Disjunctive Programming

Size: px
Start display at page:

Download "Disjunctive Programming"

Transcription

1 Chapter 10 Disjunctive Programming Egon Balas Introduction by Egon Balas In April 1967 I and my family arrived into the US as fresh immigrants from behind the Iron Curtain. After a fruitful semester spent with George Dantzig s group in Stanford, I started working at CMU. My debut in integer programming and entry ticket into Academia was the additive algorithm for 0-1 programming [B65], an implicit enumeration procedure based on logical tests akin to what today goes under the name of constraint propagation. As it used only additions and comparisons, it was easy to implement and was highly popular for a while. However, I was aware of its limitations and soon after I joined CMU I started investigating cutting plane procedures, trying to use for this purpose the tools of convex analysis: support functions and their level sets, maximal convex extensions, polarity, etc. During the five years starting in 1969, I proposed a number of procedures based on the central idea of intersection cuts [2] (numbered references are to those at the end of the paper, whereas mnemonicized ones are to the ones listed at the end of this introduction): Given any convex set S containing the LP optimum of a mixed integer program (MIP) but containing no feasible integer point in its interior, one can generate a valid cut by intersecting the boundary of S with the extreme rays of the cone defined by the optimal solution to the linear programming relaxation of the MIP and taking the hyperplane defined by the intersection points as the cut. The search for the most appropriate sets S in this role has led to the concept of outer polars and related constructs [3, 6]. In our days, the idea of intersection cuts has been revived in the form of cutting planes from convex sets with lattice-free interiors, and is the object of numerous investigations (e.g., [ALWW07], [BC07], [CM07], [DW07]). It was this line of research that has led to the idea of disjunctive programming, through a process outlined in section 1 of the paper below. Optimizing a function Egon Balas Carnegie Mellon University, Pittsburgh, USA eb17@andrew.cmu.edu M. Jünger et al. (eds.), 50 Years of Integer Programming , DOI / _10, Springer-Verlag Berlin Heidelberg

2 284 Egon Balas subject to a set of linear inequalities connected by conjunction or disjunction is a special type of nonconvex programming problem called disjunctive programming. Mixed 0-1 programming is its most important special case. More broadly speaking, disjunctive programming is optimization over a union of polyhedra. The basic document on disjunctive programming is the July 1974 technical report Disjunctive Programming: Properties of the convex hull of feasible points, MSRR #348, referenced as [10] in the survey below, which however has not appeared in print until 24 years later, when it was published as an invited paper with a preface by Gérard Cornuéjols and Bill Pulleyblank [B98]. The reasons for this situation are complex. The 1974 paper was not rejected, but the report I received at the end of a very long refereeing process was asking for a revision that would have involved a major rewriting effort at a time when I was engaged in other, complementary research projects. As a result, when shortly thereafter I was invited by the late Peter Hammer to prepare an introductory survey of disjunctive programming for the upcoming 1977 ARIDAM conference in Vancouver, I decided to incorporate into that survey the main results of MSSR #348 and forego its publication as a stand alone paper. This is how this survey came about. Looking back on that decision, I find that not much of substance was lost. Sections 2 6 of this survey adequately summarize the main findings of the 1974 paper, with one important exception, which I will now explain. MSRR #348 explored the basic properties of disjunctive programs from a polyhedral point of view. It gave two compact characterizations of the convex hull of a union P of polyhedra P i = {x : A i x b i }, i Q, in a higher dimensional space, a procedure we call today extended formulation. The first one describes convp as the set of points x satisfying x = (x i : i Q) for some (x i,x0 i ), i Q, such that Ai x i b i x0 i,i Q, (x0 i : i Q) = 1, xi 0 0,i Q. The second one describes the facets of convp as the vertices of the reverse polar of P, defined as P # := {y : yx 1 x P}, shown to be the set of points y satisfying y u i A i,i Q for some u i 0 such that u i b i 1, i Q. Both characterizations are linear in Q, the number of polyhedra in the union. In a certain sense the two characterizations are equivalent: projecting the higher-dimensional polyhedron of the convex hull characterization onto the x-space yields the set of all valid inequalities and conversely, taking the reverse polar of the reverse polar yields the convex hull. Thus in the survey paper I only included the second characterization, so that the first one did not appear in print until 1985 [B85]. But it is precisely this first characterization which has served as a prototype for the many extended formulations that have proved to be such prolific tools for polyhedral analysis of combinatorial problems, starting with the early studies of this type in the 1980 s [BP83], [BP89], [BLP89], and continuing with a plethora of results, the more recent ones being exemplified by [PW06], [A06], [CW08]. It is also this first characterization that was generalized to nonlinear disjunctive programming [SM99] and was extensively used in the modeling of a variety of practical situations in industry. Habent sua fata libelli, goes the Latin saying: books have their own fate. This apparently also applies to papers or theorems or discoveries. While the work on disjunctive programming, including the cutting planes that it entailed, stirred little if any enthusiasm at the time of its inception, about 15 years later when Sebas-

