Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge

Size: px
Start display at page:

Download "Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge"

Transcription

1 Centralities (4) By: Ralucca Gera, NPS Excellence Through Knowledge

2 Some slide from last week that we didn t talk about in class: 2

3 PageRank algorithm Eigenvector centrality: i s Rank score is the sum of the Rank scores of all pages j that point to i :, Then Katz centrality adds the teleportation by adding a small weight edge to each node (using a weight of ):, BUT, since a page j may point to many other pages, its prestige score should be shared among these pages (For example NPS pointing to many sites), 3

4 Matrix notation (1) Let be a n-dimensional column vector of PageRank values, ie, ) T Let A be the adjacency matrix of our digraph with entries Then the PageRank centrality of node is given by: deg or 1 Where is the damping factor, generally set for = 85 (more on the next page) 4

5 So the PageRank centrality of node is given by: β where α is the damping factor (generally α = 85) Recall from eigenvector centrality: Matrix notation (2) A x = x or x = A x Small values (close to ): the contribution given by paths longer than one hop is small, so centrality scores are mainly influenced by in-degrees Large values (close to ): allows long paths to be devalued smoothly, and centrality scores influenced by the topology of G Recommendation: choose α,, where the centrality diverges at α = The default is usually 85 5

6 Overview What makes a vertex central in a network? How do you describe it mathematically? When is it appropriate to use it? How can we capture it? Lots of one-hop connections to high centrality vertices A weighted degree centrality based on the weight of the neighbors For example when the people you are connected to matter Eigenvector centrality α Where A is the in degree matrix Lots of one-hop connections to high out-degree vertices A weighted degree centrality based on the out degree of the neighbors Directed graphs that are not strongly connected Katz α + β Where β is some small weight for each node As above but distribute the weight that a node has to the nodes it points to deg As above but distributing the wealth of a node to the ones it points to Page Rank: α or deg α β PR: most known and influential algorithms for computing the relevance of web pages

7 An example as just described: Problem vertex (no outgoing links) Recall that the problem with vertices with indegree = was solved by using β in-degree matrix each row shows the in degree A each column shows the out degree α deg or α β Is the formula above well defined? β If not, how could we fix the formula or the matrix?

8 How can we fix the problem? 1 Remove those pages with no out-links during the PageRank computation as these pages do not affect the ranking of any other page directly (these pages will get outgoing links in the future) 2 Add a complete set of outgoing links from each such page i to all the pages on the Web The second choice is used in PR since matrix may get updated in-degree matrix each column shows the out degree A each row shows the in degree 8

9 How can we fix the out degree =? 1 1 α β A /2 in-degree matrix 1/2 1/1-1 D 1/3 1/6 Inverse of the out-degree matrix 1/2 9

10 1 PR centrality formula is well defined By multiplying them we obtain the matrix that captures: 1 The in and out degree per vertex 2 Divides the centrality of each vertex by its degree The contribution of node 5 is insignificant, and the formula is now well defined in-degree matrix out-degree matrix / AD α β

11 Transition probability matrix This modified matrix is called the state transition probability matrix Denote its entries by p ij : -1 AD p p p n1 p p p n2 p p p 1n 2n nn p ij represents the transition probability that the surfer in state i (page i) will move to state j (page j) Here is an example: 11

12 A small Internet consisting of just 4 websites Source: 12

13 A small Internet consisting of just 4 websites p ij represents the transition probability that the surfer on page j will move to page i: -1 AD p ij 1/ 3 1/ 3 1/ / 2 1 1/ Source: 13

14 A small Internet consisting of just 4 websites Random surfer: each page has equal probability ¼ to be chosen as a starting point -1 AD p ij 1/ 3 1/ 3 1/ / 2 1 1/ The probability that page i will be visited after k steps (ie the random surfer ending up at page i ) is equal to entry of A k x Simplification for this example: No β was involved since id i >, for all i Source: 14

