Introduction to Neural Networks: Structure and Training

Size: px
Start display at page:

Download "Introduction to Neural Networks: Structure and Training"

Transcription

1 Introduction to Neural Networks: Structure and Training Qi-Jun Zhang Department of Electronics Carleton University, Ottawa, ON, Canada

2 A Quick Illustration Example: Neural Network Model for Delay Estimation in a High-Speed Interconnect Network

3 High-Speed VLSI Interconnect Network Receiver 1 Driver 1 Driver 2 Receiver 4 Driver 3 Receiver 3 Receiver 2

4 Circuit Representation of the Interconnect Network L1 τ1 L2 τ2 L3 τ3 Rs R3 C3 L4 Source Vp, Tr R1 C1 R2 C2 τ4 R4 C4

5 Need for a Neural Network Model A PCB contains large number of interconnect networks, each with different interconnect lengths, terminations, and topology, leading to need of massive analysis of interconnect networks During PCB design/optimization, the interconnect networks need to be adjusted in terms of interconnect lengths, receiver-pin load characteristics, etc, leading to need of repetitive analysis of interconnect networks This necessitates fast and accurate interconnect network models and neural network model is a good candidate

6 Neural Network Model for Delay Analysis τ1 τ2 τ3 τ4... L1 L2 L3 L4 R1 R2 R3 R4 C1 C2 C3 C4 Rs Vp Tr e1 e2 e3

7 Simulation Time for 20,000 Interconnect Configurations Method CPU Circuit Simulator (NILT) hours AWE 9.56 hours Neural Network Approach 6.67 minutes

8 Important Features of Neural Networks Neural networks have the ability to model multi-dimensional nonlinear relationships Neural models are simple and the model computation is fast Neural networks can learn and generalize from available data thus making model development possible even when component formulae are unavailable Neural network approach is generic, i.e., the same modeling technique can be re-used for passive/active devices/circuits It is easier to update neural models whenever device or component technology changes

9 Neural Network Structures

10 Neural Network Structures A neural network contains neurons (processing elements) connections (links between neurons) A neural network structure defines how information is processed inside a neuron how the neurons are connected Examples of neural network structures multi-layer perceptrons (MLP) radial basis function (RBF) networks wavelet networks recurrent neural networks knowledge based neural networks MLP is the basic and most frequently used structure

11 MLP Structure y 1 y 2 y m 1 2 N.... L (Output) Layer L N L-1 (Hidden) Layer L N 2 (Hidden) Layer N 1 (Input) Layer 1 x 1 x 2 x 3 x n

12 Information Processing In a Neuron l z i σ (.) γ l γ i z l 1 0 z l wi 0 l 1 1 l wi 1 z l 1 2 l wi 2 Σ. l win l 1 l 1 z N l 1

13 Neuron Activation Functions Input layer neurons simply relay the external inputs to the neural network Hidden layer neurons have smooth switch-type activation functions Output layer neurons can have simple linear activation functions

14 Activation Functions for Hidden Neurons 1.5 Sigmoid σ(γ)=1/(1 +e - γ ) Arc-tangent σ(γ)=(2/π)arctan(γ) Hyperbolic-tangent σ(γ)=(e + γ -e - γ )/(e + γ +e - γ )

15 y MLP Structure y 1 y 2 y m z (L) 1 2 N.... L (Output) Layer L z (l -1) N L-1 (Hidden) Layer L-1 z (2) N 2 (Hidden) Layer 2 z (1) N 1 (Input) Layer 1 x x 1 x 2 x 3 x n

16 3 Layer MLP: Feedforward Computation Outputs y 1 y 2 y j =Σ W jkz k k W jk Hidden Neuron Values Z 1 Z 2 Z 3 Z 4 W ki Z k = tanh(σ W ki x i ) i x 1 x 2 x 3 Inputs

17 How can ANN represent an arbitrary nonlinear input-output relationship? Universal Approximation Theorem (Cybenko, 1989, Hornik, StinchCombe and White, 1989) In plain words: Given enough hidden layer neurons, a 3-layer MLP neural network can approximate an arbitrary continuous multidimensional function to any desired accuracy

18 How many hidden neurons are needed? The number of hidden neurons depends upon the degree of non-linearity, and dimension of the original problem Highly nonlinear problems and high dimensional problems need more neurons while smoother problems and small dimensional problems need fewer neurons To determine number of hidden neurons experience empirical criteria adaptive schemes software tool internal estimation

19 Development of Neural Network Models

20 Notation y = y(x, w): ANN model x: inputs of given modeling problem or ANN y: outputs of given modeling problem or ANN w: weight parameters in ANN d : data of y from simulation or measurement

21 Define Model Input-Output and Generate Data Define model input-output (x, y), for example, x: physical/geometrical parameters of the component y: S-parameters of the component Generate (x, y) samples (x k,d k ), k = 1, 2,, P, such that the data set sufficiently represent the behavior of the given x-y problem Types of Data Generator: simulation and measurement

