Data Mining. Neural Networks

Size: px
Start display at page:

Download "Data Mining. Neural Networks"

Transcription

1 Data Mining Neural Networks

2 Goals for this Unit Basic understanding of Neural Networks and how they work Ability to use Neural Networks to solve real problems Understand when neural networks may be most appropriate Understand the strengths and weaknesses of neural network models A detailed understanding of how they work is deferred until Machine Learning 2

3 Biological Motivation Can we simulate the human learning process? Two schools modeling biological learning process obtain highly effective algorithms, independent of whether these algorithms mirror biological processes (this course) Biological learning system (brain) complex network of neurons ANN are loosely motivated by biological neural systems. However, many features of ANNs are inconsistent with biological systems 3

4 Neural Speed Constraints What do you think the differences are in speed between the elements in a computer and brain? How fast are neurons? Neurons have a switching time on the order of a few milliseconds, compared to nanoseconds for current computing hardware. However, neural systems can perform complex cognitive tasks (vision, speech understanding) in tenths of a second. How? Only time for performing 100 serial steps in this time frame, compared to orders of magnitude more for current computers. Must be exploiting massive parallelism. Human brain has about 30 Billion neurons with an average of 10,000 connections each. 4

5 Artificial Neural Networks (ANN) ANN network of simple units real-valued inputs & outputs Many neuron-like threshold switching units Many weighted interconnections among units Highly parallel, distributed process Emphasis on tuning weights automatically 5

6 Real Neurons Do you know which way the signal flows? Answer on next slide 6

7 How Does our Brain Work? A neuron is connected to other neurons via its input and output links Dendrites receive the signal (input) Axons transmit signal (output) Axon close to about 10,000 dendrites and gap called synapse Chemical signals are used to cross synapses Each axon contains 50 different types of neurotransmitters Receptors keyed to each neurotransmitter on dendrites Can be excitatory or inhibitory 7

8 How does our Brain Work? Each incoming neuron has an activation value and each connection has an associated weight The neuron sums the incoming weighted values and this value is input to an activation function The output of the activation function is the output from the neuron 8

9 Neural Communication Electrical potential across cell membrane exhibits spikes called action potentials. Spike originates in cell body, travels down axon, and causes synaptic terminals to release neurotransmitters. Chemical diffuses across synapse to dendrites of other neurons. Neurotransmitters can be excitatory or inhibitory. If net input of neurotransmitters to a neuron from other neurons is excititory and exceeds some threshold, it fires an action potential. 9

10 Real Neural Learning To model the brain we need to model a neuron Each neuron performs a simple computation It receives signals from its input links and it uses these to compute the activation level (or output) for the neuron. This value is passed to other neurons via its output links. 10

11 Neural Network Learning Learning approach based on modeling adaptation in biological neural systems Learning involves modifying the weights between neurons Note: In biological system one can add new connections Perceptron Initial algorithm for learning simple neural networks (single layer) developed in the 1950 s. Backpropagation More complex algorithm for learning multi-layer neural networks developed in the 1980 s. 11

12 Prototypical ANN Units interconnected in layers directed, acyclic graph (DAG) Network structure is fixed learning = weight adjustment backpropagation algorithm 12

13 Strengths and Weaknesses Instances: vectors of attributes discrete or real values Target function discrete, real, vector ANNs can handle classification & regression Noisy data Long training times acceptable Fast evaluation No need to be comprehensible or explainable Nearly impossible to interpret neural networks except for the simplest target functions As we will see can learn complex decision boundaries 13

14 Perceptrons The perceptron is a type of artificial neural network which can be seen as the simplest kind of feedforward neural network: a linear classifier Introduced in the late 50s Perceptron convergence theorem (Rosenblatt 1962): Perceptron will learn to classify any linearly separable set of inputs. Perceptron is a network: single-layer feed-forward: data only travels in one direction XOR function (no linear separation) 14

15 ALVINN drives 70 mph on highways See Alvinn video Alvinn Video link 344/alvinn-self-driving-car-1989-cmu-navlab 15

16 Artificial Neuron Model Model network as a graph with cells as nodes and synaptic connections as weighted edges from node i to node j, w ji Model net input to cell as net w j i ji o i 1 w 12 w w w w Cell output is: o j 0 if 1if net net i j T T j j o j 1 (T j is threshold for unit j) 0 T j net j 16

17 Perceptron: Artificial Neuron Model Model network as a graph with cells as nodes and synaptic connections as weighted edges from node i to node j, w ji The input value received of a neuron is calculated by summing the weighted input values from its input links n w i x i i0 threshold threshold function Vector notation: 17

