there exists a change of basis of N sending P to Q. That is, P Q ϕ(p) = Q, for some ϕ GL n (Z) via ϕ e 1 e 1 e 2 e 1 e 2 We consider Fano polytopes only up to isomorphism.

6 Fano polytopes and toric geometry To a Fano polytope P N Q we associate the spanning fan. The spanning fan describes a toric Fano variety X P. X P = P 2 The geometry of X P is encoded in the combinatorics of P. For example, the singularities of X P can be read off P.

7 Toric Fano manifolds: Classification A Fano polytope P is smooth if: For each facet F of P, vert(f ) are a Z-basis of N. n-dimensional toric Fano manifold X smooth Fano polytope P with dim(p) = n toric geometry Dimension 2: P 2 ; P 1 P 1 ; the blow-up of P 2 in at most points.

8 Toric Fano manifolds: Classification Being toric is unusual: Dimension 2: 5 of the 10 del Pezzo surfaces are toric. Dimension : 18 of the 105 Fano manifolds are toric. But being toric is good: we can use the combinatorics of lattice polytopes to study them. For example, Øbro (2007) gave an efficient algorithm for classifying smooth Fano polytopes in any dimension. Dimension Number They grow slowly approximately by a power of 10 per dimension.

9 Mirror Symmetry n-dimensional Fano manifold X Laurent polynomial f in n variables Mirror Symmetry f = x + y + z + 1 xyz deformation n-dimensional toric Fano variety X P Newt(f ) Fano polytope P with dim(p) = n toric geometry

10 Example: P 2 Illustrate this equivalence in the case of X = P 2. We start with the Laurent polynomial f = x + y + 1 xy C[x ±1, y ±1 ] Associated with f is its period π f (t) = ( 1 2πi ) 2 x = y =1 1 1 tf dx x dy, t C, t. y The Taylor expansion of the period has coefficients given by the constant term of successive powers of f π f (t) = coeff 1 (f k )t k k 0 = 1 + 6t + 90t t t t (k)! = k 0 (k!) tk

11 Example: P 2 π f (t) = 1 + 6t + 90t t t t The coefficients of π f agree with certain Gromov Witten invariants of X. Roughly speaking, they count curves in X with given degree and a certain constraint on the C-structure. This is called the regularised quantum period ĜX. f is mirror dual to X if π f = ĜX The Newton polytope P N Q of f gives a toric Fano variety X P Q-Gorenstein deformation equivalent to X. In this case we recover P 2. f = x + y + 1 xy P = Newt(f ) = N Q

12 Example: P 2 The mirror f for X is typically not unique. One way of transforming f to a mirror-equivalent Laurent polynomial g is via a mutation. This is a change of variables ϕ (C ) n (C ) n such that g = ϕ f is a Laurent polynomial with the same period: In the case f = x + y + 1 xy π f (t) = π g (t) we can apply the mutation ϕ x x 1 + x y y y 1 + x y Then: g = ϕ f = ϕ (x + y + 1 xy ) = x 1 + x y + y 1 + x y + (1 + x y )2 xy

13 Example: P 2 g = ϕ x f = 1 + x y = y(y + x) y + x One can compute the period of g: + y 1 + x y + (1 + x y )2 xy + y 2 + 2xy + x 2 xy = y + 1 xy + 2 y 2 + x y C[x ±1, y ±1 ] π g (t) = 1 + 6t + 90t t t 12 + = π f (t) g is also a mirror for P 2

14 Mutation of a Laurent polynomial A mutation of f C[x ±1 ] requires two pieces of data: a grading on monomials; a factor F C[x ±1 ]. The grading is a map w x a w(a) from monomials to Z. The factor is a Laurent polynomial with w(f ) = {0} such that for all h < 0, where r h C[x ±1 ]. Here f h = F h r h, f h = the terms of f in graded piece h, i.e. w(f h ) = {h}. Then ϕ x a x a F w(a) is a mutation of f with g = ϕ f = r h + f h F h h<0 h 0

15 Example: P 2 Mutation is a combinatorial operation on the Newton polytopes At the level of Newton polytopes we have transformed the Fano polygon for P 2 into the Fano polygon for P(1, 1, 4): Newt(x + y xy ) = = Newt(y + xy x ) y 2 y Notice that P(1, 1, 4) is a singular toric Fano variety. It has two smooth cones, and one singular cone corresponding to a 1 4 (1, 1) singularity.