22 Where Data Should be Sampled x3 x1 x2 Uniform grid distribution Non-uniform grid distribution Design of Experiments (DOE) methodology central-composite design 2 n factorial design Star distribution Random distribution

23 Training and Test Data Sets The overall data should be divided into 2 sets, training, and test. Notation: T r - Index set of training data T e - Index set of test data

24 Error Definitions Training error: E T r ( w ) = k T j = 1 r m y j ( x k,w ) d jk 2 test error E Te can be similarly defined. Training Objective: Adjust w to minimize E Tr, update of w is carried out using the information (w) and ET r At end of training, the quality of the neural model can be tested using test error E Te ET r w

25 Neural Network Training The error between training data and neural network outputs is feedback to the neural network to guide the internal weight update of the network d Training Error - y Training Data Neural Network W x

26 Typical Training Process Step 1: w = initial guess, set epoch = 0 Step 2: If (E Tr (epoch) < required_accuracy) or if (epoch > max_epoch) then STOP Step 3: Compute ET r (w) (or in training data set ( w) and ) using all samples w Step 4: Use optimization algorithm to find w and update the weights w w+ w ET r (w) ET r Step 5: Set epoch = epoch + 1 and GO TO Step 2

27 Gradient-based Training Algorithms w = η h where h is the direction of the update of w η is the step size Gradient-based methods use information of ET r (w) and to determine update direction h ( w) ET r w Step size η is determined in one of the following ways: Small value either fixed or adaptive during training Line minimization to find best value of η Examples of algorithms: backpropagation, conjugate gradient, and quasi-newton

28 Example: Backpropagation (BP) Training (Rumelhart, Hinton, Williams 1986) In the gradient algorithm, w = η h Let the update direction h be the negative gradient direction, then: or w w E w η where η is called learning rate β is called momentum factor = E T r ( w ) w ( w) Tr = w η + β w epoch 1 w

29 Example: FET Modeling Using Neural Networks

30 Neural Model for MESFET Modeling I d W Source N d Gate Drain a. L L W a N d V gs V ds

31 V d (V) FET I-V curves: Neural model vs physics-based test data V g = 0V -1V I d (ma) -2V -3V -4V -5V

Training of Neural Networks. Q.J. Zhang, Carleton University

Training of Neural Networks. Q.J. Zhang, Carleton University Training of Neural Networks Notation: x: input of the original modeling problem or the neural network y: output of the original modeling problem or the neural network w: internal weights/parameters of

More information

Supervised Learning in Neural Networks (Part 2)

Supervised Learning in Neural Networks (Part 2) Supervised Learning in Neural Networks (Part 2) Multilayer neural networks (back-propagation training algorithm) The input signals are propagated in a forward direction on a layer-bylayer basis. Learning

More information

Neural Network Structures and Training Algorithms for RF and Microwave Applications

Neural Network Structures and Training Algorithms for RF and Microwave Applications Neural Network Structures and Training Algorithms for RF and Microwave Applications Fang Wang, Vijaya K. Devabhaktuni, Changgeng Xi, Qi-Jun Zhang Department of Electronics, Carleton University, Ottawa,

More information

MATLAB representation of neural network Outline Neural network with single-layer of neurons. Neural network with multiple-layer of neurons.

MATLAB representation of neural network Outline Neural network with single-layer of neurons. Neural network with multiple-layer of neurons. MATLAB representation of neural network Outline Neural network with single-layer of neurons. Neural network with multiple-layer of neurons. Introduction: Neural Network topologies (Typical Architectures)

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

Data Mining. Neural Networks

Data Mining. Neural Networks Data Mining Neural Networks Goals for this Unit Basic understanding of Neural Networks and how they work Ability to use Neural Networks to solve real problems Understand when neural networks may be most

More information

Neural Network and Deep Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina

Neural Network and Deep Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina Neural Network and Deep Learning Early history of deep learning Deep learning dates back to 1940s: known as cybernetics in the 1940s-60s, connectionism in the 1980s-90s, and under the current name starting

More information

A NEW EFFICIENT VARIABLE LEARNING RATE FOR PERRY S SPECTRAL CONJUGATE GRADIENT TRAINING METHOD

A NEW EFFICIENT VARIABLE LEARNING RATE FOR PERRY S SPECTRAL CONJUGATE GRADIENT TRAINING METHOD 1 st International Conference From Scientific Computing to Computational Engineering 1 st IC SCCE Athens, 8 10 September, 2004 c IC SCCE A NEW EFFICIENT VARIABLE LEARNING RATE FOR PERRY S SPECTRAL CONJUGATE

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Image Data: Classification via Neural Networks Instructor: Yizhou Sun yzsun@ccs.neu.edu November 19, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining

More information

For Monday. Read chapter 18, sections Homework:

For Monday. Read chapter 18, sections Homework: For Monday Read chapter 18, sections 10-12 The material in section 8 and 9 is interesting, but we won t take time to cover it this semester Homework: Chapter 18, exercise 25 a-b Program 4 Model Neuron