18 Different Threshold Functions 0 1, 0 1, ) ( x w x w x o 0 1, 0 1, ) ( x w x w x o 18

19 Examples (step activation function) In1 In2 Out In1 In2 Out In Out

20 Neural Computation McCollough and Pitts (1943) showed how such model neurons could compute logical functions and be used to construct finitestate machines Can be used to simulate logic gates: AND: Let all w ji be T j /n, where n is the number of inputs. OR: Let all w ji be T j NOT: Let threshold be 0, single input with a negative weight. Can build arbitrary logic circuits, sequential machines, and computers with such gates 20

21 Perceptron Training Assume supervised training examples giving the desired output for a unit given a set of known input activations. Goal: learn the weight vector (synaptic weights) that causes the perceptron to produce the correct +/- 1 values Perceptron uses iterative update algorithm to learn a correct set of weights Perceptron training rule Delta rule Both algorithms are guaranteed to converge to somewhat different acceptable hypotheses, under somewhat different conditions 21

22 Perceptron Training Rule Update weights by: w i w i w i w ( t o) w i i where η is the learning rate a small value (e.g., 0.1) sometimes is made to decay as the number of weight-tuning operations increases t target output for the current training example o linear unit output for the current training example 22

23 Perceptron Training Rule Equivalent to rules: If output is correct do nothing. If output is high, lower weights on active inputs If output is low, increase weights on active inputs Can prove it will converge if training data is linearly separable and η is small Works reasonably well when training data is not linearly separable 23

24 Perceptron Learning Algorithm Iteratively update weights until convergence. Initialize weights to random values Until outputs of all training examples are correct For each training pair, E, do: Compute current output o j for E given its inputs Compare current output to target value, t j, for E Update synaptic weights and threshold using learning rule Each execution of the outer loop is typically called an epoch. 24

25 Perceptron as a Linear Separator Since perceptron uses linear threshold function it searches for a linear separator that discriminates the classes o 3?? Or hyperplane in n-dimensional space o 2 25

26 Concepts Perceptron Cannot Learn Cannot learn exclusive-or (XOR), or parity function in general o 3 1 +?? o 2 26

27 General Structure of an ANN x 1 x 2 x 3 x 4 x 5 Input Layer Input Neuron i Output Hidden Layer I 1 I 2 I 3 w i1 w i2 w i3 S i Activation function g(s i ) O i O i threshold, t Output Layer y Perceptrons have no hidden layers Multilayer perceptrons may have many 27

28 Learning Power of an ANN Perceptron is guaranteed to converge if data is linearly separable It will learn a hyperplane that separates the classes A mulitlayer ANN has no guarantee of convergence but can learn functions that are not linearly separable 28

29 Multilayer Network Example The decision surface is highly nonlinear 29

30 Sigmoid Threshold Unit Sigmoid is a unit whose output is a nonlinear function of its inputs, but whose output is also a differentiable function of its inputs We can derive gradient descent rules to train Sigmoid unit Multilayer networks of sigmoid units backpropagation 30

31 Multi-Layer Networks Multi-layer networks can represent arbitrary functions, but an effective learning algorithm for such networks was thought to be difficult A typical multi-layer network consists of an input, hidden and output layer, each fully connected to the next, with activation feeding forward. output hidden activation input The weights determine the function computed. Given an arbitrary number of hidden units, any boolean function can be computed with a single hidden layer 31

32 Logistic function Inputs Output Age 34 Gender S 0.6 Probability Stage 4.8 of beingalive Independent variables Coefficients 32

33 Neural Network Model Inputs Age Output Gender 2 Stage S S S 0.6 Probability of beingalive Independent variables Weights Hidden Layer Weights Dependent variable Prediction 33

34 Getting an answer from a NN Inputs Age 34.6 Output Gender 2 Stage S 0.6 Probability of beingalive Independent variables Weights Hidden Layer Weights Dependent variable Prediction 34

35 Getting an answer from a NN Inputs Age 34 Gender 2 Stage S Output 0.6 Probability of beingalive Independent variables Weights Hidden Layer Weights Dependent variable Prediction 35

36 Getting an answer from a NN Inputs Age 34 Gender 1 Stage S Output 0.6 Probability of beingalive Independent variables Weights Hidden Layer Weights Dependent variable Prediction 36

37 Comments on Training Algorithm Not guaranteed to converge to zero training error, may converge to local optima or oscillate indefinitely. In practice, does converge to low error for many large networks on real data. Many epochs (thousands) may be required, hours or days of training for large networks. To avoid local-minima problems run trials starting with different random weights (random restart). Take results of trial with lowest training set error. Build a committee of results from multiple trials (possibly weighting votes by training set accuracy). 37