16 Mutation of P N Q A mutation of P N Q requires two pieces of data: a grading on N; a factor of P. The grading is given by a primitive lattice vector w M = Hom(N, Z). The factor is a convex lattice polytope F w N Q such that {v vert(p) w(v) = h} ( h)f + R h P h, for all h < 0, where R h N Q is a convex lattice polytope. Here The the mutation of P is P h = conv(v P N w(v) = h). Q = conv( R h (P h + hf )) h<0 h 0

17 Mutation of P N Q In the example of P 2 we pick w = ( 1, 1) M, F = conv{(0, 0), (1, 1)} w N Q. Then mutation adds or subtracts dilates of F depending on height:

18 Example: P 2 Now consider the dual polytope to P N Q : P = {u M Q u(v) 1 for all v P} N Q M Q P 2 dual P(1, 1, 4) dual

19 Mutation of P M Q Mutation acts via a piecewise GL n (Z) map on M: u u w min{w(v) v vert(f )} N Q M Q P 2 dual ( ) ( ) P(1, 1, 4) dual

20 Mutation of P M Q P = = Q Mutation has straightened out the bottom-left corner of Q. Since this is a piecewise GL n (Z) map on M, we have that: Equivalently: Vol(P ) = Vol(Q ), Ehr(P ) = Ehr(Q ) ( K XP ) n = ( K XQ ) n, Hilb(X P, K XP ) = Hilb(X Q, K XQ )

21 Mutation of Markov triples We can continue mutating P 2, moving from Fano triangle to Fano triangle: (1, 1, 1) (1, 1, 2) (1, 2, 5) (2, 5, 29) (5, 29, 4) (2, 29, 169) (1, 5, 1) (5, 1, 194) (1, 1, 4) The vertices (a, b, c) correspond to the Fano triangles for P(a 2, b 2, c 2 ). The vertices (a, b, c) correspond to solutions to the Markov equation: a 2 + b 2 + c 2 = abc

22 Mutation of Markov triples A solution (a, b, c) Z >0 of the Markov equation a 2 + b 2 + c 2 = abc is called a Markov triple. All Markov triples can be obtained from (1, 1, 1) via mutation: (a, b, c) (bc a, b, c) Mutations of the Markov triples correspond to mutations of the Fano triangles arising from P 2.

23 Quiver mutation We can associate a quiver Q P to a Fano polygon P N Q. We have a vertex v i for each edge E i of P. Let w i M be the primitive (inner) normal vector to E i. Then the number of arrows between vertices v i and v j is given by w i w j = det ( w i w j ), where the sign determines the orientation. For P 2 we get: P = w 1 = ( 1, 1) w 2 = ( 1, 2) w = (2, 1) Q P = v 1 v 2 v

24 Quiver mutation We can mutate Q P about a vertex v i. For every path v j v i v k add in a new edge v j v k ; Reverse the direction of every arrow that starts or ends at v i ; Cancel opposing edges. We recover the quiver for P(1, 1, 4): v 2 P 2 v 1 v v 2 P(1, 1, 4) 6 v 1 v

25 Mirrors for P 2 v 2 v 2 P 2 = 6 = P(1, 1, 4) v 1 v v 1 v Notice that the quiver for P(1, 1, 4) isn t balanced. We re-balance by adding multiplicities for to vertices v i given by the edge lengths E i of the Fano polygon. (1) v 2 (1) v 2 Q (1,1,1) (1) (2) 6 Q (1,1,2) v 1 v (1) v 1 v (1) This re-balancing condition is the Markov equation.

26 Mirrors for P 2 We obtain a tree of quiver mutations (a,b,c) (a,b,c) (a,b,c) (1,2,5) (1,2,5) (a,b,c) (1,1,2) (a,b,c) (1,1,1) (a,b,c) (1,2,5) (1,1,2) (1,1,2) (1,2,5) (a,b,c) (1,2,5) (1,2,5) (a,b,c) (a,b,c) (a,b,c) (a,b,c) (a,b,c) where the quiver Q (a,b,c) corresponding to P(a 2, b 2, c 2 ) is balanced via assigning weights a, b, c to the vertices v 1, v 2, v. Here (a, b, c) is a solution to the Markov equation a 2 + b 2 + c 2 = abc. This corresponds to the space of mirrors for P 2 via Mirror Symmetry.

Fano varieties and polytopes

Fano varieties and polytopes Fano varieties and polytopes Olivier DEBARRE The Fano Conference Torino, September 29 October 5, 2002 Smooth Fano varieties A smooth Fano variety (over a fixed algebraically closed field k) is a smooth

More information

Mirror, Mirror. String Theory and Pairs of Polyhedra. Ursula Whitcher. February Math Reviews & University of Wisconsin Eau Claire

Mirror, Mirror. String Theory and Pairs of Polyhedra. Ursula Whitcher. February Math Reviews & University of Wisconsin Eau Claire Mirror, Mirror String Theory and Pairs of Polyhedra Ursula Whitcher Math Reviews & University of Wisconsin Eau Claire February 2017 What do these people have in common? Figure: Maxim Kontsevich Figure:

