Two Connections between Combinatorial and Differential Geometry

Size: px
Start display at page:

Download "Two Connections between Combinatorial and Differential Geometry"

Transcription

1 Two Connections between Combinatorial and Differential Geometry John M. Sullivan Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School DFG Research Group Polyhedral Surfaces DFG Research Center MATHEON Discrete Differential Geometry 2007 July Berlin

2 Triangulations of the torus T 2 Average vertex degree 6 Exceptional vertices have d 6 Regular triangulations have d 6 John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July 16 2 / 29

3 Edge flips give new triangulations Flip changes four vertex degrees Can produce triangulations (four exceptional vertices) Quotients of some such tori are 5,7 triangulations of Klein bottle John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July 16 3 / 29

4 Two-vertex torus triangulations regular 4,8 3,9 2,10 1,11 John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July 16 4 / 29

5 Refinement or subdivision schemes 3 fold 2 fold 7 fold 3 fold Exceptional vertices preserved Old vertex degrees fixed New vertices regular Lots more 4,8, 3,9, 2,10 and 1,11 triangulations John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July 16 5 / 29

6 Is there a 5,7 triangulation of the torus? (any number of regular vertices allowed) John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July 16 6 / 29

7 Is there a 5,7 triangulation of the torus? (any number of regular vertices allowed) No! We prove this combinatorial statement geometrically using curvature and holonomy or complex function theory Joint work with Ivan Izmestiev (TU Berlin) Rob Kusner (UMass/Amherst) Günter Rote (FU Berlin) Boris Springborn (TU Berlin) John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July 16 6 / 29

8 Combinatorics and topology Triangulation of any surface Double-counting edges gives: dv = 2E = 3F χ dv = χ 2E = χ 3F = 1 d χ = d (6 d)v d Notation d := average vertex degree v d := number of vertices of degree d John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July 16 7 / 29

9 Eberhard s theorem Triangulation of S 2 12 = d (6 d)v d Theorem (Eberhard, 1891) Given any (v d ) satisfying this condition, there is a corresponding triangulation of S 2, after perhaps modifying v 6. Examples 5 12 triangulation exists for v triangulation exists for v 6 2 and even John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July 16 8 / 29

10 Torus triangulations The condition 0 = (6 d)v d is simply d = 6. Analog of Eberhard s Theorem would say 5,7 triangulation for some v 6 Instead, we show there are none John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July 16 9 / 29

11 Euclidean cone metrics Euclidean cone metrics Definition Triangulation on M induces equilateral metric: each face an equilateral euclidean triangle. Exceptional vertices are cone points Definition Euclidean cone metric on M is locally euclidean away from discrete set of cone points. Cone of angle ω > 0 has curvature κ := 2π ω. Vertex of degree d has curvature (6 d)π/3 John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

12 Euclidean cone metrics Regular triangulations on the torus Theorem (cf. Alt73, Neg83, Tho91, DU05, BK06) A triangulation of T 2 with no exceptional vertices is a quotient of the regular triangulation T 0 of the plane, or equivalently a finite cover of the 1-vertex triangulation. Proof. Equilateral metric is flat torus R 2 /Λ. The triangulation lifts to the cover, giving T 0. Thus Λ Λ 0, the triangular lattice. Corollary Any degree-regular triangulation has vertex-transitive symmetry. John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

13 Euclidean cone metrics Holonomy of a cone metric Definition M o := M cone points h : π 1 (M o ) SO 2 H := h(π 1 ) Lemma For a triangulation, H is a subgroup of C 6 := 2π/6. Proof. As we parallel transport a vector, look at the angle it makes with each edge of the triangulation. John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

14 Holonomy theorem Holonomy theorem Theorem A torus with two cone points p ± of curvature κ = ±2π/n has holonomy strictly bigger than C n. Corollary There is no 5,7 triangulation of the torus. Proof. Lemma says H contained in C 6 ; theorem says H strictly bigger. John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

15 Holonomy theorem Proof of Holonomy theorem. Shortest nontrivial geodesic γ avoids p +. If it hits p and splits excess angle 2π/n there, consider holonomy of a pertubation. Otherwise, γ avoids p or makes one angle π there, so slide it to foliate a euclidean cylinder. Complementary digon has two positive angles, so geodesic from p to p within the cylinder does split the excess 2π/n. π π p γ γ p + John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

16 Holonomy theorem Quadrangulations and hexangulations Theorem The torus T 2 has no 3,5 quadrangulation no bipartite 2,4 hexangulation 2,6 quad quad 2,4 hex 1,5 hex bip 1,5 hex John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