15 Overview Updated! What makes a vertex central in a network? How do you describe it mathematically? When is it appropriate to use it? How can we capture it? Lots of one-hop connections to high centrality vertices A weighted degree centrality based on the weight of the neighbors For example when the people you are connected to matter Eigenvector centrality є Lots of one-hop connections to high out-degree vertices A weighted degree centrality based on the out degree of the neighbors Directed graphs that are not strongly connected Katz є + β Where β is some initial weight As above but distribute the weight that a node has to the nodes it points to deg As above but distributing the wealth of a node to the ones it points to Page Rank: α deg Where outdeg j = max{1, out degree of node j} β

16 Newman s book gives: Some comments where α is called the damping factor which can be set to between and 1(or the largest eigenvalue of A) And the formula in the original PageRank is: where d is the damping factor (d = 85 as default) Gephi: the default value for is the probability = 85 and Epsilon is the criteria for eigenvector convergence based on the power method

17 Final Points on PageRank Fighting spam A page is important if the pages pointing to it are important Since it is not easy for Web page owner to add in-links into his/her page from other important pages, it is thus not easy to influence PageRank PageRank is a global measure and is query independent The values of the PageRank algorithm of all the pages are computed and saved off-line rather than at the query time => fast Criticism: There are companies that can increase your pagerank by adding it to a cluster and increasing its indegree It cannot not distinguish between pages that are authoritative in general and pages that are authoritative on the query topic But it works based on the keyword search 17

18 Betweenness Centrality Some pages are adapted from Dan Ryan, Mills College

19 Different types of centralities: Betweenness Centrality Closeness Centrality Eigenvector Centrality Source: Discovering Sets of Key Players in Social Networks Daniel Ortiz-Arroyo Springer 21/ Degree Centrality 19

20 Betweenness Centrality Intuition: how many pairs of individuals would have to go through you in order to reach one another in the minimum number of hops? Interactions between two individuals depend on the other individuals in the set of nodes The nodes in the middle have some control over the paths in the graph Useful for flow, such as information or data packages

21 Assumptions When there is more than one geodesic, all geodesics are equally likely to be used Flow takes the shortest path (we ll look at alternatives) Every pair of nodes in G exchanges a message with equal probability per unit time Question: How many messages, on average, will have passed through each vertex en route to their destination? A node s betweenness is given by all pairs of nodes, including the node in question 21

22 Meaning of betweenness centrality Vertices with high betweenness centrality have influence in the network by virtue of their control over information passing between others They get to see the messages as they pass through They could get paid for passing the message along Thus they get a lot of power: their removal would disrupt communication How would you capture it in a mathematical formula? 22

23 Formula for betweenness centrality, where is the number of s-t geodesics that i belongs to (default: i could equal s or t, but in other versions it cannot and that s where you see values) in an undirected graph, an s-t geodesic is the same as a t-s geodesics, so the edge gets counted twice) It is applicable to directed networks as well 23

24 Bounds for disconnected graphs Let G be a disconnected graph: What is the minimum value of betweenness centrality a vertex can have in disconnected graphs? an isolated vertex: What is the maximum value of betweenness centrality a vertex can have in disconnected graphs? center of a star with center: Let at with center node at Then there are pairs of nodes, from which we take away the paths from to since is not on them 24

25 Bounds for connected graphs Let G be connected: What is the minimum value of betweenness centrality a vertex can have in connected graphs? A leaf x would have it: (11121 where we have 1 paths from x to each vertex And 1 more paths from each vertex to x Finally one path from x to x What is the maximum value of betweenness centrality a vertex can have in disconnected graphs? center of a star in the largest component: 1 which is the number of pairs of nodes minus the paths from a leaf to itself 25

26 A refined formula where, is the number of s-t geodesics that i belongs to is the number of s-t geodesics Convention: if = and =, then (in an undirected graph, an s-t geodesic is the same as a t-s geodesics, so it gets counted twice) 26