More information

Toric Varieties and Lattice Polytopes

Toric Varieties and Lattice Polytopes Toric Varieties and Lattice Polytopes Ursula Whitcher April 1, 006 1 Introduction We will show how to construct spaces called toric varieties from lattice polytopes. Toric fibrations correspond to slices

More information

Classification of smooth Fano polytopes

Classification of smooth Fano polytopes Classification of smooth Fano polytopes Mikkel Øbro PhD thesis Advisor: Johan Peder Hansen September 2007 Department of Mathematical Sciences, Faculty of Science University of Aarhus Introduction This

More information

Polytopes, Polynomials, and String Theory

Polytopes, Polynomials, and String Theory Polytopes, Polynomials, and String Theory Ursula Whitcher ursula@math.hmc.edu Harvey Mudd College August 2010 Outline The Group String Theory and Mathematics Polytopes, Fans, and Toric Varieties The Group

More information

Mirror Symmetry Through Reflexive Polytopes

Mirror Symmetry Through Reflexive Polytopes Mirror Symmetry Through Reflexive Polytopes Physical and Mathematical Dualities Ursula Whitcher Harvey Mudd College April 2010 Outline String Theory and Mirror Symmetry Some Complex Geometry Reflexive

More information

THE REFLEXIVE DIMENSION OF A LATTICE POLYTOPE

THE REFLEXIVE DIMENSION OF A LATTICE POLYTOPE DUKE-CGTP-04-07 THE REFLEXIVE DIMENSION OF A LATTICE POLYTOPE CHRISTIAN HAASE AND ILARION V. MELNIKOV Abstract. The reflexive dimension refldim(p ) of a lattice polytope P is the minimal d so that P is

More information

Institutionen för matematik, KTH.

Institutionen för matematik, KTH. Institutionen för matematik, KTH. Chapter 10 projective toric varieties and polytopes: definitions 10.1 Introduction Tori varieties are algebraic varieties related to the study of sparse polynomials.

More information

On phylogenetic trees algebraic geometer's view

On phylogenetic trees algebraic geometer's view On phylogenetic trees algebraic geometer's view Joint project with Weronika Buczyńska and other students Microsoft Research Center Trento, Feb. 16th, 2006 What about algebraic geometry? Nature [biology]

More information

From affine manifolds to complex manifolds: instanton corrections from tropical disks

From affine manifolds to complex manifolds: instanton corrections from tropical disks UCSD Mathematics Department From affine manifolds to complex manifolds: instanton corrections from tropical disks Mark Gross Directory Table of Contents Begin Article Copyright c 2008 mgross@math.ucsd.edu

More information

arxiv: v1 [math.ag] 29 May 2008

arxiv: v1 [math.ag] 29 May 2008 Q-ACTORIAL GORENSTEIN TORIC ANO VARIETIES WITH LARGE PICARD NUMBER BENJAMIN NILL AND MIKKEL ØBRO arxiv:0805.4533v1 [math.ag] 9 May 008 Abstract. In dimension d, Q-factorial Gorenstein toric ano varieties

More information

Smooth Fano Polytopes with Many Vertices

Smooth Fano Polytopes with Many Vertices Discrete Comput Geom (2014) 52:153 194 DOI 10.1007/s00454-014-9607-4 Smooth Fano Polytopes with Many Vertices Benjamin Assarf Michael Joswig Andreas Paffenholz Received: 16 November 2012 / Revised: 11

More information

Smooth Fano Polytopes Arising from Finite Partially Ordered Sets

Smooth Fano Polytopes Arising from Finite Partially Ordered Sets Discrete Comput Geom (2011) 45: 449 461 DOI 10.1007/s00454-010-9271-2 Smooth Fano Polytopes Arising from Finite Partially Ordered Sets Takayuki Hibi Akihiro Higashitani Received: 29 August 2009 / Revised:

More information

Combinatorial constructions of hyperbolic and Einstein four-manifolds

Combinatorial constructions of hyperbolic and Einstein four-manifolds Combinatorial constructions of hyperbolic and Einstein four-manifolds Bruno Martelli (joint with Alexander Kolpakov) February 28, 2014 Bruno Martelli Constructions of hyperbolic four-manifolds February

More information

arxiv: v1 [math.co] 2 Apr 2007

arxiv: v1 [math.co] 2 Apr 2007 An algorithm for the classification of smooth Fano polytopes Mikkel Øbro arxiv:0704.0049v1 [math.co] 2 Apr 2007 October 24, 2018 Abstract We present an algorithm that produces the classification list of

More information

Noncrossing sets and a Graßmann associahedron

Noncrossing sets and a Graßmann associahedron Noncrossing sets and a Graßmann associahedron Francisco Santos, Christian Stump, Volkmar Welker (in partial rediscovering work of T. K. Petersen, P. Pylyavskyy, and D. E. Speyer, 2008) (in partial rediscovering