17 Riemann surfaces Generalizing the holonomy theorem Question Given n > 0 and a euclidean cone metric on T 2 whose curvatures are multiples of 2π/n, when is its holonomy H contained in C n? Curvature as divisor Cone metric induces Riemann surface structure Cone point p i has curvature m i 2π/n Divisor D = m i p i has degree 0 Cone metric gives developing map from universal cover of M o to C. John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

18 Riemann surfaces Main theorem Theorem Proof. H < C n D principal Consider the n th power of the derivative of the developing map. This is well-defined on M iff H < C n. If so, its divisor is D. Conversely, if D is principal, corresponding meromorphic function is this n th power. Note The case n = 2 is the classical correspondance between meromorphic quadratic differentials and singular flat structrues. John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

19 Three dimensions Combinatorics geometry in three dimensions Triangulated 3-manifold: make each tetrahedron regular euclidean Edge valence 5 curvature bounded below by 0 Enumeration (with Frank Lutz, TU Berlin) Enumerate simplicial 3-manifolds with edge valence 5 Exactly 4761 three-spheres plus 26 finite quotients [Matveev, Shevchishin]: Can smooth to get positive curvature John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

20 k-point metrics CMC Surfaces CMC Surfaces Definition A coplanar k-unduloid is an Alexandrov-embedded CMC (H 1) surface M with k ends and genus 0, contained in a slab in R 3. Note: each end asymptotic to unduloid John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

21 k-point metrics CMC Surfaces Classifying map M has mirror symmetry Upper half M + is a topological disk with k boundary curves in mirror plane Conjugate cousin M + is minimal in S 3 with k boundary Hopf great circles Hopf projection gives spherical metric on open disk with k completion boundary points John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

22 k-point metrics CMC Surfaces Classification Theorem (with Karsten Große-Brauckmann and Rob Kusner) Classifying map is homeomorphism from moduli space of coplanar k-unduloids to space D k of spherical k-point metrics, which is a connected (2k 3) manifold. New work (also with Nick Korevaar) D k = R 2k 3 John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

23 k-point metrics 2- and 3-point metrics 2-point metrics Universal cover of S 2 {p, q} Bi-infinite chain of slit spheres D 2 = (0, π] John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

24 k-point metrics 2- and 3-point metrics Triunduloids classified by spherical triples John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

25 k-point metrics 2- and 3-point metrics 3-point metrics Spherical triangle with three chains of slit spheres D 3 = T3 = B 3 = R 3 C 3 := D 3 /Möb = { } General case We show C k = C k 3, so D k = R 2k 3 John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

26 k-point metrics Medial axis Medial axis Maximal balls within D Touch 2 boundary points Medial axis is tree (retract of D) k ends are infinite rays nodes are maximal circles with 3 boundary points Möbius-invariant notion John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

27 k-point metrics Associahedron Metric trees Theorem The space of planar trees with k ends (labeled in order) length 0 on each midsegment is cone over dual associahedron, homeomorphic to R k 3. a k = 4 gives R a, b 0, at most one positive two rays join to form R a b b John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

28 k-point metrics Associahedron k = 5 a b a c e d b c d b e (a, b) a Combinatorial trees triangulations of pentagon Five quadrants glue together to form plane John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

29 k-point metrics Associahedron k = 6 14 generic trees 14 triangulations of hexagon 14 octants fit together to form R 3 John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

30 k-point metrics Associahedron Complexification C k = C k 3 Medial axis is a tree Midsegment is circles through pq ending with ones touching r, s Length is angle (in R 0, not mod 2π) between end circles But also have a twist Together these are log of cross-ratio(p, q, r, s) All these notions are Möbius-invariant John M. Sullivan (TU Berlin) Combinatorial and Differential Geometry 2007 July / 29

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Triangulated Surfaces and Higher-Dimensional Manifolds. Frank H. Lutz. (TU Berlin)

Triangulated Surfaces and Higher-Dimensional Manifolds. Frank H. Lutz. (TU Berlin) Triangulated Surfaces and Higher-Dimensional Manifolds Frank H. Lutz (TU Berlin) Topology: orientable, genus g = 3 Combinatorics: Geometry: vertex-minimal, n = 10 vertices, irreducible coordinate-minimal,

More information

Simplicial Hyperbolic Surfaces

Simplicial Hyperbolic Surfaces Simplicial Hyperbolic Surfaces Talk by Ken Bromberg August 21, 2007 1-Lipschitz Surfaces- In this lecture we will discuss geometrically meaningful ways of mapping a surface S into a hyperbolic manifold