3 10 Disjunctive Programming 285 tian Ceria, Gérard Cornuéjols and myself recast essentially the same results in a new framework which we called lift-and-project [BCC93], the reaction was quite different. This time our work was focused on algorithmic aspects, with the cutting planes generated in rounds and embedded into an enumerative framework (branch and cut), and was accompanied by the development of an efficient computer code (MIPO, developed by Sebastian) that was able to solve many problem instances that had been impervious to solution by branch-and-bound alone. Our interest in returning to the ideas of disjunctive programming was prompted by the exciting work of Lovász and Schrijver on matrix cones [LS91]. We discovered that a streamlined version of the Lovász-Schrijver procedure was isomorphic to the disjunctive programming procedure for generating the integer hull of a 0-1 program by starting with the higher dimensional representation and projecting it onto the original space. Thus the Lovász-Schrijver Theorem according to which n applications of this procedure (n being the number of 0-1 variables) yields the integer hull, follows directly from the sequential convexification procedure for facial disjunctive programs, of which 0-1 programs are a prime example (see Section 6 below). The reader will no doubt recognize in the linear program P 1 (g,α 0) preceding Theorem 4.4 of section 4 below, the ancestor of the cut generating linear program of the lift-and-project (L&P) algorithm [BCC93], which is the specialization of P 1 (g,α 0) to the case of the disjunction x k = 0 or x k = 1. The computational success of L&P cuts triggered a strong revival of interest in cutting planes. Gérard and Sebastian soon discovered [BCCN96] that mixed integer Gomory (MIG) cuts, when used in the MIPO fashion, i.e., generated in rounds and embedded into a branch-and-bound framework, could also solve many of the problem instances unsolved at the time. Since the MIG cuts were easier to implement than the L&P ones, they were the first to find their way into the commercial codes. The combination of cutting planes with branch and bound played a central role in the revolution in the state of the art in integer programming that started in the mid-90s. The commercial implementation of lift-and-project cuts had to await the discovery of a method [BP03], [P03] for generating them directly from the LP simplex tableau, without explicit recourse to the higher dimensional cut generating linear program. Today, due to the efforts of Pierre Bonami [BB07], an open-source implementation is also publicly available [COIN-OR]. References [A06] A. Atamtürk, Strong formulations of robust mixed 0-1 programming, Mathematical Programming 108 (2006) [ALWW07] K. Andersen, Q. Louveaux, R. Weismantel and L.A. Wolsey, Inequalities from two rows of the simplex tableau, Integer Programming and Combinatorial Optimization IPCO 12 (M. Fischetti and D.P. Williamson, eds.), Springer, 2007, pp [B65] E. Balas, An additive algorithm for solving linear programs in 0-1 variables, Operations Research 13 (1965) [B85] E. Balas, Disjunctive programming and a hierarchy of relaxations for discrete optimization problems, SIAM Journal on Algebraic and Discrete Methods 6 (1985)

4 286 Egon Balas [B98] E. Balas, Disjunctive programming: Properties of the convex hull of feasible points, Invited paper with a Foreword by G. Cornuéjols and G. Pulleyblank, Discrete Applied Mathematics 89 (1998) [BB07] E. Balas and P. Bonami, New variants of lift-and-project cut generation from the LP tableau: Open source implementation and testing, Integer Programming and Combinatorial Oprtimization IPCO 12 (M. Fischetti and D.P. Williamson, eds.), Springer, 2007, pp [BC07] V. Borozan and G. Cornuéjols, Minimal inequalities for integer constraints, Technical Report, Tepper School, Carnegie Mellon University, [BCC93] E. Balas, S. Ceria and G. Cornuéjols, A lift-and-project cutting plane algorithm for mixed 0-1 programs, Mathematical Programming 58 (1993) [BCCN96] E. Balas, S. Ceria, G. Cornuéjols and N. Natraj, Gomory cuts revisited, Operations Research Letters 19 (1996) [BLP89] M. Ball, W. Liu and W.R. Pulleyblank, Two-terminal Steiner tree polyhedra, Contributions to Operations Research and Economics, MIT Press, 1989, pp [BP83] E. Balas and W.R. Pulleyblank, The perfectly matchable subgraph polytope of a bipartite graph, Networks 13 (1983) [BP89] E. Balas and W.R. Pulleyblank, The perfectly matchable subgraph polytope of an arbitrary graph, Combinatorica 9 (1989) [BP03] E. Balas and M. Perregaard, A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming, Mathematical Programming 94 (2003) [CM07] G. Cornuéjols and F. Margot, On the facets of mixed integer programs with two integer variables and two constraints, Technical Report, Tepper School, Carnegie Mellon University, [COIN-OR] [CW08] M. Conforti and L.A. Wolsey, Compact formulations as a union of polyhedra, Mathematical Programming 114 (2008) [DW07] S.S. Dey and L.A. Wolsey, Lifting integer variables in minimal inequalities corresponding to lattice-free triangles, Integer Programming and Combinatorial Optimization IPCO 13 (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), Springer, 2008, pp [LS91] L. Lovász and A. Schrijver, Cones of matrices and set functions and 0-1 optimization, SIAM Journal of Optimization 1 (1991) [P03] M. Perregaard, A Practical implementation of lift-and-project cuts: a computational exploration of lift-and-project with XPRESS-MP, International Symposium on Mathematical Programming, Copenhagen, August [PW06] Y. Pochet and L.A. Wolsey, Production Planning by Mixed Integer Programming, Springer, [SM99] R. Stubbs and S. Mehrotra, A branch and cut method for 0-1 mixed integer convex programming, Mathematical Programming 86 (1999)