38 Hidden Unit Representations Trained hidden units can be seen as newly constructed features that make the target concept linearly separable in the transformed space: key features of ANNs On many real domains, hidden units can be interpreted as representing meaningful features such as vowel detectors or edge detectors, etc.. However, the hidden layer can also become a distributed representation of the input in which each individual unit is not easily interpretable as a meaningful feature. 38

39 Expressive Power of ANNs Boolean functions: Any boolean function can be represented by a two-layer network with sufficient hidden units. Continuous functions: Any bounded continuous function can be approximated with arbitrarily small error by a two-layer network. Arbitrary function: Any function can be approximated to arbitrary accuracy by a three-layer network. Why not just use millions of hidden units? Efficiency (neural network training is slow) Overfitting 39

40 error Determining Best Number of Hidden Units Too few hidden units prevents the network from adequately fitting the data Too many hidden units can result in over-fitting on test data 0 # hidden units on training data Use internal cross-validation to empirically determine an optimal number of hidden units 40

41 error Over-Training Prevention Running too many epochs can result in over-fitting. on test data 0 # training epochs on training data Keep a hold-out validation set and test accuracy on it after every epoch. Stop training when additional epochs actually increase validation error. To avoid losing training data for validation: Use internal 10-fold CV on the training set to compute the average number of epochs that maximizes generalization accuracy. Train final network on complete training set for this many epochs. 41

42 Summary of Neural Networks When are Neural Networks useful? Instances represented by attribute-value pairs Particularly when attributes are real valued The target function is Discrete-valued Real-valued Vector-valued Training examples may contain errors Fast evaluation times are necessary but slow training is acceptable When not? Fast training times are necessary Understandability of the function is required 42

43 Successful Applications Text to Speech (NetTalk) Fraud detection Financial Applications HNC (eventually bought by Fair Isaac) Chemical Plant Control Pavillion Technologies Automated Vehicles Game Playing Neurogammon Handwriting recognition 43

44 Issues in Neural Nets Learning the proper network architecture Many choices and options There are alternative architectures we did not discuss Recurrent networks that use feedback 44

45 Deep Learning Deep Learning is currently a very hot topic Deep learning attempts to model high-level abstractions in data by using multiple processing layers, with complex structures or otherwise, composed of multiple non-linear transformations Probably requires more than 2 hidden layers and more than 10 for very deep learning Replace need for handcrafted features with automatic feature learning with multiple levels of abstraction Higher level features based on lower level features Autoencoder: have one hidden layer with fewer nodes than input and require it to regenerate the input as its output. This forces the hidden layer to learn more general features that can reconstruct the output Does not require labeled training data 45

46 Some Examples More about ANNs, Rerepresentation, and Deep Learning (5min, Andrew Ng, interesting) Deep Learning example: Quad Copter Navigation (5min, somewhat interesting) 46

Artificial neural networks are the paradigm of connectionist systems (connectionism vs. symbolism)

Artificial neural networks are the paradigm of connectionist systems (connectionism vs. symbolism) Artificial Neural Networks Analogy to biological neural systems, the most robust learning systems we know. Attempt to: Understand natural biological systems through computational modeling. Model intelligent

More information

For Monday. Read chapter 18, sections Homework:

For Monday. Read chapter 18, sections Homework: For Monday Read chapter 18, sections 10-12 The material in section 8 and 9 is interesting, but we won t take time to cover it this semester Homework: Chapter 18, exercise 25 a-b Program 4 Model Neuron

More information

CMPT 882 Week 3 Summary

CMPT 882 Week 3 Summary CMPT 882 Week 3 Summary! Artificial Neural Networks (ANNs) are networks of interconnected simple units that are based on a greatly simplified model of the brain. ANNs are useful learning tools by being

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Neural Networks CMSC475/675

Neural Networks CMSC475/675 Introduction to Neural Networks CMSC475/675 Chapter 1 Introduction Why ANN Introduction Some tasks can be done easily (effortlessly) by humans but are hard by conventional paradigms on Von Neumann machine

More information

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation Learning Learning agents Inductive learning Different Learning Scenarios Evaluation Slides based on Slides by Russell/Norvig, Ronald Williams, and Torsten Reil Material from Russell & Norvig, chapters

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

Neural Networks. Robot Image Credit: Viktoriya Sukhanova 123RF.com

Neural Networks. Robot Image Credit: Viktoriya Sukhanova 123RF.com Neural Networks These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides

More information

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R.