More information

Artificial Neural Networks MLP, RBF & GMDH

Artificial Neural Networks MLP, RBF & GMDH Artificial Neural Networks MLP, RBF & GMDH Jan Drchal drchajan@fel.cvut.cz Computational Intelligence Group Department of Computer Science and Engineering Faculty of Electrical Engineering Czech Technical

More information

2. Neural network basics

2. Neural network basics 2. Neural network basics Next commonalities among different neural networks are discussed in order to get started and show which structural parts or concepts appear in almost all networks. It is presented

More information

Hidden Units. Sargur N. Srihari

Hidden Units. Sargur N. Srihari Hidden Units Sargur N. srihari@cedar.buffalo.edu 1 Topics in Deep Feedforward Networks Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation

More information

CMPT 882 Week 3 Summary

CMPT 882 Week 3 Summary CMPT 882 Week 3 Summary! Artificial Neural Networks (ANNs) are networks of interconnected simple units that are based on a greatly simplified model of the brain. ANNs are useful learning tools by being

More information

Neural Network Weight Selection Using Genetic Algorithms

Neural Network Weight Selection Using Genetic Algorithms Neural Network Weight Selection Using Genetic Algorithms David Montana presented by: Carl Fink, Hongyi Chen, Jack Cheng, Xinglong Li, Bruce Lin, Chongjie Zhang April 12, 2005 1 Neural Networks Neural networks

More information

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management Detroit, Michigan, USA, September 23-25, 2016

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management Detroit, Michigan, USA, September 23-25, 2016 Neural Network Viscosity Models for Multi-Component Liquid Mixtures Adel Elneihoum, Hesham Alhumade, Ibrahim Alhajri, Walid El Garwi, Ali Elkamel Department of Chemical Engineering, University of Waterloo

More information

Artificial neural networks are the paradigm of connectionist systems (connectionism vs. symbolism)

Artificial neural networks are the paradigm of connectionist systems (connectionism vs. symbolism) Artificial Neural Networks Analogy to biological neural systems, the most robust learning systems we know. Attempt to: Understand natural biological systems through computational modeling. Model intelligent

More information

6. Backpropagation training 6.1 Background

6. Backpropagation training 6.1 Background 6. Backpropagation training 6.1 Background To understand well how a feedforward neural network is built and it functions, we consider its basic first steps. We return to its history for a while. In 1949

More information

APPLICATION OF A MULTI- LAYER PERCEPTRON FOR MASS VALUATION OF REAL ESTATES

APPLICATION OF A MULTI- LAYER PERCEPTRON FOR MASS VALUATION OF REAL ESTATES FIG WORKING WEEK 2008 APPLICATION OF A MULTI- LAYER PERCEPTRON FOR MASS VALUATION OF REAL ESTATES Tomasz BUDZYŃSKI, PhD Artificial neural networks the highly sophisticated modelling technique, which allows

More information

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling Authors: Junyoung Chung, Caglar Gulcehre, KyungHyun Cho and Yoshua Bengio Presenter: Yu-Wei Lin Background: Recurrent Neural

More information

11/14/2010 Intelligent Systems and Soft Computing 1

11/14/2010 Intelligent Systems and Soft Computing 1 Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

Linear Separability. Linear Separability. Capabilities of Threshold Neurons. Capabilities of Threshold Neurons. Capabilities of Threshold Neurons

Linear Separability. Linear Separability. Capabilities of Threshold Neurons. Capabilities of Threshold Neurons. Capabilities of Threshold Neurons Linear Separability Input space in the two-dimensional case (n = ): - - - - - - w =, w =, = - - - - - - w = -, w =, = - - - - - - w = -, w =, = Linear Separability So by varying the weights and the threshold,

More information

Dynamic Analysis of Structures Using Neural Networks

Dynamic Analysis of Structures Using Neural Networks Dynamic Analysis of Structures Using Neural Networks Alireza Lavaei Academic member, Islamic Azad University, Boroujerd Branch, Iran Alireza Lohrasbi Academic member, Islamic Azad University, Boroujerd

More information

Deep Learning. Architecture Design for. Sargur N. Srihari

Deep Learning. Architecture Design for. Sargur N. Srihari Architecture Design for Deep Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation

More information

MODELLING OF ARTIFICIAL NEURAL NETWORK CONTROLLER FOR ELECTRIC DRIVE WITH LINEAR TORQUE LOAD FUNCTION

MODELLING OF ARTIFICIAL NEURAL NETWORK CONTROLLER FOR ELECTRIC DRIVE WITH LINEAR TORQUE LOAD FUNCTION MODELLING OF ARTIFICIAL NEURAL NETWORK CONTROLLER FOR ELECTRIC DRIVE WITH LINEAR TORQUE LOAD FUNCTION Janis Greivulis, Anatoly Levchenkov, Mikhail Gorobetz Riga Technical University, Faculty of Electrical