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

arxiv: v2 [math.ag] 3 Dec 2017

arxiv: v2 [math.ag] 3 Dec 2017 THE STRINGY EULER NUMBER OF CALABI-YAU HYPERSURFACES IN TORIC VARIETIES AND THE MAVLYUTOV DUALITY VICTOR BATYREV Dedicated to Yuri Ivanovich Manin on the occasion of his 80-th birthday arxiv:1707.02602v2

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO. Toric Degenerations of Calabi-Yau Manifolds in Grassmannians

UNIVERSITY OF CALIFORNIA, SAN DIEGO. Toric Degenerations of Calabi-Yau Manifolds in Grassmannians UNIVERSITY OF CALIFORNIA, SAN DIEGO Toric Degenerations of Calabi-Yau Manifolds in Grassmannians A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy

More information

Trinities, hypergraphs, and contact structures

Trinities, hypergraphs, and contact structures Trinities, hypergraphs, and contact structures Daniel V. Mathews Daniel.Mathews@monash.edu Monash University Discrete Mathematics Research Group 14 March 2016 Outline 1 Introduction 2 Combinatorics of

More information

Cluster algebras and infinite associahedra

Cluster algebras and infinite associahedra Cluster algebras and infinite associahedra Nathan Reading NC State University CombinaTexas 2008 Coxeter groups Associahedra and cluster algebras Sortable elements/cambrian fans Infinite type Much of the

More information

INTRODUCTION TO CLUSTER ALGEBRAS

INTRODUCTION TO CLUSTER ALGEBRAS INTRODUCTION TO CLUSTER ALGEBRAS NAN LI (MIT) Cluster algebras are a class of commutative ring, introduced in 000 by Fomin and Zelevinsky, originally to study Lusztig s dual canonical basis and total positivity.

More information

arxiv: v1 [math.co] 24 Aug 2009

arxiv: v1 [math.co] 24 Aug 2009 SMOOTH FANO POLYTOPES ARISING FROM FINITE PARTIALLY ORDERED SETS arxiv:0908.3404v1 [math.co] 24 Aug 2009 TAKAYUKI HIBI AND AKIHIRO HIGASHITANI Abstract. Gorenstein Fano polytopes arising from finite partially

More information

Lecture 3A: Generalized associahedra

Lecture 3A: Generalized associahedra Lecture 3A: Generalized associahedra Nathan Reading NC State University Cluster Algebras and Cluster Combinatorics MSRI Summer Graduate Workshop, August 2011 Introduction Associahedron and cyclohedron

More information

TORIC VARIETIES JOAQUÍN MORAGA

TORIC VARIETIES JOAQUÍN MORAGA TORIC VARIETIES Abstract. This is a very short introduction to some concepts around toric varieties, some of the subsections are intended for more experienced algebraic geometers. To see a lot of exercises

More information

Federico Ardila. Castro Urdiales. December 15, joint work with Florian Block (U. Warwick)

Federico Ardila. Castro Urdiales. December 15, joint work with Florian Block (U. Warwick) Severi degrees of toric surfaces are eventually polynomial Federico Ardila San Francisco State University. Universidad de Los Andes Castro Urdiales December 15, 2011 joint work with Florian Block (U. Warwick)

More information

CREPANT RESOLUTIONS OF GORENSTEIN TORIC SINGULARITIES AND UPPER BOUND THEOREM. Dimitrios I. Dais

CREPANT RESOLUTIONS OF GORENSTEIN TORIC SINGULARITIES AND UPPER BOUND THEOREM. Dimitrios I. Dais Séminaires & Congrès 6, 2002, p. 187 192 CREPANT RESOLUTIONS OF GORENSTEIN TORIC SINGULARITIES AND UPPER BOUND THEOREM by Dimitrios I. Dais Abstract. A necessary condition for the existence of torus-equivariant

More information

Gift Wrapping for Pretropisms

Gift Wrapping for Pretropisms Gift Wrapping for Pretropisms Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu Graduate Computational

More information

arxiv: v4 [math.co] 30 Jun 2014

arxiv: v4 [math.co] 30 Jun 2014 SMOOTH FANO POLYTOPES ARISING FROM FINITE DIRECTED GRAPHS arxiv:1103.2202v4 [math.co] 30 Jun 2014 AKIHIRO HIGASHITANI Abstract. In this paper, we consider terminal reflexive polytopes arising from finite

More information

A fan for every cluster algebra

A fan for every cluster algebra A fan for every cluster algebra Nathan Reading NC State University Combinatorics and beyond: the many facets of Sergey Fomin s mathematics University of Michigan November 8-11, 2018 Cluster algebras of

More information

Random Tropical Curves

Random Tropical Curves Claremont Colleges Scholarship @ Claremont HMC Senior Theses HMC Student Scholarship 2017 Random Tropical Curves Magda L. Hlavacek Harvey Mudd College Recommended Citation Hlavacek, Magda L., "Random Tropical

More information

Lattice Subdivisions and Tropical Oriented Matroids Featuring n 1 d 1. LindsayCPiechnik

Lattice Subdivisions and Tropical Oriented Matroids Featuring n 1 d 1. LindsayCPiechnik Lattice Subdivisions and Tropical Oriented Matroids Featuring n 1 d 1 LindsayCPiechnik Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School

More information

Institutionen för matematik, KTH.