More information

Surfaces Beyond Classification

Surfaces Beyond Classification Chapter XII Surfaces Beyond Classification In most of the textbooks which present topological classification of compact surfaces the classification is the top result. However the topology of 2- manifolds

More information

Hyperbolic structures and triangulations

Hyperbolic structures and triangulations CHAPTER Hyperbolic structures and triangulations In chapter 3, we learned that hyperbolic structures lead to developing maps and holonomy, and that the developing map is a covering map if and only if the

More information

Three Points Make a Triangle Or a Circle

Three Points Make a Triangle Or a Circle Three Points Make a Triangle Or a Circle Peter Schröder joint work with Liliya Kharevych, Boris Springborn, Alexander Bobenko 1 In This Section Circles as basic primitive it s all about the underlying

More information

Heegaard splittings and virtual fibers

Heegaard splittings and virtual fibers Heegaard splittings and virtual fibers Joseph Maher maher@math.okstate.edu Oklahoma State University May 2008 Theorem: Let M be a closed hyperbolic 3-manifold, with a sequence of finite covers of bounded

More information

arxiv: v1 [math.co] 3 Nov 2017

arxiv: v1 [math.co] 3 Nov 2017 DEGREE-REGULAR TRIANGULATIONS OF SURFACES BASUDEB DATTA AND SUBHOJOY GUPTA arxiv:1711.01247v1 [math.co] 3 Nov 2017 Abstract. A degree-regular triangulation is one in which each vertex has identical degree.

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Introduction to Rational Billiards II. Talk by John Smillie. August 21, 2007

Introduction to Rational Billiards II. Talk by John Smillie. August 21, 2007 Introduction to Rational Billiards II Talk by John Smillie August 21, 2007 Translation surfaces and their singularities Last time we described the Zemlyakov-Katok construction for billiards on a triangular

More information

Manifolds. Chapter X. 44. Locally Euclidean Spaces

Manifolds. Chapter X. 44. Locally Euclidean Spaces Chapter X Manifolds 44. Locally Euclidean Spaces 44 1. Definition of Locally Euclidean Space Let n be a non-negative integer. A topological space X is called a locally Euclidean space of dimension n if

More information

Combinatorial constructions of hyperbolic and Einstein four-manifolds

Combinatorial constructions of hyperbolic and Einstein four-manifolds Combinatorial constructions of hyperbolic and Einstein four-manifolds Bruno Martelli (joint with Alexander Kolpakov) February 28, 2014 Bruno Martelli Constructions of hyperbolic four-manifolds February

More information

What would you see if you live on a flat torus? What is the relationship between it and a room with 2 mirrors?

What would you see if you live on a flat torus? What is the relationship between it and a room with 2 mirrors? DAY I Activity I: What is the sum of the angles of a triangle? How can you show it? How about a quadrilateral (a shape with 4 sides)? A pentagon (a shape with 5 sides)? Can you find the sum of their angles

More information

CAT(0)-spaces. Münster, June 22, 2004

CAT(0)-spaces. Münster, June 22, 2004 CAT(0)-spaces Münster, June 22, 2004 CAT(0)-space is a term invented by Gromov. Also, called Hadamard space. Roughly, a space which is nonpositively curved and simply connected. C = Comparison or Cartan

More information

INTRODUCTION TO 3-MANIFOLDS

INTRODUCTION TO 3-MANIFOLDS INTRODUCTION TO 3-MANIFOLDS NIK AKSAMIT As we know, a topological n-manifold X is a Hausdorff space such that every point contained in it has a neighborhood (is contained in an open set) homeomorphic to

More information

CLASSIFICATION OF SURFACES

CLASSIFICATION OF SURFACES CLASSIFICATION OF SURFACES YUJIE ZHANG Abstract. The sphere, Möbius strip, torus, real projective plane and Klein bottle are all important examples of surfaces (topological 2-manifolds). In fact, via the

More information

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD of π 1 (M 2 )onπ 1 (M 4 ) by conjugation. π 1 (M 4 ) has a trivial center, so in other words the action of π 1 (M 4 ) on itself is effective.

More information

Euler s Theorem. Brett Chenoweth. February 26, 2013

Euler s Theorem. Brett Chenoweth. February 26, 2013 Euler s Theorem Brett Chenoweth February 26, 2013 1 Introduction This summer I have spent six weeks of my holidays working on a research project funded by the AMSI. The title of my project was Euler s

More information

Definition A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by.