More information

COMPUTATIONAL INTELLIGENCE

COMPUTATIONAL INTELLIGENCE COMPUTATIONAL INTELLIGENCE Radial Basis Function Networks Adrian Horzyk Preface Radial Basis Function Networks (RBFN) are a kind of artificial neural networks that use radial basis functions (RBF) as activation

More information

Week 3: Perceptron and Multi-layer Perceptron

Week 3: Perceptron and Multi-layer Perceptron Week 3: Perceptron and Multi-layer Perceptron Phong Le, Willem Zuidema November 12, 2013 Last week we studied two famous biological neuron models, Fitzhugh-Nagumo model and Izhikevich model. This week,

More information

Why MultiLayer Perceptron/Neural Network? Objective: Attributes:

Why MultiLayer Perceptron/Neural Network? Objective: Attributes: Why MultiLayer Perceptron/Neural Network? Neural networks, with their remarkable ability to derive meaning from complicated or imprecise data, can be used to extract patterns and detect trends that are

More information

IMPROVEMENTS TO THE BACKPROPAGATION ALGORITHM

IMPROVEMENTS TO THE BACKPROPAGATION ALGORITHM Annals of the University of Petroşani, Economics, 12(4), 2012, 185-192 185 IMPROVEMENTS TO THE BACKPROPAGATION ALGORITHM MIRCEA PETRINI * ABSTACT: This paper presents some simple techniques to improve

More information

Fast Learning for Big Data Using Dynamic Function

Fast Learning for Big Data Using Dynamic Function IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Fast Learning for Big Data Using Dynamic Function To cite this article: T Alwajeeh et al 2017 IOP Conf. Ser.: Mater. Sci. Eng.

More information

MULTILAYER PERCEPTRON WITH ADAPTIVE ACTIVATION FUNCTIONS CHINMAY RANE. Presented to the Faculty of Graduate School of

MULTILAYER PERCEPTRON WITH ADAPTIVE ACTIVATION FUNCTIONS CHINMAY RANE. Presented to the Faculty of Graduate School of MULTILAYER PERCEPTRON WITH ADAPTIVE ACTIVATION FUNCTIONS By CHINMAY RANE Presented to the Faculty of Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for

More information

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used.

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used. 1 4.12 Generalization In back-propagation learning, as many training examples as possible are typically used. It is hoped that the network so designed generalizes well. A network generalizes well when

More information

MODIFIED KALMAN FILTER BASED METHOD FOR TRAINING STATE-RECURRENT MULTILAYER PERCEPTRONS

MODIFIED KALMAN FILTER BASED METHOD FOR TRAINING STATE-RECURRENT MULTILAYER PERCEPTRONS MODIFIED KALMAN FILTER BASED METHOD FOR TRAINING STATE-RECURRENT MULTILAYER PERCEPTRONS Deniz Erdogmus, Justin C. Sanchez 2, Jose C. Principe Computational NeuroEngineering Laboratory, Electrical & Computer

More information

Robustness of Selective Desensitization Perceptron Against Irrelevant and Partially Relevant Features in Pattern Classification

Robustness of Selective Desensitization Perceptron Against Irrelevant and Partially Relevant Features in Pattern Classification Robustness of Selective Desensitization Perceptron Against Irrelevant and Partially Relevant Features in Pattern Classification Tomohiro Tanno, Kazumasa Horie, Jun Izawa, and Masahiko Morita University

More information

Multi-Layered Perceptrons (MLPs)

Multi-Layered Perceptrons (MLPs) Multi-Layered Perceptrons (MLPs) The XOR problem is solvable if we add an extra node to a Perceptron A set of weights can be found for the above 5 connections which will enable the XOR of the inputs to

More information

Neural Networks for Optimal Control of Aircraft Landing Systems

Neural Networks for Optimal Control of Aircraft Landing Systems Neural Networks for Optimal Control of Aircraft Landing Systems Kevin Lau, Roberto Lopez and Eugenio Oñate Abstract In this work we present a variational formulation for a multilayer perceptron neural

More information

IN RECENT years, neural network techniques have been recognized

IN RECENT years, neural network techniques have been recognized IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 56, NO. 4, APRIL 2008 867 Neural Network Inverse Modeling and Applications to Microwave Filter Design Humayun Kabir, Student Member, IEEE, Ying

More information

ANFIS: ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEMS (J.S.R. Jang 1993,1995) bell x; a, b, c = 1 a

ANFIS: ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEMS (J.S.R. Jang 1993,1995) bell x; a, b, c = 1 a ANFIS: ADAPTIVE-NETWORK-ASED FUZZ INFERENCE SSTEMS (J.S.R. Jang 993,995) Membership Functions triangular triangle( ; a, a b, c c) ma min = b a, c b, 0, trapezoidal trapezoid( ; a, b, a c, d d) ma min =