27 In class activity: betweenness of A? Fraction of shortest paths that include vertex A,, 1 shortest path of Number of paths 4 goes through A A B C D E F G A B C D E 1 shortest path of F 4 goes through A - 1 = 75 G 1 shortest path - of 4 goes through A

28 A normalized refined formula where ) / is the number of s-t geodesics that i belongs to is the number of s-t geodesics Convention: = and =, then 28

29 Another normalized formula where ) / is the number of s-t geodesics that i belongs to is the number of s-t geodesics Convention: = and =, then 29

30 Betweenness Centrality Used generally for Information flow Typically distributed over a wide range Betweenness only uses geodesic paths Information can also flow on longer paths Sometimes we hear it through the grapevine While betweenness focuses just on the geodesic, flow betweenness centrality focuses on how information might flow through many different paths

31 Flow betweenness centrality BUT, is the maximum flow transmitted from s to t through all possible paths that i belongs to is the maximum flow transmitted from s to t through all possible paths Convention: = and =, then (in an undirected graph, an s-t geodesic is the same as a t-s geodesics, so it gets counted twice) 31

32 Random walk betweenness centrality, BUT is the number of times a random walk from s to t passes through i, averaged over many repetitions of a walk Note that A good measure for traffic that doesn t have a particular destination 32

33 Other extensions of centralities How would you extend the centralities you have seen? What else would you introduce that would capture the centrality of a vertex? Would you use it for edges? This is a good time to share your thoughts Subgraph/subset centrality? How central are you to that particular subgraph? How central is the subgraph to the network? If so, would you repeat the centralities seen before for that subgraph? 33

34 Overview Local measure: degree Relative to rest of network: closeness, betweenness, eigenvector, Katz, PageRank How evenly is centrality distributed among nodes? hubs and authorities You ve learned the traditional centralities Based on your understanding of the methodologies that create them, decide which one is appropriate to use for your application 34

35 Let s practice in Gephi And if there is time, in Python (code on line, same code as before) 35

Centralities (4) Ralucca Gera, Applied Mathematics Dept. Naval Postgraduate School Monterey, California Excellence Through Knowledge

Centralities (4) Ralucca Gera, Applied Mathematics Dept. Naval Postgraduate School Monterey, California Excellence Through Knowledge Centralities (4) Ralucca Gera, Applied Mathematics Dept. Naval Postgraduate School Monterey, California rgera@nps.edu Excellence Through Knowledge Different types of centralities: Betweenness Centrality

More information

Section 7.12: Similarity. By: Ralucca Gera, NPS

Section 7.12: Similarity. By: Ralucca Gera, NPS Section 7.12: Similarity By: Ralucca Gera, NPS Motivation We talked about global properties Average degree, average clustering, ave path length We talked about local properties: Some node centralities

More information

Node Similarity. Ralucca Gera, Applied Mathematics Dept. Naval Postgraduate School Monterey, California

Node Similarity. Ralucca Gera, Applied Mathematics Dept. Naval Postgraduate School Monterey, California Node Similarity Ralucca Gera, Applied Mathematics Dept. Naval Postgraduate School Monterey, California rgera@nps.edu Motivation We talked about global properties Average degree, average clustering, ave

More information

Link Analysis and Web Search

Link Analysis and Web Search Link Analysis and Web Search Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ based on material by prof. Bing Liu http://www.cs.uic.edu/~liub/webminingbook.html

More information

CS6200 Information Retreival. The WebGraph. July 13, 2015

CS6200 Information Retreival. The WebGraph. July 13, 2015 CS6200 Information Retreival The WebGraph The WebGraph July 13, 2015 1 Web Graph: pages and links The WebGraph describes the directed links between pages of the World Wide Web. A directed edge connects

More information

Lecture #3: PageRank Algorithm The Mathematics of Google Search

Lecture #3: PageRank Algorithm The Mathematics of Google Search Lecture #3: PageRank Algorithm The Mathematics of Google Search We live in a computer era. Internet is part of our everyday lives and information is only a click away. Just open your favorite search engine,