Definition A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by. Chapter 1 Geometry: Nuts and Bolts 1.1 Metric Spaces Definition 1.1.1. A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by (x, y) inf p. p:x

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

GEOMETRY OF SURFACES. b3 course Nigel Hitchin

GEOMETRY OF SURFACES. b3 course Nigel Hitchin GEOMETRY OF SURFACES b3 course 2004 Nigel Hitchin hitchin@maths.ox.ac.uk 1 1 Introduction This is a course on surfaces. Your mental image of a surface should be something like this: or this However we

More information

All tunnels of all tunnel number 1 knots

All tunnels of all tunnel number 1 knots All tunnels of all tunnel number 1 knots Darryl McCullough University of Oklahoma Geometric Topology Conference Beijing University June 22, 27 1 (joint work with Sangbum Cho, in The tree of knot tunnels,

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

Hyperbolic Structures from Ideal Triangulations

Hyperbolic Structures from Ideal Triangulations Hyperbolic Structures from Ideal Triangulations Craig Hodgson University of Melbourne Geometric structures on 3-manifolds Thurston s idea: We would like to find geometric structures (or metrics) on 3-manifolds

More information

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo Mathematical Research Letters 1, 257 261 (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS Feng Luo Abstract. We show that for any given angle α (0, 2π), any closed 3- manifold has a Möbius cone

More information

Coxeter Groups and CAT(0) metrics

Coxeter Groups and CAT(0) metrics Peking University June 25, 2008 http://www.math.ohio-state.edu/ mdavis/ The plan: First, explain Gromov s notion of a nonpositively curved metric on a polyhedral complex. Then give a simple combinatorial

More information

Twist knots and augmented links

Twist knots and augmented links CHAPTER 7 Twist knots and augmented links In this chapter, we study a class of hyperbolic knots that have some of the simplest geometry, namely twist knots. This class includes the figure-8 knot, the 5

More information

The Contribution of Discrete Differential Geometry to Contemporary Architecture

The Contribution of Discrete Differential Geometry to Contemporary Architecture The Contribution of Discrete Differential Geometry to Contemporary Architecture Helmut Pottmann Vienna University of Technology, Austria 1 Project in Seoul, Hadid Architects 2 Lilium Tower Warsaw, Hadid

More information

Translation surfaces: saddle connections, triangles and covering constructions

Translation surfaces: saddle connections, triangles and covering constructions Translation surfaces: saddle connections, triangles and covering constructions Chenxi Wu Cornell University July 29, 2016 Translation surfaces A (compact) translation surface is: a compact surface with

More information

CAT(0) BOUNDARIES OF TRUNCATED HYPERBOLIC SPACE

CAT(0) BOUNDARIES OF TRUNCATED HYPERBOLIC SPACE CAT(0) BOUNDARIES OF TRUNCATED HYPERBOLIC SPACE KIM RUANE Abstract. We prove that the CAT(0) boundary of a truncated hyperbolic space is homeomorphic to a sphere with disks removed. In dimension three,

More information

Discrete minimal surfaces of Koebe type

Discrete minimal surfaces of Koebe type Discrete minimal surfaces of Koebe type Alexander I. Bobenko, Ulrike Bücking, Stefan Sechelmann March 5, 2018 1 Introduction Minimal surfaces have been studied for a long time, but still contain unsolved

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

CLASSIFICATION OF SURFACES

CLASSIFICATION OF SURFACES CLASSIFICATION OF SURFACES JUSTIN HUANG Abstract. We will classify compact, connected surfaces into three classes: the sphere, the connected sum of tori, and the connected sum of projective planes. Contents

More information

Trinities, hypergraphs, and contact structures

Trinities, hypergraphs, and contact structures Trinities, hypergraphs, and contact structures Daniel V. Mathews Daniel.Mathews@monash.edu Monash University Discrete Mathematics Research Group 14 March 2016 Outline 1 Introduction 2 Combinatorics of

More information

Geometrically maximal knots

Geometrically maximal knots Geometrically maximal knots Abhijit Champanerkar Department of Mathematics, College of Staten Island & The Graduate Center, CUNY Discussion Meeting on Knot theory and its Applications IISER Mohali, India

More information

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson]

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Differential Geometry: Circle Packings [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Conformal Maps Recall: Given a domain Ω R 2, the map F:Ω R 2 is conformal if it

More information

The orientability of small covers and coloring simple polytopes. Nishimura, Yasuzo; Nakayama, Hisashi. Osaka Journal of Mathematics. 42(1) P.243-P.