More information

Prior Knowledge Input Method In Device Modeling

Prior Knowledge Input Method In Device Modeling Turk J Elec Engin, VOL.13, NO.1 2005, c TÜBİTAK Prior Knowledge Input Method In Device Modeling Serdar HEKİMHAN, Serdar MENEKAY, N. Serap ŞENGÖR İstanbul Technical University, Faculty of Electrical & Electronics

More information

Multi Layer Perceptron trained by Quasi Newton learning rule

Multi Layer Perceptron trained by Quasi Newton learning rule Multi Layer Perceptron trained by Quasi Newton learning rule Feed-forward neural networks provide a general framework for representing nonlinear functional mappings between a set of input variables and

More information

27: Hybrid Graphical Models and Neural Networks

27: Hybrid Graphical Models and Neural Networks 10-708: Probabilistic Graphical Models 10-708 Spring 2016 27: Hybrid Graphical Models and Neural Networks Lecturer: Matt Gormley Scribes: Jakob Bauer Otilia Stretcu Rohan Varma 1 Motivation We first look

More information

Artificial Neural Network Methodology for Modelling and Forecasting Maize Crop Yield

Artificial Neural Network Methodology for Modelling and Forecasting Maize Crop Yield Agricultural Economics Research Review Vol. 21 January-June 2008 pp 5-10 Artificial Neural Network Methodology for Modelling and Forecasting Maize Crop Yield Rama Krishna Singh and Prajneshu * Biometrics

More information

Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidirectional Associative Memory (BAM) for Function Approximation

Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidirectional Associative Memory (BAM) for Function Approximation IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 13, Issue 4 (Jul. - Aug. 2013), PP 34-38 Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture

More information

Extensive research has been conducted, aimed at developing

Extensive research has been conducted, aimed at developing Chapter 4 Supervised Learning: Multilayer Networks II Extensive research has been conducted, aimed at developing improved supervised learning algorithms for feedforward networks. 4.1 Madalines A \Madaline"

More information

NNIGnets, Neural Networks Software

NNIGnets, Neural Networks Software NNIGnets, Neural Networks Software Tânia Fontes 1, Vânia Lopes 1, Luís M. Silva 1, Jorge M. Santos 1,2, and Joaquim Marques de Sá 1 1 INEB - Instituto de Engenharia Biomédica, Campus FEUP (Faculdade de

More information

Global Journal of Engineering Science and Research Management

Global Journal of Engineering Science and Research Management A NOVEL HYBRID APPROACH FOR PREDICTION OF MISSING VALUES IN NUMERIC DATASET V.B.Kamble* 1, S.N.Deshmukh 2 * 1 Department of Computer Science and Engineering, P.E.S. College of Engineering, Aurangabad.

More information

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic SEMANTIC COMPUTING Lecture 8: Introduction to Deep Learning Dagmar Gromann International Center For Computational Logic TU Dresden, 7 December 2018 Overview Introduction Deep Learning General Neural Networks

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES Deep Learning Practical introduction with Keras Chapter 3 27/05/2018 Neuron A neural network is formed by neurons connected to each other; in turn, each connection of one neural network is associated

More information

Deep Neural Networks Optimization

Deep Neural Networks Optimization Deep Neural Networks Optimization Creative Commons (cc) by Akritasa http://arxiv.org/pdf/1406.2572.pdf Slides from Geoffrey Hinton CSC411/2515: Machine Learning and Data Mining, Winter 2018 Michael Guerzhoy

More information

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan Lecture 17: Neural Networks and Deep Learning Instructor: Saravanan Thirumuruganathan Outline Perceptron Neural Networks Deep Learning Convolutional Neural Networks Recurrent Neural Networks Auto Encoders

More information

PERFORMANCE COMPARISON OF BACK PROPAGATION AND RADIAL BASIS FUNCTION WITH MOVING AVERAGE FILTERING AND WAVELET DENOISING ON FETAL ECG EXTRACTION

PERFORMANCE COMPARISON OF BACK PROPAGATION AND RADIAL BASIS FUNCTION WITH MOVING AVERAGE FILTERING AND WAVELET DENOISING ON FETAL ECG EXTRACTION I J C T A, 9(28) 2016, pp. 431-437 International Science Press PERFORMANCE COMPARISON OF BACK PROPAGATION AND RADIAL BASIS FUNCTION WITH MOVING AVERAGE FILTERING AND WAVELET DENOISING ON FETAL ECG EXTRACTION

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Practical Tips for using Backpropagation

Practical Tips for using Backpropagation Practical Tips for using Backpropagation Keith L. Downing August 31, 2017 1 Introduction In practice, backpropagation is as much an art as a science. The user typically needs to try many combinations of

More information

Chap.12 Kernel methods [Book, Chap.7]

Chap.12 Kernel methods [Book, Chap.7] Chap.12 Kernel methods [Book, Chap.7] Neural network methods became popular in the mid to late 1980s, but by the mid to late 1990s, kernel methods have also become popular in machine learning. The first

More information

SGD: Stochastic Gradient Descent

SGD: Stochastic Gradient Descent Improving SGD Hantao Zhang Deep Learning with Python Reading: http://neuralnetworksanddeeplearning.com/index.html Chapter 2 SGD: Stochastic Gradient Descent Main Idea: Given a set of input/output examples