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R. Lecture 24: Learning 3 Victor R. Lesser CMPSCI 683 Fall 2010 Today s Lecture Continuation of Neural Networks Artificial Neural Networks Compose of nodes/units connected by links Each link has a numeric

More information

11/14/2010 Intelligent Systems and Soft Computing 1

11/14/2010 Intelligent Systems and Soft Computing 1 Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

Supervised Learning in Neural Networks (Part 2)

Supervised Learning in Neural Networks (Part 2) Supervised Learning in Neural Networks (Part 2) Multilayer neural networks (back-propagation training algorithm) The input signals are propagated in a forward direction on a layer-bylayer basis. Learning

More information

Assignment # 5. Farrukh Jabeen Due Date: November 2, Neural Networks: Backpropation

Assignment # 5. Farrukh Jabeen Due Date: November 2, Neural Networks: Backpropation Farrukh Jabeen Due Date: November 2, 2009. Neural Networks: Backpropation Assignment # 5 The "Backpropagation" method is one of the most popular methods of "learning" by a neural network. Read the class

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Image Data: Classification via Neural Networks Instructor: Yizhou Sun yzsun@ccs.neu.edu November 19, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining

More information

CS 4510/9010 Applied Machine Learning. Neural Nets. Paula Matuszek Fall copyright Paula Matuszek 2016

CS 4510/9010 Applied Machine Learning. Neural Nets. Paula Matuszek Fall copyright Paula Matuszek 2016 CS 4510/9010 Applied Machine Learning 1 Neural Nets Paula Matuszek Fall 2016 Neural Nets, the very short version 2 A neural net consists of layers of nodes, or neurons, each of which has an activation

More information

EECS 496 Statistical Language Models. Winter 2018

EECS 496 Statistical Language Models. Winter 2018 EECS 496 Statistical Language Models Winter 2018 Introductions Professor: Doug Downey Course web site: www.cs.northwestern.edu/~ddowney/courses/496_winter2018 (linked off prof. home page) Logistics Grading

More information

Yuki Osada Andrew Cannon

Yuki Osada Andrew Cannon Yuki Osada Andrew Cannon 1 Humans are an intelligent species One feature is the ability to learn The ability to learn comes down to the brain The brain learns from experience Research shows that the brain

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are connectionist neural networks? Connectionism refers to a computer modeling approach to computation that is loosely based upon the architecture of the brain Many

More information

Supervised Learning (contd) Linear Separation. Mausam (based on slides by UW-AI faculty)

Supervised Learning (contd) Linear Separation. Mausam (based on slides by UW-AI faculty) Supervised Learning (contd) Linear Separation Mausam (based on slides by UW-AI faculty) Images as Vectors Binary handwritten characters Treat an image as a highdimensional vector (e.g., by reading pixel

More information

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS Neural Networks Classifier Introduction INPUT: classification data, i.e. it contains an classification (class) attribute. WE also say that the class

More information

Multilayer Feed-forward networks

Multilayer Feed-forward networks Multi Feed-forward networks 1. Computational models of McCulloch and Pitts proposed a binary threshold unit as a computational model for artificial neuron. This first type of neuron has been generalized

More information

Design and Performance Analysis of and Gate using Synaptic Inputs for Neural Network Application

Design and Performance Analysis of and Gate using Synaptic Inputs for Neural Network Application IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 12 May 2015 ISSN (online): 2349-6010 Design and Performance Analysis of and Gate using Synaptic Inputs for Neural

More information

Opening the Black Box Data Driven Visualizaion of Neural N

Opening the Black Box Data Driven Visualizaion of Neural N Opening the Black Box Data Driven Visualizaion of Neural Networks September 20, 2006 Aritificial Neural Networks Limitations of ANNs Use of Visualization (ANNs) mimic the processes found in biological

More information

Neural Networks (pp )

Neural Networks (pp ) Notation: Means pencil-and-paper QUIZ Means coding QUIZ Neural Networks (pp. 106-121) The first artificial neural network (ANN) was the (single-layer) perceptron, a simplified model of a biological neuron.

More information

Supervised Learning with Neural Networks. We now look at how an agent might learn to solve a general problem by seeing examples.