5 10 Disjunctive Programming 287

6 288 Egon Balas The following article originally appeared as: E. Balas, Disjunctive Programming, Discrete Optimization II (P.L. Hammer, E.L. Johnson, and B.H. Korte, eds.), Annals of Discrete Mathematics 5 (1979) Copyright c 1979 North-Holland Publishing Company. Reprinted by permission from Elsevier.

7 10 Disjunctive Programming 289

8 290 Egon Balas

9 10 Disjunctive Programming 291

10 292 Egon Balas

11 10 Disjunctive Programming 293

12 294 Egon Balas

13 10 Disjunctive Programming 295

14 296 Egon Balas

15 10 Disjunctive Programming 297

16 298 Egon Balas

17 10 Disjunctive Programming 299

18 300 Egon Balas

19 10 Disjunctive Programming 301

20 302 Egon Balas

21 10 Disjunctive Programming 303

22 304 Egon Balas

23 10 Disjunctive Programming 305

24 306 Egon Balas

25 10 Disjunctive Programming 307

26 308 Egon Balas

27 10 Disjunctive Programming 309

28 310 Egon Balas

29 10 Disjunctive Programming 311

30 312 Egon Balas

31 10 Disjunctive Programming 313

32 314 Egon Balas

33 10 Disjunctive Programming 315

34 316 Egon Balas

35 10 Disjunctive Programming 317

36 318 Egon Balas

37 10 Disjunctive Programming 319

38 320 Egon Balas

39 10 Disjunctive Programming 321

40 322 Egon Balas

41 10 Disjunctive Programming 323

42 324 Egon Balas

43 10 Disjunctive Programming 325

44 326 Egon Balas

45 10 Disjunctive Programming 327

46 328 Egon Balas

47 10 Disjunctive Programming 329

48 330 Egon Balas

49 10 Disjunctive Programming 331

50 332 Egon Balas

51 10 Disjunctive Programming 333

52 334 Egon Balas

53 10 Disjunctive Programming 335

54 336 Egon Balas

55 10 Disjunctive Programming 337

56 338 Egon Balas The following article originally appeared as: E. Balas, Erratum to: Disjunctive Programming, Discrete Applied Mathematics 5 (1983) Copyright c 1983 North-Holland Publishing Company. Reprinted by permission from Elsevier.

57 10 Disjunctive Programming 339

58 340 Egon Balas

Stable sets, corner polyhedra and the Chvátal closure

Stable sets, corner polyhedra and the Chvátal closure Stable sets, corner polyhedra and the Chvátal closure Manoel Campêlo Departamento de Estatística e Matemática Aplicada, Universidade Federal do Ceará, Brazil, mcampelo@lia.ufc.br. Gérard Cornuéjols Tepper

More information

From final point cuts to!-polyhedral cuts

From final point cuts to!-polyhedral cuts AUSSOIS 2017 From final point cuts to!-polyhedral cuts Egon Balas, Aleksandr M. Kazachkov, François Margot Tepper School of Business, Carnegie Mellon University Overview Background Generalized intersection

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

FINITE DISJUNCTIVE PROGRAMMING CHARACTERIZATIONS FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS

FINITE DISJUNCTIVE PROGRAMMING CHARACTERIZATIONS FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS FINITE DISJUNCTIVE PROGRAMMING CHARACTERIZATIONS FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS BINYUAN CHEN, SİMGE KÜÇÜKYAVUZ, SUVRAJEET SEN Abstract. In this paper, we give a finite disjunctive programming