The orientability of small covers and coloring simple polytopes. Nishimura, Yasuzo; Nakayama, Hisashi. Osaka Journal of Mathematics. 42(1) P.243-P. Title Author(s) The orientability of small covers and coloring simple polytopes Nishimura, Yasuzo; Nakayama, Hisashi Citation Osaka Journal of Mathematics. 42(1) P.243-P.256 Issue Date 2005-03 Text Version

More information

Geodesic and curvature of piecewise flat Finsler surfaces

Geodesic and curvature of piecewise flat Finsler surfaces Geodesic and curvature of piecewise flat Finsler surfaces Ming Xu Capital Normal University (based on a joint work with S. Deng) in Southwest Jiaotong University, Emei, July 2018 Outline 1 Background Definition

More information

Constrained Willmore Tori in the 4 Sphere

Constrained Willmore Tori in the 4 Sphere (Technische Universität Berlin) 16 August 2006 London Mathematical Society Durham Symposium Methods of Integrable Systems in Geometry Constrained Willmore Surfaces The Main Result Strategy of Proof Constrained

More information

arxiv: v1 [math.gt] 28 Feb 2009

arxiv: v1 [math.gt] 28 Feb 2009 Coverings and Minimal Triangulations of 3 Manifolds William Jaco, Hyam Rubinstein and Stephan Tillmann arxiv:0903.0112v1 [math.gt] 28 Feb 2009 Abstract This paper uses results on the classification of

More information

Constant mean curvature surfaces with cylindrical ends

Constant mean curvature surfaces with cylindrical ends Constant mean curvature surfaces with cylindrical ends Karsten Große-Brauckmann 1, Robert B. Kusner 2, and John M. Sullivan 3 1 Mathematisches Institut, Universität Bonn, Beringstr. 1, D-53115 Bonn 2 School

More information

DISCRETE DIFFERENTIAL GEOMETRY

DISCRETE DIFFERENTIAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting San Diego, CA January 2018 DISCRETE CONFORMAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting

More information

THE CLASSIFICATION OF FOOTBALL PATTERNS

THE CLASSIFICATION OF FOOTBALL PATTERNS THE CLASSIFICATION OF FOOTBALL PATTERNS V. BRAUNGARDT AND D. KOTSCHICK ABSTRACT. We prove that every spherical football is a branched cover, branched only in the vertices, of the standard football made

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

Lecture 7: Jan 31, Some definitions related to Simplical Complex. 7.2 Topological Equivalence and Homeomorphism

Lecture 7: Jan 31, Some definitions related to Simplical Complex. 7.2 Topological Equivalence and Homeomorphism CS 6170 Computational Topology: Topological Data Analysis University of Utah Spring 2017 School of Computing Lecture 7: Jan 31, 2017 Lecturer: Prof. Bei Wang Scribe: Avani Sharma,

More information

Flat Surfaces, Teichmueller Discs, Veech Groups, and the Veech Tessellation

Flat Surfaces, Teichmueller Discs, Veech Groups, and the Veech Tessellation Flat Surfaces, Teichmueller Discs, Veech Groups, and the Veech Tessellation S. Allen Broughton - Rose-Hulman Institute of Technology Chris Judge - Indiana University AMS Regional Meeting at Pennsylvania

More information

Geometry of Flat Surfaces

Geometry of Flat Surfaces Geometry of Flat Surfaces Marcelo iana IMPA - Rio de Janeiro Xi an Jiaotong University 2005 Geometry of Flat Surfaces p.1/43 Some (non-flat) surfaces Sphere (g = 0) Torus (g = 1) Bitorus (g = 2) Geometry

More information

Topic: Orientation, Surfaces, and Euler characteristic

Topic: Orientation, Surfaces, and Euler characteristic Topic: Orientation, Surfaces, and Euler characteristic The material in these notes is motivated by Chapter 2 of Cromwell. A source I used for smooth manifolds is do Carmo s Riemannian Geometry. Ideas of

More information

1 Introduction To construct a branched covering of a 3-manifold M, we start with a tamely embedded knot or link L ρ M (the branch set) and a represent

1 Introduction To construct a branched covering of a 3-manifold M, we start with a tamely embedded knot or link L ρ M (the branch set) and a represent Kirby diagrams from branched-covering presentations Frank J. Swenton Department of Mathematics Middlebury College Middlebury, VT 05753 Email: fswenton@alumni.princeton.edu Abstract We present an algorithm

More information

Geometric structures on 2-orbifolds

Geometric structures on 2-orbifolds Geometric structures on 2-orbifolds Section 1: Manifolds and differentiable structures S. Choi Department of Mathematical Science KAIST, Daejeon, South Korea 2010 Fall, Lectures at KAIST S. Choi (KAIST)

More information

EXPERIENCING GEOMETRY

EXPERIENCING GEOMETRY EXPERIENCING GEOMETRY EUCLIDEAN AND NON-EUCLIDEAN WITH HISTORY THIRD EDITION David W. Henderson Daina Taimina Cornell University, Ithaca, New York PEARSON Prentice Hall Upper Saddle River, New Jersey 07458