Institutionen för matematik, KTH. Institutionen för matematik, KTH. Chapter 11 Construction of toric varieties 11.1 Recap example Example 11.1.1. Consider the Segre embedding seg : P 1 P 1 P 3 given by ((x 0, x 1 ), (y 0, y 1 )) (x 0

More information

Braid groups and Curvature Talk 2: The Pieces

Braid groups and Curvature Talk 2: The Pieces Braid groups and Curvature Talk 2: The Pieces Jon McCammond UC Santa Barbara Regensburg, Germany Sept 2017 Rotations in Regensburg Subsets, Subdisks and Rotations Recall: for each A [n] of size k > 1 with

More information

CAT(0)-spaces. Münster, June 22, 2004

CAT(0)-spaces. Münster, June 22, 2004 CAT(0)-spaces Münster, June 22, 2004 CAT(0)-space is a term invented by Gromov. Also, called Hadamard space. Roughly, a space which is nonpositively curved and simply connected. C = Comparison or Cartan

More information

REGULAR POLYTOPES REALIZED OVER Q

REGULAR POLYTOPES REALIZED OVER Q REGULAR POLYTOPES REALIZED OVER Q TREVOR HYDE A regular polytope is a d-dimensional generalization of a regular polygon and a Platonic solid. Roughly, they are convex geometric objects with maximal rotational

More information

Newton Polygons of L-Functions

Newton Polygons of L-Functions Newton Polygons of L-Functions Phong Le Department of Mathematics University of California, Irvine June 2009/Ph.D. Defense Phong Le Newton Polygons of L-Functions 1/33 Laurent Polynomials Let q = p a where

More information

Tripod Configurations

Tripod Configurations Tripod Configurations Eric Chen, Nick Lourie, Nakul Luthra Summer@ICERM 2013 August 8, 2013 Eric Chen, Nick Lourie, Nakul Luthra (S@I) Tripod Configurations August 8, 2013 1 / 33 Overview 1 Introduction

More information

Configurations of embedded spheres

Configurations of embedded spheres Configurations of embedded spheres Daniel Ruberman University of Wisconsin, Madison November 13, 2015 Daniel Ruberman Configurations of embedded spheres November 13, 2015 1 / 20 Introduction Joint project

More information

Linear Precision for Parametric Patches

Linear Precision for Parametric Patches Department of Mathematics Texas A&M University March 30, 2007 / Texas A&M University Algebraic Geometry and Geometric modeling Geometric modeling uses polynomials to build computer models for industrial

More information

Geodesic and curvature of piecewise flat Finsler surfaces

Geodesic and curvature of piecewise flat Finsler surfaces Geodesic and curvature of piecewise flat Finsler surfaces Ming Xu Capital Normal University (based on a joint work with S. Deng) in Southwest Jiaotong University, Emei, July 2018 Outline 1 Background Definition

More information

The important function we will work with is the omega map ω, which we now describe.

The important function we will work with is the omega map ω, which we now describe. 20 MARGARET A. READDY 3. Lecture III: Hyperplane arrangements & zonotopes; Inequalities: a first look 3.1. Zonotopes. Recall that a zonotope Z can be described as the Minkowski sum of line segments: Z

More information

Non-trivial Torus Equivariant Vector bundles of Rank Three on P

Non-trivial Torus Equivariant Vector bundles of Rank Three on P Non-trivial Torus Equivariant Vector bundles of Rank Three on P Abstract Let T be a two dimensional algebraic torus over an algebraically closed field. Then P has a non trivial action of T and becomes

More information

FANO POLYTOPES ALEXANDER M. KASPRZYK AND BENJAMIN NILL

FANO POLYTOPES ALEXANDER M. KASPRZYK AND BENJAMIN NILL FANO POLYTOPES ALEXANDER M. KASPRZYK AND BENJAMIN NILL Abstract. Fano polytopes are the convex-geometric objects corresponding to toric Fano varieties. We give a brief survey of classification results

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

Two Connections between Combinatorial and Differential Geometry

Two Connections between Combinatorial and Differential Geometry Two Connections between Combinatorial and Differential Geometry John M. Sullivan Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School DFG Research Group Polyhedral Surfaces