More information

COMPUTATIONAL NEURAL NETWORKS FOR GEOPHYSICAL DATA PROCESSING

COMPUTATIONAL NEURAL NETWORKS FOR GEOPHYSICAL DATA PROCESSING SEISMIC EXPLORATION Volume 30 COMPUTATIONAL NEURAL NETWORKS FOR GEOPHYSICAL DATA PROCESSING edited by Mary M. POULTON Department of Mining & Geological Engineering Computational Intelligence & Visualization

More information

Learning from Data: Adaptive Basis Functions

Learning from Data: Adaptive Basis Functions Learning from Data: Adaptive Basis Functions November 21, 2005 http://www.anc.ed.ac.uk/ amos/lfd/ Neural Networks Hidden to output layer - a linear parameter model But adapt the features of the model.

More information

Combined Weak Classifiers

Combined Weak Classifiers Combined Weak Classifiers Chuanyi Ji and Sheng Ma Department of Electrical, Computer and System Engineering Rensselaer Polytechnic Institute, Troy, NY 12180 chuanyi@ecse.rpi.edu, shengm@ecse.rpi.edu Abstract

More information

Center for Automation and Autonomous Complex Systems. Computer Science Department, Tulane University. New Orleans, LA June 5, 1991.

Center for Automation and Autonomous Complex Systems. Computer Science Department, Tulane University. New Orleans, LA June 5, 1991. Two-phase Backpropagation George M. Georgiou Cris Koutsougeras Center for Automation and Autonomous Complex Systems Computer Science Department, Tulane University New Orleans, LA 70118 June 5, 1991 Abstract

More information

Planar Robot Arm Performance: Analysis with Feedforward Neural Networks

Planar Robot Arm Performance: Analysis with Feedforward Neural Networks Planar Robot Arm Performance: Analysis with Feedforward Neural Networks Abraham Antonio López Villarreal, Samuel González-López, Luis Arturo Medina Muñoz Technological Institute of Nogales Sonora Mexico

More information

Neural Networks. Theory And Practice. Marco Del Vecchio 19/07/2017. Warwick Manufacturing Group University of Warwick

Neural Networks. Theory And Practice. Marco Del Vecchio 19/07/2017. Warwick Manufacturing Group University of Warwick Neural Networks Theory And Practice Marco Del Vecchio marco@delvecchiomarco.com Warwick Manufacturing Group University of Warwick 19/07/2017 Outline I 1 Introduction 2 Linear Regression Models 3 Linear

More information

Neural Networks (Overview) Prof. Richard Zanibbi

Neural Networks (Overview) Prof. Richard Zanibbi Neural Networks (Overview) Prof. Richard Zanibbi Inspired by Biology Introduction But as used in pattern recognition research, have little relation with real neural systems (studied in neurology and neuroscience)

More information

OMBP: Optic Modified BackPropagation training algorithm for fast convergence of Feedforward Neural Network

OMBP: Optic Modified BackPropagation training algorithm for fast convergence of Feedforward Neural Network 2011 International Conference on Telecommunication Technology and Applications Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore OMBP: Optic Modified BackPropagation training algorithm for fast

More information

Fast Training of Multilayer Perceptrons

Fast Training of Multilayer Perceptrons Fast Training of Multilayer Perceptrons Brijesh Verma, Member of IEEE & IASTED School of Information Technology Faculty of Engineering and Applied Science Griffith University, Gold Coast Campus Gold Coast,

More information

Constructing Hidden Units using Examples and Queries

Constructing Hidden Units using Examples and Queries Constructing Hidden Units using Examples and Queries Eric B. Baum Kevin J. Lang NEC Research Institute 4 Independence Way Princeton, NJ 08540 ABSTRACT While the network loading problem for 2-layer threshold

More information

Neuro-Fuzzy Computing

Neuro-Fuzzy Computing CSE531 Neuro-Fuzzy Computing Tutorial/Assignment 2: Adaline and Multilayer Perceptron About this tutorial The objective of this tutorial is to study: You can create a single (composite) layer of neurons

More information

CSC 578 Neural Networks and Deep Learning

CSC 578 Neural Networks and Deep Learning CSC 578 Neural Networks and Deep Learning Fall 2018/19 7. Recurrent Neural Networks (Some figures adapted from NNDL book) 1 Recurrent Neural Networks 1. Recurrent Neural Networks (RNNs) 2. RNN Training

More information

Assignment # 5. Farrukh Jabeen Due Date: November 2, Neural Networks: Backpropation

Assignment # 5. Farrukh Jabeen Due Date: November 2, Neural Networks: Backpropation Farrukh Jabeen Due Date: November 2, 2009. Neural Networks: Backpropation Assignment # 5 The "Backpropagation" method is one of the most popular methods of "learning" by a neural network. Read the class

More information

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R.