More information

Portraits of Groups on Bordered Surfaces

Portraits of Groups on Bordered Surfaces Bridges Finland Conference Proceedings Portraits of Groups on Bordered Surfaces Jay Zimmerman Mathematics Department Towson University 8000 York Road Towson, MD 21252, USA E-mail: jzimmerman@towson.edu

More information

Tripod Configurations

Tripod Configurations Tripod Configurations Eric Chen, Nick Lourie, Nakul Luthra Summer@ICERM 2013 August 8, 2013 Eric Chen, Nick Lourie, Nakul Luthra (S@I) Tripod Configurations August 8, 2013 1 / 33 Overview 1 Introduction

More information

Joint Mathematics Meetings 2014

Joint Mathematics Meetings 2014 Joint Mathematics Meetings 2014 Patterns with Color Symmetry on Triply Periodic Polyhedra Douglas Dunham University of Minnesota Duluth Duluth, Minnesota USA Outline Background Triply periodic polyhedra

More information

Topological Graph Theory and Graphs of Positive Combinatorial Curvature. Marissa L. Childs

Topological Graph Theory and Graphs of Positive Combinatorial Curvature. Marissa L. Childs Topological Graph Theory and Graphs of Positive Combinatorial Curvature by Marissa L. Childs A thesis submitted in partial fulfillment of the requirements for graduation with Honors in Mathematics. Whitman

More information

751 Problem Set I JWR. Due Sep 28, 2004

751 Problem Set I JWR. Due Sep 28, 2004 751 Problem Set I JWR Due Sep 28, 2004 Exercise 1. For any space X define an equivalence relation by x y iff here is a path γ : I X with γ(0) = x and γ(1) = y. The equivalence classes are called the path

More information

Lecture 11 COVERING SPACES

Lecture 11 COVERING SPACES Lecture 11 COVERING SPACES A covering space (or covering) is not a space, but a mapping of spaces (usually manifolds) which, locally, is a homeomorphism, but globally may be quite complicated. The simplest

More information

6.2 Classification of Closed Surfaces

6.2 Classification of Closed Surfaces Table 6.1: A polygon diagram 6.1.2 Second Proof: Compactifying Teichmuller Space 6.2 Classification of Closed Surfaces We saw that each surface has a triangulation. Compact surfaces have finite triangulations.

More information

Aspects of Geometry. Finite models of the projective plane and coordinates

Aspects of Geometry. Finite models of the projective plane and coordinates Review Sheet There will be an exam on Thursday, February 14. The exam will cover topics up through material from projective geometry through Day 3 of the DIY Hyperbolic geometry packet. Below are some

More information

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS NEIL R. HOFFMAN AND JESSICA S. PURCELL Abstract. If a hyperbolic 3 manifold admits an exceptional Dehn filling, then the length of the slope of that

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

arxiv:math/ v2 [math.dg] 5 Dec 2007

arxiv:math/ v2 [math.dg] 5 Dec 2007 COPLANAR CONSTANT MEAN CURVATURE SURFACES arxiv:math/0509210v2 [math.dg] 5 Dec 2007 KARSTEN GROSSE-BRAUCKMANN, ROBERT B. KUSNER, AND JOHN M. SULLIVAN Abstract. We consider constant mean curvature surfaces

More information

Teaching diary. Francis Bonahon University of Southern California

Teaching diary. Francis Bonahon University of Southern California Teaching diary In the Fall 2010, I used the book Low-dimensional geometry: from euclidean surfaces to hyperbolic knots as the textbook in the class Math 434, Geometry and Transformations, at USC. Most

More information

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS NEIL R. HOFFMAN AND JESSICA S. PURCELL Abstract. If a hyperbolic 3 manifold admits an exceptional Dehn filling, then the length of the slope of that

More information

SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS

SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS JOEL HASS AND PETER SCOTT Abstract. We introduce a combinatorial energy for maps of triangulated surfaces with simplicial metrics and analyze the existence

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

Branched coverings and three manifolds Third lecture

Branched coverings and three manifolds Third lecture J.M.Montesinos (Institute) Branched coverings Hiroshima, March 2009 1 / 97 Branched coverings and three manifolds Third lecture José María Montesinos-Amilibia Universidad Complutense Hiroshima, March 2009

More information

THE UNIFORMIZATION THEOREM AND UNIVERSAL COVERS

THE UNIFORMIZATION THEOREM AND UNIVERSAL COVERS THE UNIFORMIZATION THEOREM AND UNIVERSAL COVERS PETAR YANAKIEV Abstract. This paper will deal with the consequences of the Uniformization Theorem, which is a major result in complex analysis and differential