More information

Stable sets, corner polyhedra and the Chvátal closure

Stable sets, corner polyhedra and the Chvátal closure Stable sets, corner polyhedra and the Chvátal closure Manoel Campêlo Departamento de Estatística e Matemática Aplicada, Universidade Federal do Ceará, Brazil, mcampelo@lia.ufc.br. Gérard Cornuéjols Tepper

More information

Linear Programming and its Applications

Linear Programming and its Applications Linear Programming and its Applications Outline for Today What is linear programming (LP)? Examples Formal definition Geometric intuition Why is LP useful? A first look at LP algorithms Duality Linear

More information

DTIC AD-A Projection with a Minimal System of Inequalities AVAILABLE COPY O T by Egon Balas 1 Carnegie Mellon University

DTIC AD-A Projection with a Minimal System of Inequalities AVAILABLE COPY O T by Egon Balas 1 Carnegie Mellon University AD-A257 237 Projection with a Minimal System of Inequalities by Egon Balas 1 July, 1992 "PITTSBURGH, PENNSYLVANIA 15213 DTIC ELECTE T291992 00 GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION 00 WILLIAM LARIMER

More information

Linear and Integer Programming (ADM II) Script. Rolf Möhring WS 2010/11

Linear and Integer Programming (ADM II) Script. Rolf Möhring WS 2010/11 Linear and Integer Programming (ADM II) Script Rolf Möhring WS 200/ Contents -. Algorithmic Discrete Mathematics (ADM)... 3... 4.3 Winter term 200/... 5 2. Optimization problems 2. Examples... 7 2.2 Neighborhoods

More information

1 date: September 15, 1998 file: mitche1

1 date: September 15, 1998 file: mitche1 1 date: September 15, 1998 file: mitche1 CUTTING PLANE ALGORITHMS FOR INTEGER PROGRAMMING, Cutting plane algorithms Cutting plane methods are exact algorithms for integer programming problems. Theyhave

More information

A hard integer program made easy by lexicography

A hard integer program made easy by lexicography Noname manuscript No. (will be inserted by the editor) A hard integer program made easy by lexicography Egon Balas Matteo Fischetti Arrigo Zanette February 16, 2011 Abstract A small but notoriously hard

More information

THEORY OF LINEAR AND INTEGER PROGRAMMING

THEORY OF LINEAR AND INTEGER PROGRAMMING THEORY OF LINEAR AND INTEGER PROGRAMMING ALEXANDER SCHRIJVER Centrum voor Wiskunde en Informatica, Amsterdam A Wiley-Inter science Publication JOHN WILEY & SONS^ Chichester New York Weinheim Brisbane Singapore

More information

Optimality certificates for convex minimization and Helly numbers

Optimality certificates for convex minimization and Helly numbers Optimality certificates for convex minimization and Helly numbers Amitabh Basu Michele Conforti Gérard Cornuéjols Robert Weismantel Stefan Weltge October 20, 2016 Abstract We consider the problem of minimizing

More information

Optimality certificates for convex minimization and Helly numbers

Optimality certificates for convex minimization and Helly numbers Optimality certificates for convex minimization and Helly numbers Amitabh Basu Michele Conforti Gérard Cornuéjols Robert Weismantel Stefan Weltge May 10, 2017 Abstract We consider the problem of minimizing

More information

Branch and Cut. John E. Mitchell. May 12, 2010

Branch and Cut. John E. Mitchell. May 12, 2010 Branch and Cut John E. Mitchell May 12, 2010 Combinatorial optimization problems can often be formulated as mixed integer linear programming problems, as discussed in Section 1.4.1.1 in this encyclopedia.

More information

Experiments On General Disjunctions

Experiments On General Disjunctions Experiments On General Disjunctions Some Dumb Ideas We Tried That Didn t Work* and Others We Haven t Tried Yet *But that may provide some insight Ted Ralphs, Serdar Yildiz COR@L Lab, Department of Industrial

More information

S-free Sets for Polynomial Optimization

S-free Sets for Polynomial Optimization S-free Sets for and Daniel Bienstock, Chen Chen, Gonzalo Muñoz, IEOR, Columbia University May, 2017 SIAM OPT 2017 S-free sets for PolyOpt 1 The Polyhedral Approach TighteningP with an S-free setc conv(p

More information

Intersection Cuts with Infinite Split Rank

Intersection Cuts with Infinite Split Rank Intersection Cuts with Infinite Split Rank Amitabh Basu 1,2, Gérard Cornuéjols 1,3,4 François Margot 1,5 April 2010; revised April 2011; revised October 2011 Abstract We consider mixed integer linear programs

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Integer and Combinatorial Optimization

Integer and Combinatorial Optimization Integer and Combinatorial Optimization GEORGE NEMHAUSER School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, Georgia LAURENCE WOLSEY Center for Operations Research and