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R. Lecture 24: Learning 3 Victor R. Lesser CMPSCI 683 Fall 2010 Today s Lecture Continuation of Neural Networks Artificial Neural Networks Compose of nodes/units connected by links Each link has a numeric

More information

CP365 Artificial Intelligence

CP365 Artificial Intelligence CP365 Artificial Intelligence Tech News! Apple news conference tomorrow? Tech News! Apple news conference tomorrow? Google cancels Project Ara modular phone Weather-Based Stock Market Predictions? Dataset

More information

COMP 551 Applied Machine Learning Lecture 14: Neural Networks

COMP 551 Applied Machine Learning Lecture 14: Neural Networks COMP 551 Applied Machine Learning Lecture 14: Neural Networks Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise noted, all material posted for this course

More information

Neural Networks. Neural Network. Neural Network. Neural Network 2/21/2008. Andrew Kusiak. Intelligent Systems Laboratory Seamans Center

Neural Networks. Neural Network. Neural Network. Neural Network 2/21/2008. Andrew Kusiak. Intelligent Systems Laboratory Seamans Center Neural Networks Neural Network Input Andrew Kusiak Intelligent t Systems Laboratory 2139 Seamans Center Iowa City, IA 52242-1527 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak Tel. 319-335

More information

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS Neural Networks Classifier Introduction INPUT: classification data, i.e. it contains an classification (class) attribute. WE also say that the class

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Channel Performance Improvement through FF and RBF Neural Network based Equalization

Channel Performance Improvement through FF and RBF Neural Network based Equalization Channel Performance Improvement through FF and RBF Neural Network based Equalization Manish Mahajan 1, Deepak Pancholi 2, A.C. Tiwari 3 Research Scholar 1, Asst. Professor 2, Professor 3 Lakshmi Narain

More information

IMPROVED MODEL ORDER ESTIMATION FOR NONLINEAR DYNAMIC SYSTEMS

IMPROVED MODEL ORDER ESTIMATION FOR NONLINEAR DYNAMIC SYSTEMS ászló Sragner, Gábor Horváth / Computing,, Vol., Issue, 9- computing@tanet.edu.te.ua www.tanet.edu.te.ua/computing ISS 77-69 International Scientific Journal of Computing IMPROVE MOE ORER ESTIMATIO FOR

More information

Statistical foundations of machine learning

Statistical foundations of machine learning Statistical foundations of machine learning INFO-F-422 Gianluca Bontempi Machine Learning Group Computer Science Department mlg.ulb.ac.be Some algorithms for nonlinear modeling Feedforward neural network

More information

Artificial Neural Networks Lecture Notes Part 5. Stephen Lucci, PhD. Part 5

Artificial Neural Networks Lecture Notes Part 5. Stephen Lucci, PhD. Part 5 Artificial Neural Networks Lecture Notes Part 5 About this file: If you have trouble reading the contents of this file, or in case of transcription errors, email gi0062@bcmail.brooklyn.cuny.edu Acknowledgments:

More information

Multilayer Feed-forward networks

Multilayer Feed-forward networks Multi Feed-forward networks 1. Computational models of McCulloch and Pitts proposed a binary threshold unit as a computational model for artificial neuron. This first type of neuron has been generalized

More information

COMP9444 Neural Networks and Deep Learning 5. Geometry of Hidden Units

COMP9444 Neural Networks and Deep Learning 5. Geometry of Hidden Units COMP9 8s Geometry of Hidden Units COMP9 Neural Networks and Deep Learning 5. Geometry of Hidden Units Outline Geometry of Hidden Unit Activations Limitations of -layer networks Alternative transfer functions

More information

Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network

Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 11, November 2014,

More information

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning,

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning, A Acquisition function, 298, 301 Adam optimizer, 175 178 Anaconda navigator conda command, 3 Create button, 5 download and install, 1 installing packages, 8 Jupyter Notebook, 11 13 left navigation pane,

More information

Neural Networks: A Classroom Approach Satish Kumar Department of Physics & Computer Science Dayalbagh Educational Institute (Deemed University)

Neural Networks: A Classroom Approach Satish Kumar Department of Physics & Computer Science Dayalbagh Educational Institute (Deemed University) Chapter 6 Supervised Learning II: Backpropagation and Beyond Neural Networks: A Classroom Approach Satish Kumar Department of Physics & Computer Science Dayalbagh Educational Institute (Deemed University)

More information

CHAPTER VI BACK PROPAGATION ALGORITHM

CHAPTER VI BACK PROPAGATION ALGORITHM 6.1 Introduction CHAPTER VI BACK PROPAGATION ALGORITHM In the previous chapter, we analysed that multiple layer perceptrons are effectively applied to handle tricky problems if trained with a vastly accepted

More information

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER Inverting Feedforward Neural Networks Using Linear and Nonlinear Programming

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER Inverting Feedforward Neural Networks Using Linear and Nonlinear Programming IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999 1271 Inverting Feedforward Neural Networks Using Linear and Nonlinear Programming Bao-Liang Lu, Member, IEEE, Hajime Kita, and Yoshikazu