Supervised Learning with Neural Networks. We now look at how an agent might learn to solve a general problem by seeing examples. Supervised Learning with Neural Networks We now look at how an agent might learn to solve a general problem by seeing examples. Aims: to present an outline of supervised learning as part of AI; to introduce

More information

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies http://blog.csdn.net/zouxy09/article/details/8775360 Automatic Colorization of Black and White Images Automatically Adding Sounds To Silent Movies Traditionally this was done by hand with human effort

More information

COMP 551 Applied Machine Learning Lecture 14: Neural Networks

COMP 551 Applied Machine Learning Lecture 14: Neural Networks COMP 551 Applied Machine Learning Lecture 14: Neural Networks Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise noted, all material posted for this course

More information

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 CS 1674: Intro to Computer Vision Neural Networks Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 Announcements Please watch the videos I sent you, if you haven t yet (that s your reading)

More information

COMPUTATIONAL INTELLIGENCE

COMPUTATIONAL INTELLIGENCE COMPUTATIONAL INTELLIGENCE Fundamentals Adrian Horzyk Preface Before we can proceed to discuss specific complex methods we have to introduce basic concepts, principles, and models of computational intelligence

More information

Machine Learning in Biology

Machine Learning in Biology Università degli studi di Padova Machine Learning in Biology Luca Silvestrin (Dottorando, XXIII ciclo) Supervised learning Contents Class-conditional probability density Linear and quadratic discriminant

More information

Neural Networks (Overview) Prof. Richard Zanibbi

Neural Networks (Overview) Prof. Richard Zanibbi Neural Networks (Overview) Prof. Richard Zanibbi Inspired by Biology Introduction But as used in pattern recognition research, have little relation with real neural systems (studied in neurology and neuroscience)

More information

Instructor: Jessica Wu Harvey Mudd College

Instructor: Jessica Wu Harvey Mudd College The Perceptron Instructor: Jessica Wu Harvey Mudd College The instructor gratefully acknowledges Andrew Ng (Stanford), Eric Eaton (UPenn), David Kauchak (Pomona), and the many others who made their course

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Pattern Classification Algorithms for Face Recognition

Pattern Classification Algorithms for Face Recognition Chapter 7 Pattern Classification Algorithms for Face Recognition 7.1 Introduction The best pattern recognizers in most instances are human beings. Yet we do not completely understand how the brain recognize

More information

Artificial Neural Networks

Artificial Neural Networks The Perceptron Rodrigo Fernandes de Mello Invited Professor at Télécom ParisTech Associate Professor at Universidade de São Paulo, ICMC, Brazil http://www.icmc.usp.br/~mello mello@icmc.usp.br Conceptually

More information

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska Classification Lecture Notes cse352 Neural Networks Professor Anita Wasilewska Neural Networks Classification Introduction INPUT: classification data, i.e. it contains an classification (class) attribute

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

Lecture #11: The Perceptron

Lecture #11: The Perceptron Lecture #11: The Perceptron Mat Kallada STAT2450 - Introduction to Data Mining Outline for Today Welcome back! Assignment 3 The Perceptron Learning Method Perceptron Learning Rule Assignment 3 Will be

More information

Character Recognition Using Convolutional Neural Networks

Character Recognition Using Convolutional Neural Networks Character Recognition Using Convolutional Neural Networks David Bouchain Seminar Statistical Learning Theory University of Ulm, Germany Institute for Neural Information Processing Winter 2006/2007 Abstract

More information

Back propagation Algorithm:

Back propagation Algorithm: Network Neural: A neural network is a class of computing system. They are created from very simple processing nodes formed into a network. They are inspired by the way that biological systems such as the

More information

Perceptrons and Backpropagation. Fabio Zachert Cognitive Modelling WiSe 2014/15

Perceptrons and Backpropagation. Fabio Zachert Cognitive Modelling WiSe 2014/15 Perceptrons and Backpropagation Fabio Zachert Cognitive Modelling WiSe 2014/15 Content History Mathematical View of Perceptrons Network Structures Gradient Descent Backpropagation (Single-Layer-, Multilayer-Networks)

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu Natural Language Processing CS 6320 Lecture 6 Neural Language Models Instructor: Sanda Harabagiu In this lecture We shall cover: Deep Neural Models for Natural Language Processing Introduce Feed Forward

More information

NEURAL NETWORKS. Typeset by FoilTEX 1

NEURAL NETWORKS. Typeset by FoilTEX 1 NEURAL NETWORKS Typeset by FoilTEX 1 Basic Concepts The McCulloch-Pitts model Hebb s rule Neural network: double dynamics. Pattern Formation and Pattern Recognition Neural network as an input-output device

More information

Logical Rhythm - Class 3. August 27, 2018

Logical Rhythm - Class 3. August 27, 2018 Logical Rhythm - Class 3 August 27, 2018 In this Class Neural Networks (Intro To Deep Learning) Decision Trees Ensemble Methods(Random Forest) Hyperparameter Optimisation and Bias Variance Tradeoff Biological

More information

Technical University of Munich. Exercise 7: Neural Network Basics

Technical University of Munich. Exercise 7: Neural Network Basics Technical University of Munich Chair for Bioinformatics and Computational Biology Protein Prediction I for Computer Scientists SoSe 2018 Prof. B. Rost M. Bernhofer, M. Heinzinger, D. Nechaev, L. Richter