More information

1 date: September 15, 1998 file: mitche2

1 date: September 15, 1998 file: mitche2 1 date: September 15, 1998 file: mitche2 BRANCH-AND-CUT ALGORITHMS FOR INTEGER PROGRAMMING, Branch-and-cut Branch-and-cut methods are exact algorithms for integer programming problems. They consist of

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Split-Cuts and the Stable Set Polytope of Quasi-Line Graphs

Split-Cuts and the Stable Set Polytope of Quasi-Line Graphs Split-Cuts and the Stable Set Polytope of Quasi-Line Graphs Friedrich Eisenbrand Joint work with G. Oriolo, P. Ventura and G. Stauffer Gomory cutting planes P = {x n Ax b} polyhedron, c T x δ, c n valid

More information

Applied Integer Programming

Applied Integer Programming Applied Integer Programming D.S. Chen; R.G. Batson; Y. Dang Fahimeh 8.2 8.7 April 21, 2015 Context 8.2. Convex sets 8.3. Describing a bounded polyhedron 8.4. Describing unbounded polyhedron 8.5. Faces,

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Miguel F. Anjos Professor and Canada Research Chair Director, Trottier Energy Institute Joint work with E. Adams (Poly Mtl), F. Rendl,

More information

A COMPUTATIONAL STUDY OF THE CUTTING PLANE TREE ALGORITHM FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS

A COMPUTATIONAL STUDY OF THE CUTTING PLANE TREE ALGORITHM FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS A COMPUTATIONAL STUDY OF THE CUTTING PLANE TREE ALGORITHM FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS BINYUAN CHEN, SİMGE KÜÇÜKYAVUZ, AND SUVRAJEET SEN Abstract. The cutting plane tree (CPT) algorithm provides

More information

Integer Programming ISE 418. Lecture 1. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 1. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 1 Dr. Ted Ralphs ISE 418 Lecture 1 1 Reading for This Lecture N&W Sections I.1.1-I.1.4 Wolsey Chapter 1 CCZ Chapter 2 ISE 418 Lecture 1 2 Mathematical Optimization Problems

More information

A Counterexample to the Dominating Set Conjecture

A Counterexample to the Dominating Set Conjecture A Counterexample to the Dominating Set Conjecture Antoine Deza Gabriel Indik November 28, 2005 Abstract The metric polytope met n is the polyhedron associated with all semimetrics on n nodes and defined

More information

Investigating Mixed-Integer Hulls using a MIP-Solver

Investigating Mixed-Integer Hulls using a MIP-Solver Investigating Mixed-Integer Hulls using a MIP-Solver Matthias Walter Otto-von-Guericke Universität Magdeburg Joint work with Volker Kaibel (OvGU) Aussois Combinatorial Optimization Workshop 2015 Outline

More information

Integral Boundary Points of Convex Polyhedra

Integral Boundary Points of Convex Polyhedra Chapter 3 Integral Boundary Points of Convex Polyhedra Alan J. Hoffman and Joseph B. Kruskal Introduction by Alan J. Hoffman and Joseph B. Kruskal Here is the story of how this paper was written. (a) Independently,

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

On the polyhedrality of cross and quadrilateral closures

On the polyhedrality of cross and quadrilateral closures On the polyhedrality of cross and quadrilateral closures Sanjeeb Dash IBM Research sanjeebd@us.ibm.com Oktay Günlük IBM Research gunluk@us.ibm.com December 9, 2014 Diego A. Morán R. Virginia Tech dmoran@gatech.edu

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

DETERMINISTIC OPERATIONS RESEARCH

DETERMINISTIC OPERATIONS RESEARCH DETERMINISTIC OPERATIONS RESEARCH Models and Methods in Optimization Linear DAVID J. RADER, JR. Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN WILEY A JOHN WILEY & SONS,

More information

Marcia Fampa Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil

Marcia Fampa Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil A specialized branch-and-bound algorithm for the Euclidean Steiner tree problem in n-space Marcia Fampa Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil fampa@cos.ufrj.br Jon Lee University

More information

Improved Gomory Cuts for Primal Cutting Plane Algorithms

Improved Gomory Cuts for Primal Cutting Plane Algorithms Improved Gomory Cuts for Primal Cutting Plane Algorithms S. Dey J-P. Richard Industrial Engineering Purdue University INFORMS, 2005 Outline 1 Motivation The Basic Idea Set up the Lifting Problem How to

More information

cuts François Margot 1 Chicago, IL Abstract The generalized intersection cut (GIC) paradigm is a recent framework for generating

cuts François Margot 1 Chicago, IL Abstract The generalized intersection cut (GIC) paradigm is a recent framework for generating Partial hyperplane activation for generalized intersection cuts Aleksandr M. Kazachkov 1 Selvaprabu Nadarajah 2 Egon Balas 1 François Margot 1 1 Tepper School of Business, Carnegie Mellon University, Pittsburgh,