More information

Multi-layer Perceptron Forward Pass Backpropagation. Lecture 11: Aykut Erdem November 2016 Hacettepe University

Multi-layer Perceptron Forward Pass Backpropagation. Lecture 11: Aykut Erdem November 2016 Hacettepe University Multi-layer Perceptron Forward Pass Backpropagation Lecture 11: Aykut Erdem November 2016 Hacettepe University Administrative Assignment 2 due Nov. 10, 2016! Midterm exam on Monday, Nov. 14, 2016 You are

More information

FAST NEURAL NETWORK ALGORITHM FOR SOLVING CLASSIFICATION TASKS

FAST NEURAL NETWORK ALGORITHM FOR SOLVING CLASSIFICATION TASKS Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2012 FAST NEURAL NETWORK ALGORITHM FOR SOLVING CLASSIFICATION TASKS Noor Albarakati Virginia Commonwealth

More information

A New Learning Algorithm for Neural Networks with Integer Weights and Quantized Non-linear Activation Functions

A New Learning Algorithm for Neural Networks with Integer Weights and Quantized Non-linear Activation Functions A New Learning Algorithm for Neural Networks with Integer Weights and Quantized Non-linear Activation Functions Yan Yi 1 and Zhang Hangping and Zhou Bin 3 Abstract The hardware implementation of neural

More information

INTELLIGENT PROCESS SELECTION FOR NTM - A NEURAL NETWORK APPROACH

INTELLIGENT PROCESS SELECTION FOR NTM - A NEURAL NETWORK APPROACH International Journal of Industrial Engineering Research and Development (IJIERD), ISSN 0976 6979(Print), ISSN 0976 6987(Online) Volume 1, Number 1, July - Aug (2010), pp. 87-96 IAEME, http://www.iaeme.com/iierd.html

More information

An Algorithm For Training Multilayer Perceptron (MLP) For Image Reconstruction Using Neural Network Without Overfitting.

An Algorithm For Training Multilayer Perceptron (MLP) For Image Reconstruction Using Neural Network Without Overfitting. An Algorithm For Training Multilayer Perceptron (MLP) For Image Reconstruction Using Neural Network Without Overfitting. Mohammad Mahmudul Alam Mia, Shovasis Kumar Biswas, Monalisa Chowdhury Urmi, Abubakar

More information

Introduction to Multilayer Perceptrons

Introduction to Multilayer Perceptrons An Introduction to Multilayered Neural Networks Introduction to Multilayer Perceptrons Marco Gori University of Siena Outline of the course Motivations and biological inspiration Multilayer perceptrons:

More information

Optimizing Number of Hidden Nodes for Artificial Neural Network using Competitive Learning Approach

Optimizing Number of Hidden Nodes for Artificial Neural Network using Competitive Learning Approach Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 5, May 2015, pg.358

More information

Neural Networks: What can a network represent. Deep Learning, Fall 2018

Neural Networks: What can a network represent. Deep Learning, Fall 2018 Neural Networks: What can a network represent Deep Learning, Fall 2018 1 Recap : Neural networks have taken over AI Tasks that are made possible by NNs, aka deep learning 2 Recap : NNets and the brain

More information

Future Image Prediction using Artificial Neural Networks

Future Image Prediction using Artificial Neural Networks Future Image Prediction using Artificial Neural Networks Abhishek Kar (Y8021) Dept. of Computer Science and Engineering, IIT Kanpur Abstract In this work we present an Artificial Neural Network approach

More information

International Research Journal of Computer Science (IRJCS) ISSN: Issue 09, Volume 4 (September 2017)

International Research Journal of Computer Science (IRJCS) ISSN: Issue 09, Volume 4 (September 2017) APPLICATION OF LRN AND BPNN USING TEMPORAL BACKPROPAGATION LEARNING FOR PREDICTION OF DISPLACEMENT Talvinder Singh, Munish Kumar C-DAC, Noida, India talvinder.grewaal@gmail.com,munishkumar@cdac.in Manuscript

More information

Neural Networks: What can a network represent. Deep Learning, Spring 2018

Neural Networks: What can a network represent. Deep Learning, Spring 2018 Neural Networks: What can a network represent Deep Learning, Spring 2018 1 Recap : Neural networks have taken over AI Tasks that are made possible by NNs, aka deep learning 2 Recap : NNets and the brain

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 7: Universal Approximation Theorem, More Hidden Units, Multi-Class Classifiers, Softmax, and Regularization Peter Belhumeur Computer Science Columbia University

More information

Adaptive Tiled Neural Networks

Adaptive Tiled Neural Networks Adaptive Tiled Neural Networks M.Nokhbeh-Zaeem, D.Khashabi, H.A.Talebi, Sh.Navabi, F.Jabbarvaziri Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran {nokhbeh100,d.khashabi,shiva.navabi,faramarz.vaziri87}@gmail.com,

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information