More information

Graph Cohomology. Matthew Lin. Dagan Karp, Advisor. Satyan L. Devadoss, Reader. Department of Mathematics

Graph Cohomology. Matthew Lin. Dagan Karp, Advisor. Satyan L. Devadoss, Reader. Department of Mathematics Graph Cohomology Matthew Lin Dagan Karp, Advisor Satyan L. Devadoss, Reader Department of Mathematics May, 2016 Copyright 2016 Matthew Lin. The author grants Harvey Mudd College and the Claremont Colleges

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

REFLEXIVE POLYTOPES OF HIGHER INDEX AND THE NUMBER 12

REFLEXIVE POLYTOPES OF HIGHER INDEX AND THE NUMBER 12 REFLEXIVE POLYTOPES OF HIGHER INDEX AND THE NUMBER 12 ALEXANDER M. KASPRZYK AND BENJAMIN NILL Abstract. We introduce reflexive polytopes of index l as a natural generalisation of the notion of a reflexive

More information

Federico Ardila. San Francisco State University

Federico Ardila. San Francisco State University Severi degrees of toric surfaces are eventually polynomial Federico Ardila San Francisco State University MIT November 24, 2010 joint work with Florian Block (U. Michigan) Federico Ardila (SF State) Severi

More information

Vertex-Maximal Lattice Polytopes Contained in 2-Simplices

Vertex-Maximal Lattice Polytopes Contained in 2-Simplices Vertex-Maximal Lattice Polytopes Contained in 2-Simplices Christoph Pegel Institut für Algebra, Zahlentheorie und Diskrete Mathematik Leibniz Universität Hannover November 14, 2018 joint with Jan Philipp

More information

Classification of Ehrhart quasi-polynomials of half-integral polygons

Classification of Ehrhart quasi-polynomials of half-integral polygons Classification of Ehrhart quasi-polynomials of half-integral polygons A thesis presented to the faculty of San Francisco State University In partial fulfilment of The Requirements for The Degree Master

More information

GENERATING TORIC NONCOMMUTATIVE CREPANT RESOLUTIONS

GENERATING TORIC NONCOMMUTATIVE CREPANT RESOLUTIONS GENERATING TORIC NONCOMMUTATIVE CREPANT RESOLUTIONS RAF BOCKLANDT ABSTRACT. We present an algorithm that finds all toric noncommutative crepant resolutions of a given toric 3-dimensional Gorenstein singularity.

More information

Intro to Curves Week 1, Lecture 2

Intro to Curves Week 1, Lecture 2 CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University Outline Math review Introduction to 2D curves

More information

From String Theory to Elliptic Curves over Finite Field, F p

From String Theory to Elliptic Curves over Finite Field, F p From String Theory to Elliptic Curves over Finite Field, F p A Senior Project submitted to The Division of Science, Mathematics, and Computing of Bard College by Linh Thi Dieu Pham Annandale-on-Hudson,

More information

ON FAMILIES OF NESTOHEDRA

ON FAMILIES OF NESTOHEDRA ON FAMILIES OF NESTOHEDRA A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2010 Andrew Graham Fenn School of

More information

COMPUTATIONAL GEOMETRY

COMPUTATIONAL GEOMETRY Thursday, September 20, 2007 (Ming C. Lin) Review on Computational Geometry & Collision Detection for Convex Polytopes COMPUTATIONAL GEOMETRY (Refer to O'Rourke's and Dutch textbook ) 1. Extreme Points

More information

Graph Theoretical Cluster Expansion Formulas

Graph Theoretical Cluster Expansion Formulas Graph Theoretical Cluster Expansion Formulas Gregg Musiker MIT December 9, 008 http//math.mit.edu/ musiker/graphtalk.pdf Gregg Musiker (MIT) Graph Theoretical Cluster Expansions December 9, 008 / 9 Outline.

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

arxiv:math/ v2 [math.ag] 18 Mar 2003

arxiv:math/ v2 [math.ag] 18 Mar 2003 AFFINE MANIFOLDS, LOG STRUCTURES, AND MIRROR SYMMETRY arxiv:math/0211094v2 [math.ag] 18 Mar 2003 MARK GROSS, BERND SIEBERT Introduction. Mirror symmetry between Calabi-Yau manifolds is inherently about

More information

Triangulations Of Point Sets

Triangulations Of Point Sets Triangulations Of Point Sets Applications, Structures, Algorithms. Jesús A. De Loera Jörg Rambau Francisco Santos MSRI Summer school July 21 31, 2003 (Book under construction) Triangulations Of Point Sets

More information

COMPUTING SESHADRI CONSTANTS ON SMOOTH TORIC SURFACES

COMPUTING SESHADRI CONSTANTS ON SMOOTH TORIC SURFACES COMPUTING SESHADRI CONSTANTS ON SMOOTH TORIC SURFACES ANDERS LUNDMAN Abstract. In this paper we compute the Seshadri constants at the general point on many smooth polarized toric surfaces. We consider