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Cover Inequalities. As mentioned above, the cover inequalities were first presented in the context of the 0-1 KP. The 0-1 KP takes the following form:

Cover Inequalities. As mentioned above, the cover inequalities were first presented in the context of the 0-1 KP. The 0-1 KP takes the following form: Cover Inequalities Konstantinos Kaparis Adam N. Letchford Many problems arising in OR/MS can be formulated as Mixed-Integer Linear Programs (MILPs); see entry #1.4.1.1. If one wishes to solve a class of

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Frank de Zeeuw EPFL 2012 Today Introduction Graph problems - What combinatorial things will we be optimizing? Algorithms - What kind of solution are we looking for? Linear Programming

More information

Graphs that have the feasible bases of a given linear

Graphs that have the feasible bases of a given linear Algorithmic Operations Research Vol.1 (2006) 46 51 Simplex Adjacency Graphs in Linear Optimization Gerard Sierksma and Gert A. Tijssen University of Groningen, Faculty of Economics, P.O. Box 800, 9700

More information

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC Pivot and Gomory Cut A MIP Feasibility Heuristic Shubhashis Ghosh Ryan Hayward shubhashis@randomknowledge.net hayward@cs.ualberta.ca NSERC CGGT 2007 Kyoto Jun 11-15 page 1 problem given a MIP, find a feasible

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

Discrete Optimization. Lecture Notes 2

Discrete Optimization. Lecture Notes 2 Discrete Optimization. Lecture Notes 2 Disjunctive Constraints Defining variables and formulating linear constraints can be straightforward or more sophisticated, depending on the problem structure. The

More information

Discrete Optimization

Discrete Optimization Minisymposium 1 Discrete Optimization Leiter des Symposiums: Prof. Dr. Jens Vygen Prof. Dr. Robert Weismantel Forschungsinstitut für Fakultät für Mathematik / IMO Diskrete Mathematik Universität Bonn Otto-von-Guericke-Universität

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

Short rational generating functions and their applications to integer programming

Short rational generating functions and their applications to integer programming Short rational generating functions and their applications to integer programming Kevin Woods Department of Mathematics University of California, Berkeley Berkeley, CA 94720-3840 kwoods@math.berkeley.edu

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 50

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 50 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 50 CS 473: Algorithms, Spring 2018 Introduction to Linear Programming Lecture 18 March

More information

NATCOR Convex Optimization Linear Programming 1

NATCOR Convex Optimization Linear Programming 1 NATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk 5 June 2018 What is linear programming (LP)? The most important model used in

More information

Outline. Modeling. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Models Lecture 5 Mixed Integer Programming Models and Exercises

Outline. Modeling. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Models Lecture 5 Mixed Integer Programming Models and Exercises Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lecture 5 Mixed Integer Programming and Exercises Marco Chiarandini 2. 3. 2 Outline Modeling 1. Min cost flow Shortest path 2. Max flow Assignment

More information

Implementing a B&C algorithm for Mixed-Integer Bilevel Linear Programming

Implementing a B&C algorithm for Mixed-Integer Bilevel Linear Programming Implementing a B&C algorithm for Mixed-Integer Bilevel Linear Programming Matteo Fischetti, University of Padova 8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 1 Bilevel Optimization

More information

Combining Lift-and-Project and Reduce-and-Split

Combining Lift-and-Project and Reduce-and-Split Combining Lift-and-Project and Reduce-and-Split Egon Balas Tepper School of Business, Carnegie Mellon University, PA Email: eb17@andrew.cmu.edu Gérard Cornuéjols Tepper School of Business, Carnegie Mellon

More information

CS671 Parallel Programming in the Many-Core Era

CS671 Parallel Programming in the Many-Core Era 1 CS671 Parallel Programming in the Many-Core Era Polyhedral Framework for Compilation: Polyhedral Model Representation, Data Dependence Analysis, Scheduling and Data Locality Optimizations December 3,

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 6, Due: Thursday April 11th, 2013 1. Each student should hand in an individual problem set. 2. Discussing

More information

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method NATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk 14 June 2016 What is linear programming (LP)? The most important model used in

More information

How to use your favorite MIP Solver: modeling, solving, cannibalizing. Andrea Lodi University of Bologna, Italy

How to use your favorite MIP Solver: modeling, solving, cannibalizing. Andrea Lodi University of Bologna, Italy How to use your favorite MIP Solver: modeling, solving, cannibalizing Andrea Lodi University of Bologna, Italy andrea.lodi@unibo.it January-February, 2012 @ Universität Wien A. Lodi, How to use your favorite

More information

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm Instructor: Shaddin Dughmi Algorithms for Convex Optimization We will look at 2 algorithms in detail: Simplex and Ellipsoid.