More information

Notes on Multilayer, Feedforward Neural Networks

Notes on Multilayer, Feedforward Neural Networks Notes on Multilayer, Feedforward Neural Networks CS425/528: Machine Learning Fall 2012 Prepared by: Lynne E. Parker [Material in these notes was gleaned from various sources, including E. Alpaydin s book

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

Dr. Qadri Hamarsheh Supervised Learning in Neural Networks (Part 1) learning algorithm Δwkj wkj Theoretically practically

Dr. Qadri Hamarsheh Supervised Learning in Neural Networks (Part 1) learning algorithm Δwkj wkj Theoretically practically Supervised Learning in Neural Networks (Part 1) A prescribed set of well-defined rules for the solution of a learning problem is called a learning algorithm. Variety of learning algorithms are existing,

More information

Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah

Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah Reference Most of the slides are taken from the third chapter of the online book by Michael Nielson: neuralnetworksanddeeplearning.com

More information

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan Lecture 17: Neural Networks and Deep Learning Instructor: Saravanan Thirumuruganathan Outline Perceptron Neural Networks Deep Learning Convolutional Neural Networks Recurrent Neural Networks Auto Encoders

More information

Artificial Neural Networks. Introduction to Computational Neuroscience Ardi Tampuu

Artificial Neural Networks. Introduction to Computational Neuroscience Ardi Tampuu Artificial Neural Networks Introduction to Computational Neuroscience Ardi Tampuu 7.0.206 Artificial neural network NB! Inspired by biology, not based on biology! Applications Automatic speech recognition

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal Object Detection Lecture 10.3 - Introduction to deep learning (CNN) Idar Dyrdal Deep Learning Labels Computational models composed of multiple processing layers (non-linear transformations) Used to learn

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Example Learning Problem Example Learning Problem Celebrity Faces in the Wild Machine Learning Pipeline Raw data Feature extract. Feature computation Inference: prediction,

More information

Optimization Methods for Machine Learning (OMML)

Optimization Methods for Machine Learning (OMML) Optimization Methods for Machine Learning (OMML) 2nd lecture Prof. L. Palagi References: 1. Bishop Pattern Recognition and Machine Learning, Springer, 2006 (Chap 1) 2. V. Cherlassky, F. Mulier - Learning

More information

Week 3: Perceptron and Multi-layer Perceptron

Week 3: Perceptron and Multi-layer Perceptron Week 3: Perceptron and Multi-layer Perceptron Phong Le, Willem Zuidema November 12, 2013 Last week we studied two famous biological neuron models, Fitzhugh-Nagumo model and Izhikevich model. This week,

More information

Reservoir Computing with Emphasis on Liquid State Machines

Reservoir Computing with Emphasis on Liquid State Machines Reservoir Computing with Emphasis on Liquid State Machines Alex Klibisz University of Tennessee aklibisz@gmail.com November 28, 2016 Context and Motivation Traditional ANNs are useful for non-linear problems,

More information

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey.

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey. Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017 3/0/207 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/0/207 Perceptron as a neural

More information

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic SEMANTIC COMPUTING Lecture 8: Introduction to Deep Learning Dagmar Gromann International Center For Computational Logic TU Dresden, 7 December 2018 Overview Introduction Deep Learning General Neural Networks

More information

Climate Precipitation Prediction by Neural Network

Climate Precipitation Prediction by Neural Network Journal of Mathematics and System Science 5 (205) 207-23 doi: 0.7265/259-529/205.05.005 D DAVID PUBLISHING Juliana Aparecida Anochi, Haroldo Fraga de Campos Velho 2. Applied Computing Graduate Program,

More information

Learning and Generalization in Single Layer Perceptrons

Learning and Generalization in Single Layer Perceptrons Learning and Generalization in Single Layer Perceptrons Neural Computation : Lecture 4 John A. Bullinaria, 2015 1. What Can Perceptrons do? 2. Decision Boundaries The Two Dimensional Case 3. Decision Boundaries

More information

Future Image Prediction using Artificial Neural Networks

Future Image Prediction using Artificial Neural Networks Future Image Prediction using Artificial Neural Networks Abhishek Kar (Y8021) Dept. of Computer Science and Engineering, IIT Kanpur Abstract In this work we present an Artificial Neural Network approach

More information

Deep Learning. Architecture Design for. Sargur N. Srihari

Deep Learning. Architecture Design for. Sargur N. Srihari Architecture Design for Deep Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation

More information

INTRODUCTION TO DEEP LEARNING

INTRODUCTION TO DEEP LEARNING INTRODUCTION TO DEEP LEARNING CONTENTS Introduction to deep learning Contents 1. Examples 2. Machine learning 3. Neural networks 4. Deep learning 5. Convolutional neural networks 6. Conclusion 7. Additional

More information

Neural Networks. Neural Network. Neural Network. Neural Network 2/21/2008. Andrew Kusiak. Intelligent Systems Laboratory Seamans Center

Neural Networks. Neural Network. Neural Network. Neural Network 2/21/2008. Andrew Kusiak. Intelligent Systems Laboratory Seamans Center Neural Networks Neural Network Input Andrew Kusiak Intelligent t Systems Laboratory 2139 Seamans Center Iowa City, IA 52242-1527 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak Tel. 319-335

More information

CP365 Artificial Intelligence

CP365 Artificial Intelligence CP365 Artificial Intelligence Tech News! Apple news conference tomorrow? Tech News! Apple news conference tomorrow? Google cancels Project Ara modular phone Weather-Based Stock Market Predictions? Dataset

More information

Multi-Layered Perceptrons (MLPs)

Multi-Layered Perceptrons (MLPs) Multi-Layered Perceptrons (MLPs) The XOR problem is solvable if we add an extra node to a Perceptron A set of weights can be found for the above 5 connections which will enable the XOR of the inputs to

More information

Neural Networks: What can a network represent. Deep Learning, Fall 2018

Neural Networks: What can a network represent. Deep Learning, Fall 2018 Neural Networks: What can a network represent Deep Learning, Fall 2018 1 Recap : Neural networks have taken over AI Tasks that are made possible by NNs, aka deep learning 2 Recap : NNets and the brain

More information

Neural Networks: What can a network represent. Deep Learning, Spring 2018

Neural Networks: What can a network represent. Deep Learning, Spring 2018 Neural Networks: What can a network represent Deep Learning, Spring 2018 1 Recap : Neural networks have taken over AI Tasks that are made possible by NNs, aka deep learning 2 Recap : NNets and the brain

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

Machine Learning Week 3

Machine Learning Week 3 Machine Learning Week 3 Date: 27 th, 29 th January, 2004 Scribe: Rajashree Paul, Wendy-Yang Wang, Ming Zhou Outline Entropy Information Gain and Gain Ratio Selection of the best predictive attribute Hypothesis

More information

Image Compression: An Artificial Neural Network Approach

Image Compression: An Artificial Neural Network Approach Image Compression: An Artificial Neural Network Approach Anjana B 1, Mrs Shreeja R 2 1 Department of Computer Science and Engineering, Calicut University, Kuttippuram 2 Department of Computer Science and

More information

Artificial Neural Networks MLP, RBF & GMDH

Artificial Neural Networks MLP, RBF & GMDH Artificial Neural Networks MLP, RBF & GMDH Jan Drchal drchajan@fel.cvut.cz Computational Intelligence Group Department of Computer Science and Engineering Faculty of Electrical Engineering Czech Technical

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

ARTIFICIAL NEURAL NETWORK CIRCUIT FOR SPECTRAL PATTERN RECOGNITION

ARTIFICIAL NEURAL NETWORK CIRCUIT FOR SPECTRAL PATTERN RECOGNITION ARTIFICIAL NEURAL NETWORK CIRCUIT FOR SPECTRAL PATTERN RECOGNITION A Thesis by FARAH RASHEED Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment

More information

Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network

Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 11, November 2014,

More information

Introduction to Neural Networks: Structure and Training

Introduction to Neural Networks: Structure and Training Introduction to Neural Networks: Structure and Training Qi-Jun Zhang Department of Electronics Carleton University, Ottawa, ON, Canada A Quick Illustration Example: Neural Network Model for Delay Estimation

More information

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used.

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used. 1 4.12 Generalization In back-propagation learning, as many training examples as possible are typically used. It is hoped that the network so designed generalizes well. A network generalizes well when

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016 CS 4510/9010 Applied Machine Learning 1 Deep Learning Paula Matuszek Fall 2016 Beyond Simple Neural Nets 2 In the last few ideas we have seen some surprisingly rapid progress in some areas of AI Image

More information

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2018

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2018 CPSC 340: Machine Learning and Data Mining Deep Learning Fall 2018 Last Time: Multi-Dimensional Scaling Multi-dimensional scaling (MDS): Non-parametric visualization: directly optimize the z i locations.