More information

Given four lines in space, how many lines meet all four?: The geometry, topology, and combinatorics of the Grassmannian

Given four lines in space, how many lines meet all four?: The geometry, topology, and combinatorics of the Grassmannian Atlanta January 5, 2005 Given four lines in space, how many lines meet all four?: The geometry, topology, and combinatorics of the Grassmannian Ravi Vakil, Stanford University http://math.stanford.edu/

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

TADEUSZ JANUSZKIEWICZ AND MICHAEL JOSWIG

TADEUSZ JANUSZKIEWICZ AND MICHAEL JOSWIG CONVEX GEOMETRY RELATED TO HAMILTONIAN GROUP ACTIONS TADEUSZ JANUSZKIEWICZ AND MICHAEL JOSWIG Abstract. Exercises and descriptions of student projects for a BMS/IMPAN block course. Berlin, November 27

More information

Coxeter Groups and CAT(0) metrics

Coxeter Groups and CAT(0) metrics Peking University June 25, 2008 http://www.math.ohio-state.edu/ mdavis/ The plan: First, explain Gromov s notion of a nonpositively curved metric on a polyhedral complex. Then give a simple combinatorial

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

arxiv: v1 [math.gr] 19 Dec 2018

arxiv: v1 [math.gr] 19 Dec 2018 GROWTH SERIES OF CAT(0) CUBICAL COMPLEXES arxiv:1812.07755v1 [math.gr] 19 Dec 2018 BORIS OKUN AND RICHARD SCOTT Abstract. Let X be a CAT(0) cubical complex. The growth series of X at x is G x (t) = y V

More information

Geometrization and the Poincaré conjecture

Geometrization and the Poincaré conjecture Geometrization and the Poincaré conjecture Jan Metzger BRIGFOS, 2008 History of the Poincaré conjecture In 1904 Poincaré formulated his conjecture. It is a statement about three dimensional geometric objects,

More information

On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes

On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes Hans Raj Tiwary hansraj@cs.uni-sb.de FR Informatik Universität des Saarlandes D-66123 Saarbrücken, Germany Tel: +49 681 3023235

More information

arxiv:math/ v3 [math.co] 5 Mar 2007

arxiv:math/ v3 [math.co] 5 Mar 2007 LATTICE POLYGONS AND THE NUMBER 2i + 7 arxiv:math/0406224v3 [math.co] 5 Mar 2007 CHRISTIAN HAASE AND JOSEF SCHICHO Abstract. In this note we classify all triples (a, b, i) such that there is a convex lattice

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

The Charney-Davis conjecture for certain subdivisions of spheres

The Charney-Davis conjecture for certain subdivisions of spheres The Charney-Davis conjecture for certain subdivisions of spheres Andrew Frohmader September, 008 Abstract Notions of sesquiconstructible complexes and odd iterated stellar subdivisions are introduced,

More information

THE ENUMERATIVE GEOMETRY OF DEL PEZZO SURFACES VIA DEGENERATIONS

THE ENUMERATIVE GEOMETRY OF DEL PEZZO SURFACES VIA DEGENERATIONS THE ENUMERATIVE GEOMETRY OF DEL PEZZO SURFACES VIA DEGENERATIONS IZZET COSKUN Abstract. This paper investigates low-codimension degenerations of Del Pezzo surfaces. As an application we determine certain

More information

arxiv:math/ v1 [math.ag] 14 Jul 2004

arxiv:math/ v1 [math.ag] 14 Jul 2004 arxiv:math/0407255v1 [math.ag] 14 Jul 2004 Degenerations of Del Pezzo Surfaces and Gromov-Witten Invariants of the Hilbert Scheme of Conics Izzet Coskun January 13, 2004 Abstract: This paper investigates

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

Puzzling the 120 cell

Puzzling the 120 cell Henry Segerman Oklahoma State University Saul Schleimer University of Warwick Puzzling the 120 cell Burr puzzles The goal of a burr puzzle is to assemble a number of notched sticks into a single object.