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information

Cutting Planes for Some Nonconvex Combinatorial Optimization Problems

Cutting Planes for Some Nonconvex Combinatorial Optimization Problems Cutting Planes for Some Nonconvex Combinatorial Optimization Problems Ismael Regis de Farias Jr. Department of Industrial Engineering Texas Tech Summary Problem definition Solution strategy Multiple-choice

More information

Primal Separation for 0/1 Polytopes

Primal Separation for 0/1 Polytopes Primal Separation for 0/1 Polytopes Friedrich Eisenbrand Max-Planck-Institut für Informatik Stuhlsatzenhausweg 85 66123 Saarbrücken Germany eisen@mpi-sb.mpg.de Giovanni Rinaldi, Paolo Ventura Istituto

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Exact Algorithms for Mixed-Integer Bilevel Linear Programming

Exact Algorithms for Mixed-Integer Bilevel Linear Programming Exact Algorithms for Mixed-Integer Bilevel Linear Programming Matteo Fischetti, University of Padova (based on joint work with I. Ljubic, M. Monaci, and M. Sinnl) Lunteren Conference on the Mathematics

More information

On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes

On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes Hans Raj Tiwary hansraj@cs.uni-sb.de FR Informatik Universität des Saarlandes D-66123 Saarbrücken, Germany Tel: +49 681 3023235

More information

On Mixed-Integer (Linear) Programming and its connection with Data Science

On Mixed-Integer (Linear) Programming and its connection with Data Science On Mixed-Integer (Linear) Programming and its connection with Data Science Andrea Lodi Canada Excellence Research Chair École Polytechnique de Montréal, Québec, Canada andrea.lodi@polymtl.ca January 16-20,

More information

On the selection of Benders cuts

On the selection of Benders cuts Mathematical Programming manuscript No. (will be inserted by the editor) On the selection of Benders cuts Matteo Fischetti Domenico Salvagnin Arrigo Zanette Received: date / Revised 23 February 2010 /Accepted:

More information

On the Unique-lifting Property

On the Unique-lifting Property On the Unique-lifting Property Gennadiy Averkov 1 and Amitabh Basu 2 1 Institute of Mathematical Optimization, Faculty of Mathematics, University of Magdeburg 2 Department of Applied Mathematics and Statistics,

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

Simplex Algorithm in 1 Slide

Simplex Algorithm in 1 Slide Administrivia 1 Canonical form: Simplex Algorithm in 1 Slide If we do pivot in A r,s >0, where c s

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

Integer Programming Chapter 9

Integer Programming Chapter 9 Integer Programming Chapter 9 University of Chicago Booth School of Business Kipp Martin October 25, 2017 1 / 40 Outline Key Concepts MILP Set Monoids LP set Relaxation of MILP Set Formulation Quality

More information

Embedding Formulations, Complexity and Representability for Unions of Convex Sets

Embedding Formulations, Complexity and Representability for Unions of Convex Sets , Complexity and Representability for Unions of Convex Sets Juan Pablo Vielma Massachusetts Institute of Technology CMO-BIRS Workshop: Modern Techniques in Discrete Optimization: Mathematics, Algorithms

More information

Polyhedral Compilation Foundations

Polyhedral Compilation Foundations Polyhedral Compilation Foundations Louis-Noël Pouchet pouchet@cse.ohio-state.edu Dept. of Computer Science and Engineering, the Ohio State University Feb 15, 2010 888.11, Class #4 Introduction: Polyhedral

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Contents. Preface CHAPTER III

Contents. Preface CHAPTER III Optimization Edited by G.L. Nemhauser Georgia Institute of Technology A.H.G. Rinnooy Kan Erasmus University Rotterdam M.J. Todd Cornell Univerisity 1989 NORTH-HOLLAND AMSTERDAM NEW YORK OXFORD TOKYO Preface

More information

c 2008 Society for Industrial and Applied Mathematics

c 2008 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 22, No. 4, pp. 1480 1487 c 2008 Society for Industrial and Applied Mathematics ODD MINIMUM CUT SETS AND b-matchings REVISITED ADAM N. LETCHFORD, GERHARD REINELT, AND DIRK OLIVER

More information

TR/03/94 March 1994 ZERO-ONE IP PROBLEMS: POLYHEDRAL DESCRIPTIONS AND CUTTING PLANE PROCEDURES. Fatimah Abdul-Hamid Gautam Mitra Leslie-Ann Yarrow