More information

Unit V. Neural Fuzzy System

Unit V. Neural Fuzzy System Unit V Neural Fuzzy System 1 Fuzzy Set In the classical set, its characteristic function assigns a value of either 1 or 0 to each individual in the universal set, There by discriminating between members

More information

Practical Tips for using Backpropagation

Practical Tips for using Backpropagation Practical Tips for using Backpropagation Keith L. Downing August 31, 2017 1 Introduction In practice, backpropagation is as much an art as a science. The user typically needs to try many combinations of

More information

Lecture 20: Neural Networks for NLP. Zubin Pahuja

Lecture 20: Neural Networks for NLP. Zubin Pahuja Lecture 20: Neural Networks for NLP Zubin Pahuja zpahuja2@illinois.edu courses.engr.illinois.edu/cs447 CS447: Natural Language Processing 1 Today s Lecture Feed-forward neural networks as classifiers simple

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

Exercise: Training Simple MLP by Backpropagation. Using Netlab.

Exercise: Training Simple MLP by Backpropagation. Using Netlab. Exercise: Training Simple MLP by Backpropagation. Using Netlab. Petr Pošík December, 27 File list This document is an explanation text to the following script: demomlpklin.m script implementing the beckpropagation

More information

Multi Layer Perceptron with Back Propagation. User Manual

Multi Layer Perceptron with Back Propagation. User Manual Multi Layer Perceptron with Back Propagation User Manual DAME-MAN-NA-0011 Issue: 1.3 Date: September 03, 2013 Author: S. Cavuoti, M. Brescia Doc. : MLPBP_UserManual_DAME-MAN-NA-0011-Rel1.3 1 INDEX 1 Introduction...

More information

Deep Learning. Volker Tresp Summer 2014

Deep Learning. Volker Tresp Summer 2014 Deep Learning Volker Tresp Summer 2014 1 Neural Network Winter and Revival While Machine Learning was flourishing, there was a Neural Network winter (late 1990 s until late 2000 s) Around 2010 there

More information

Introduction to Deep Learning

Introduction to Deep Learning ENEE698A : Machine Learning Seminar Introduction to Deep Learning Raviteja Vemulapalli Image credit: [LeCun 1998] Resources Unsupervised feature learning and deep learning (UFLDL) tutorial (http://ufldl.stanford.edu/wiki/index.php/ufldl_tutorial)

More information

Multi-layer Perceptron Forward Pass Backpropagation. Lecture 11: Aykut Erdem November 2016 Hacettepe University

Multi-layer Perceptron Forward Pass Backpropagation. Lecture 11: Aykut Erdem November 2016 Hacettepe University Multi-layer Perceptron Forward Pass Backpropagation Lecture 11: Aykut Erdem November 2016 Hacettepe University Administrative Assignment 2 due Nov. 10, 2016! Midterm exam on Monday, Nov. 14, 2016 You are

More information

6. NEURAL NETWORK BASED PATH PLANNING ALGORITHM 6.1 INTRODUCTION

6. NEURAL NETWORK BASED PATH PLANNING ALGORITHM 6.1 INTRODUCTION 6 NEURAL NETWORK BASED PATH PLANNING ALGORITHM 61 INTRODUCTION In previous chapters path planning algorithms such as trigonometry based path planning algorithm and direction based path planning algorithm

More information

5 Learning hypothesis classes (16 points)

5 Learning hypothesis classes (16 points) 5 Learning hypothesis classes (16 points) Consider a classification problem with two real valued inputs. For each of the following algorithms, specify all of the separators below that it could have generated

More information

6.034 Notes: Section 7.1

6.034 Notes: Section 7.1 6.034 Notes: Section 7.1 Slide 7.1.1 We have been using this simulated bankruptcy data set to illustrate the different learning algorithms that operate on continuous data. Recall that R is supposed to

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 7: Universal Approximation Theorem, More Hidden Units, Multi-Class Classifiers, Softmax, and Regularization Peter Belhumeur Computer Science Columbia University

More information

CHAPTER 7 MASS LOSS PREDICTION USING ARTIFICIAL NEURAL NETWORK (ANN)

CHAPTER 7 MASS LOSS PREDICTION USING ARTIFICIAL NEURAL NETWORK (ANN) 128 CHAPTER 7 MASS LOSS PREDICTION USING ARTIFICIAL NEURAL NETWORK (ANN) Various mathematical techniques like regression analysis and software tools have helped to develop a model using equation, which

More information

Lecture 13. Deep Belief Networks. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

Lecture 13. Deep Belief Networks. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen Lecture 13 Deep Belief Networks Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny,bhuvana,stanchen}@us.ibm.com 12 December 2012

More information

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES Deep Learning Practical introduction with Keras Chapter 3 27/05/2018 Neuron A neural network is formed by neurons connected to each other; in turn, each connection of one neural network is associated

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information