More information

Lecture 4A: Combinatorial frameworks for cluster algebras

Lecture 4A: Combinatorial frameworks for cluster algebras Lecture 4A: Combinatorial frameworks for cluster algebras Nathan Reading NC State University Cluster Algebras and Cluster Combinatorics MSRI Summer Graduate Workshop, August 2011 Introduction Frameworks

More information

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2 Math 251 Quiz 5 Fall 2002 1. a. Calculate 5 1 0 1 x dx dy b. Calculate 1 5 1 0 xdxdy 2. Sketch the region. Write as one double integral by interchanging the order of integration: 0 2 dx 2 x dy f(x,y) +

More information

TNM079 Modeling & Animation Lecture 6 (Implicit surfaces)

TNM079 Modeling & Animation Lecture 6 (Implicit surfaces) TNM079 Modeling & Animation Lecture 6 (Implicit surfaces) Mark Eric Dieckmann, Media and Information Technology, ITN Linköpings universitet Campus Norrköping SE-60174 Norrköping May 4, 2016 Content of

More information

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo Mathematical Research Letters 1, 257 261 (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS Feng Luo Abstract. We show that for any given angle α (0, 2π), any closed 3- manifold has a Möbius cone

More information

Surfaces Beyond Classification

Surfaces Beyond Classification Chapter XII Surfaces Beyond Classification In most of the textbooks which present topological classification of compact surfaces the classification is the top result. However the topology of 2- manifolds

More information

Skeletal Polyhedra, Polygonal Complexes, and Nets

Skeletal Polyhedra, Polygonal Complexes, and Nets Skeletal Polyhedra, Polygonal Complexes, and Nets Egon Schulte Northeastern University Rogla 2014 Polyhedra With the passage of time, many changes in point of view about polyhedral structures and their

More information

arxiv:math/ v2 [math.co] 25 Jul 2006

arxiv:math/ v2 [math.co] 25 Jul 2006 On a theorem of Brion Thomas Hüttemann arxiv:math/0607297v2 [math.co] 25 Jul 2006 University of Leicester, Department of Mathematics University Road, Leicester LE1 7RH, England (UK) e-mail: th68@mcs.le.ac.uk

More information

Weierstrass models of elliptic toric. K3 hypersurfaces and symplectic cuts

Weierstrass models of elliptic toric. K3 hypersurfaces and symplectic cuts Weierstrass models of elliptic toric arxiv:1201.0930v3 [math.ag] 10 Jul 2012 K3 hypersurfaces and symplectic cuts Antonella Grassi and Vittorio Perduca Department of Mathematics, University of Pennsylvania

More information

Algebraic statistics for network models

Algebraic statistics for network models Algebraic statistics for network models Connecting statistics, combinatorics, and computational algebra Part One Sonja Petrović (Statistics Department, Pennsylvania State University) Applied Mathematics

More information

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 Outline Math review Introduction to 2D curves

More information

Newton Polytopes of Cluster Variables. Adam Michael Kalman. A dissertation submitted in partial satisfaction of the. requirements for the degree of

Newton Polytopes of Cluster Variables. Adam Michael Kalman. A dissertation submitted in partial satisfaction of the. requirements for the degree of Newton Polytopes of Cluster Variables by Adam Michael Kalman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

arxiv: v1 [math.gr] 2 Oct 2013

arxiv: v1 [math.gr] 2 Oct 2013 POLYGONAL VH COMPLEXES JASON K.C. POLÁK AND DANIEL T. WISE arxiv:1310.0843v1 [math.gr] 2 Oct 2013 Abstract. Ian Leary inquires whether a class of hyperbolic finitely presented groups are residually finite.

More information

Discrete minimal surfaces of Koebe type

Discrete minimal surfaces of Koebe type Discrete minimal surfaces of Koebe type Alexander I. Bobenko, Ulrike Bücking, Stefan Sechelmann March 5, 2018 1 Introduction Minimal surfaces have been studied for a long time, but still contain unsolved

More information

Automorphism Groups of Cyclic Polytopes

Automorphism Groups of Cyclic Polytopes 8 Automorphism Groups of Cyclic Polytopes (Volker Kaibel and Arnold Waßmer ) It is probably well-known to most polytope theorists that the combinatorial automorphism group of a cyclic d-polytope with n

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

William P. Thurston. The Geometry and Topology of Three-Manifolds

William P. Thurston. The Geometry and Topology of Three-Manifolds William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 2002 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed

More information

CS388C: Combinatorics and Graph Theory

CS388C: Combinatorics and Graph Theory CS388C: Combinatorics and Graph Theory David Zuckerman Review Sheet 2003 TA: Ned Dimitrov updated: September 19, 2007 These are some of the concepts we assume in the class. If you have never learned them

More information

Section 9.3 Graphing Quadratic Functions

Section 9.3 Graphing Quadratic Functions Section 9.3 Graphing Quadratic Functions A Quadratic Function is an equation that can be written in the following Standard Form., where a 0. Every quadratic function has a U-shaped graph called a. If the

More information

A brief survey of A-resultants, A-discriminants, and A-determinants

A brief survey of A-resultants, A-discriminants, and A-determinants A brief survey of A-resultants, A-discriminants, and A-determinants Madeline Brandt, Aaron Brookner, Christopher Eur November 27, 2017 Abstract We give a minimalistic guide to understanding a central result

More information