TR/03/94 March 1994 ZERO-ONE IP PROBLEMS: POLYHEDRAL DESCRIPTIONS AND CUTTING PLANE PROCEDURES. Fatimah Abdul-Hamid Gautam Mitra Leslie-Ann Yarrow TR/3/94 March 994 ZERO-ONE IP PROBLEMS: POLYHEDRAL DESCRIPTIONS AND CUTTING PLANE PROCEDURES Fatimah Abdul-Hamid Gautam Mitra Leslie-Ann Yarrow Contents - Abstract i - Introduction.- Classes of valid inequalities

More information

Introduction to Linear Programming

Introduction to Linear Programming Introduction to Linear Programming Eric Feron (updated Sommer Gentry) (updated by Paul Robertson) 16.410/16.413 Historical aspects Examples of Linear programs Historical contributor: G. Dantzig, late 1940

More information

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that ( Shelling (Bruggesser-Mani 1971) and Ranking Let be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that. a ranking of vertices

More information

Contents. Preface... VII. Part I Classical Topics Revisited

Contents. Preface... VII. Part I Classical Topics Revisited Contents Preface........................................................ VII Part I Classical Topics Revisited 1 Sphere Packings........................................... 3 1.1 Kissing Numbers of Spheres..............................

More information

Optimization of Design. Lecturer:Dung-An Wang Lecture 8

Optimization of Design. Lecturer:Dung-An Wang Lecture 8 Optimization of Design Lecturer:Dung-An Wang Lecture 8 Lecture outline Reading: Ch8 of text Today s lecture 2 8.1 LINEAR FUNCTIONS Cost Function Constraints 3 8.2 The standard LP problem Only equality

More information

An SDP Approach to Multi-level Crossing Minimization

An SDP Approach to Multi-level Crossing Minimization An SDP Approach to Multi-level Crossing Minimization P. Hungerländer joint work with M. Chimani, M. Jünger, P. Mutzel University of Klagenfurt - Department of Mathematics 15th Combinatorial Optimization

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Ellipsoid Methods Barnabás Póczos & Ryan Tibshirani Outline Linear programs Simplex algorithm Running time: Polynomial or Exponential? Cutting planes & Ellipsoid methods for

More information

arxiv: v1 [math.co] 25 Sep 2015

arxiv: v1 [math.co] 25 Sep 2015 A BASIS FOR SLICING BIRKHOFF POLYTOPES TREVOR GLYNN arxiv:1509.07597v1 [math.co] 25 Sep 2015 Abstract. We present a change of basis that may allow more efficient calculation of the volumes of Birkhoff

More information

Lecture 4: Linear Programming

Lecture 4: Linear Programming COMP36111: Advanced Algorithms I Lecture 4: Linear Programming Ian Pratt-Hartmann Room KB2.38: email: ipratt@cs.man.ac.uk 2017 18 Outline The Linear Programming Problem Geometrical analysis The Simplex

More information

arxiv: v1 [math.co] 12 Dec 2017

arxiv: v1 [math.co] 12 Dec 2017 arxiv:1712.04381v1 [math.co] 12 Dec 2017 Semi-reflexive polytopes Tiago Royer Abstract The Ehrhart function L P(t) of a polytope P is usually defined only for integer dilation arguments t. By allowing

More information

Polyhedral Combinatorics (ADM III)

Polyhedral Combinatorics (ADM III) 1 Polyhedral Combinatorics (ADM III) Prof. Dr. Dr. h.c. mult. Martin Grötschel Sommersemester 2010, Classes: TU MA 041, Tuesdays 16:15 17:45h, first class on April 13, 2010 LV-Nr.: 3236 L 414 Diese Vorlesung

More information

Binary Positive Semidefinite Matrices and Associated Integer Polytopes

Binary Positive Semidefinite Matrices and Associated Integer Polytopes Binary Positive Semidefinite Matrices and Associated Integer Polytopes Adam N. Letchford Michael M. Sørensen September 2009 Abstract We consider the positive semidefinite (psd) matrices with binary entries,

More information

An FPTAS for minimizing the product of two non-negative linear cost functions

An FPTAS for minimizing the product of two non-negative linear cost functions Math. Program., Ser. A DOI 10.1007/s10107-009-0287-4 SHORT COMMUNICATION An FPTAS for minimizing the product of two non-negative linear cost functions Vineet Goyal Latife Genc-Kaya R. Ravi Received: 2

More information

Primal and Dual Methods for Optimisation over the Non-dominated Set of a Multi-objective Programme and Computing the Nadir Point

Primal and Dual Methods for Optimisation over the Non-dominated Set of a Multi-objective Programme and Computing the Nadir Point Primal and Dual Methods for Optimisation over the Non-dominated Set of a Multi-objective Programme and Computing the Nadir Point Ethan Liu Supervisor: Professor Matthias Ehrgott Lancaster University Outline

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems Keely L. Croxton Fisher College of Business The Ohio State University Bernard Gendron Département

More information