More information

The geometry of embedded surfaces

The geometry of embedded surfaces CHAPTER 12 The geometry of embedded surfaces In this chapter, we discuss the geometry of essential surfaces embedded in hyperbolic 3-manifolds. In the first section, we show that specific surfaces embedded

More information

) for all p. This means however, that the map ϕ 0 descends to the quotient

) for all p. This means however, that the map ϕ 0 descends to the quotient Solutions to sheet 6 Solution to exercise 1: (a) Let M be the Möbius strip obtained by a suitable identification of two opposite sides of the unit square [0, 1] 2. We can identify the boundary M with S

More information

Dynamics on some Z 2 -covers of half-translation surfaces

Dynamics on some Z 2 -covers of half-translation surfaces Dynamics on some Z 2 -covers of half-translation surfaces Chris Johnson Clemson University April 27, 2011 Outline Background The windtree model HLT s recurrence result The folded plane Panov s density

More information

Lecture 5 CLASSIFICATION OF SURFACES

Lecture 5 CLASSIFICATION OF SURFACES Lecture 5 CLASSIFICATION OF SURFACES In this lecture, we present the topological classification of surfaces. This will be done by a combinatorial argument imitating Morse theory and will make use of the

More information

Boundary Curves of Incompressible Surfaces

Boundary Curves of Incompressible Surfaces Boundary Curves of Incompressible Surfaces Allen Hatcher This is a Tex version, made in 2004, of a paper that appeared in Pac. J. Math. 99 (1982), 373-377, with some revisions in the exposition. Let M

More information

Octonion multiplication and Heawood s map

Octonion multiplication and Heawood s map Octonion multiplication and Heawood s map Bruno Sévennec arxiv:0.0v [math.ra] 29 Jun 20 June 30, 20 Almost any article or book dealing with Cayley-Graves algebra O of octonions (to be recalled shortly)

More information

From isothermic triangulated surfaces to discrete holomorphicity

From isothermic triangulated surfaces to discrete holomorphicity From isothermic triangulated surfaces to discrete holomorphicity Wai Yeung Lam TU Berlin Oberwolfach, 2 March 2015 Joint work with Ulrich Pinkall Wai Yeung Lam (TU Berlin) isothermic triangulated surfaces

More information

What is a... Manifold?

What is a... Manifold? What is a... Manifold? Steve Hurder Manifolds happens all the time! We just have to know them when we see them. Manifolds have dimension, just like Euclidean space: 1-dimension is the line, 2-dimension

More information

Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes

Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes Abstract This paper presents a physical data structure to represent both orientable and non-orientable

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Basics of Combinatorial Topology

Basics of Combinatorial Topology Chapter 7 Basics of Combinatorial Topology 7.1 Simplicial and Polyhedral Complexes In order to study and manipulate complex shapes it is convenient to discretize these shapes and to view them as the union

More information

Curvature Berkeley Math Circle January 08, 2013

Curvature Berkeley Math Circle January 08, 2013 Curvature Berkeley Math Circle January 08, 2013 Linda Green linda@marinmathcircle.org Parts of this handout are taken from Geometry and the Imagination by John Conway, Peter Doyle, Jane Gilman, and Bill

More information

NESTED AND FULLY AUGMENTED LINKS

NESTED AND FULLY AUGMENTED LINKS NESTED AND FULLY AUGMENTED LINKS HAYLEY OLSON Abstract. This paper focuses on two subclasses of hyperbolic generalized fully augmented links: fully augmented links and nested links. The link complements

More information

2.4 Quadratic differentials and their horizontal and vertical foliations

2.4 Quadratic differentials and their horizontal and vertical foliations 2 MEASURED FOLIATIONS 37 in P[0, ) C is a closed ball of dimension 6g 6+2p whose interior is P L(T ). The boundary points of this ball are usually described in one of two ways: using measured geodesic

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

Gauss images of hyperbolic cusps with convex polyhedral boundary

Gauss images of hyperbolic cusps with convex polyhedral boundary Gauss images of hyperbolic cusps with convex polyhedral boundary François Fillastre, Ivan Izmestiev To cite this version: François Fillastre, Ivan Izmestiev. Gauss images of hyperbolic cusps with convex

More information

The geometry and combinatorics of closed geodesics on hyperbolic surfaces

The geometry and combinatorics of closed geodesics on hyperbolic surfaces The geometry and combinatorics of closed geodesics on hyperbolic surfaces CUNY Graduate Center September 8th, 2015 Motivating Question: How are the algebraic/combinatoric properties of closed geodesics

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Reflection groups 4. Mike Davis. May 19, Sao Paulo

Reflection groups 4. Mike Davis. May 19, Sao Paulo Reflection groups 4 Mike Davis Sao Paulo May 19, 2014 https://people.math.osu.edu/davis.12/slides.html 1 2 Exotic fundamental gps Nonsmoothable aspherical manifolds 3 Let (W, S) be a Coxeter system. S

More information

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES RACHEL CARANDANG Abstract. This paper provides an overview of the homology groups of a 2- dimensional complex. It then demonstrates a proof of the Invariance

More information

Teichmüller Space and Fenchel-Nielsen Coordinates

Teichmüller Space and Fenchel-Nielsen Coordinates Teichmüller Space and Fenchel-Nielsen Coordinates Nathan Lopez November 30, 2015 Abstract Here we give an overview of Teichmüller space and its realization as a smooth manifold through Fenchel- Nielsen

More information

Hyperbolic Geometry. Thomas Prince. Imperial College London. 21 January 2017

Hyperbolic Geometry. Thomas Prince. Imperial College London. 21 January 2017 Hyperbolic Geometry Thomas Prince Imperial College London 21 January 2017 Thomas Prince (Imperial College London) Hyperbolic Planes 21 January 2017 1 / 31 Introducing Geometry What does the word geometry

More information

Non-extendible finite polycycles

Non-extendible finite polycycles Izvestiya: Mathematics 70:3 1 18 Izvestiya RAN : Ser. Mat. 70:3 3 22 c 2006 RAS(DoM) and LMS DOI 10.1070/IM2006v170n01ABEH002301 Non-extendible finite polycycles M. Deza, S. V. Shpectorov, M. I. Shtogrin

More information

Punctured Torus Groups

Punctured Torus Groups Punctured Torus Groups Talk by Yair Minsky August, 7 One of the simplest classes of examples of Kleinian surface groups is given by punctured torus groups. We define a punctured torus group to be a discrete

More information

Designing Cylinders with Constant Negative Curvature

Designing Cylinders with Constant Negative Curvature Designing Cylinders with Constant Negative Curvature Ulrich Pinkall Abstract. We describe algorithms that can be used to interactively construct ( design ) surfaces with constant negative curvature, in

More information

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Chapter 9 Geometry Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 2 WHAT YOU WILL LEARN Transformational geometry,

More information

Cannon s conjecture, subdivision rules, and expansion complexes

Cannon s conjecture, subdivision rules, and expansion complexes Cannon s conjecture, subdivision rules, and expansion complexes W. Floyd (joint work with J. Cannon and W. Parry) Department of Mathematics Virginia Tech UNC Greensboro: November, 2014 Motivation from

More information

Braid groups and Curvature Talk 2: The Pieces

Braid groups and Curvature Talk 2: The Pieces Braid groups and Curvature Talk 2: The Pieces Jon McCammond UC Santa Barbara Regensburg, Germany Sept 2017 Rotations in Regensburg Subsets, Subdisks and Rotations Recall: for each A [n] of size k > 1 with

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

Hyperbolic Geometry on the Figure-Eight Knot Complement

Hyperbolic Geometry on the Figure-Eight Knot Complement Hyperbolic Geometry on the Figure-Eight Knot Complement Alex Gutierrez Arizona State University December 10, 2012 Hyperbolic Space Hyperbolic Space Hyperbolic space H n is the unique complete simply-connected

More information

arxiv:math/ v1 [math.co] 21 Dec 2006

arxiv:math/ v1 [math.co] 21 Dec 2006 Pseudo-Triangulations a Survey arxiv:math/0612672v1 [math.co] 21 Dec 2006 Günter Rote, Francisco Santos, and Ileana Streinu Abstract. A pseudo-triangle is a simple polygon with three convex vertices, and

More information

MULTIPLE SADDLE CONNECTIONS ON FLAT SURFACES AND THE PRINCIPAL BOUNDARY OF THE MODULI SPACES OF QUADRATIC DIFFERENTIALS

MULTIPLE SADDLE CONNECTIONS ON FLAT SURFACES AND THE PRINCIPAL BOUNDARY OF THE MODULI SPACES OF QUADRATIC DIFFERENTIALS MULTIPLE SADDLE CONNECTIONS ON FLAT SURFACES AND THE PRINCIPAL BOUNDARY OF THE MODULI SPACES OF QUADRATIC DIFFERENTIALS HOWARD MASUR AND ANTON ZORICH Abstract. We describe typical degenerations of quadratic

More information