More information

1 Starting around 1996, researchers began to work on. 2 In Feb, 1997, Yanhong Li (Scotch Plains, NJ) filed a

1 Starting around 1996, researchers began to work on. 2 In Feb, 1997, Yanhong Li (Scotch Plains, NJ) filed a !"#$ %#& ' Introduction ' Social network analysis ' Co-citation and bibliographic coupling ' PageRank ' HIS ' Summary ()*+,-/*,) Early search engines mainly compare content similarity of the query and

More information

Some Graph Theory for Network Analysis. CS 249B: Science of Networks Week 01: Thursday, 01/31/08 Daniel Bilar Wellesley College Spring 2008

Some Graph Theory for Network Analysis. CS 249B: Science of Networks Week 01: Thursday, 01/31/08 Daniel Bilar Wellesley College Spring 2008 Some Graph Theory for Network Analysis CS 9B: Science of Networks Week 0: Thursday, 0//08 Daniel Bilar Wellesley College Spring 008 Goals this lecture Introduce you to some jargon what we call things in

More information

Social Network Analysis

Social Network Analysis Social Network Analysis Mathematics of Networks Manar Mohaisen Department of EEC Engineering Adjacency matrix Network types Edge list Adjacency list Graph representation 2 Adjacency matrix Adjacency matrix

More information

Degree Distribution: The case of Citation Networks

Degree Distribution: The case of Citation Networks Network Analysis Degree Distribution: The case of Citation Networks Papers (in almost all fields) refer to works done earlier on same/related topics Citations A network can be defined as Each node is a

More information

Web consists of web pages and hyperlinks between pages. A page receiving many links from other pages may be a hint of the authority of the page

Web consists of web pages and hyperlinks between pages. A page receiving many links from other pages may be a hint of the authority of the page Link Analysis Links Web consists of web pages and hyperlinks between pages A page receiving many links from other pages may be a hint of the authority of the page Links are also popular in some other information

More information

Link Structure Analysis

Link Structure Analysis Link Structure Analysis Kira Radinsky All of the following slides are courtesy of Ronny Lempel (Yahoo!) Link Analysis In the Lecture HITS: topic-specific algorithm Assigns each page two scores a hub score

More information

Graph Theory and Network Measurment

Graph Theory and Network Measurment Graph Theory and Network Measurment Social and Economic Networks MohammadAmin Fazli Social and Economic Networks 1 ToC Network Representation Basic Graph Theory Definitions (SE) Network Statistics and

More information

Lecture 8: Linkage algorithms and web search

Lecture 8: Linkage algorithms and web search Lecture 8: Linkage algorithms and web search Information Retrieval Computer Science Tripos Part II Ronan Cummins 1 Natural Language and Information Processing (NLIP) Group ronan.cummins@cl.cam.ac.uk 2017

More information

Web search before Google. (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.)

Web search before Google. (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.) ' Sta306b May 11, 2012 $ PageRank: 1 Web search before Google (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.) & % Sta306b May 11, 2012 PageRank: 2 Web search

More information

Graph Algorithms. Revised based on the slides by Ruoming Kent State

Graph Algorithms. Revised based on the slides by Ruoming Kent State Graph Algorithms Adapted from UMD Jimmy Lin s slides, which is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States. See http://creativecommons.org/licenses/by-nc-sa/3.0/us/

More information

Information Retrieval. Lecture 11 - Link analysis

Information Retrieval. Lecture 11 - Link analysis Information Retrieval Lecture 11 - Link analysis Seminar für Sprachwissenschaft International Studies in Computational Linguistics Wintersemester 2007 1/ 35 Introduction Link analysis: using hyperlinks

More information

Link Analysis from Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer and other material.

Link Analysis from Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer and other material. Link Analysis from Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer and other material. 1 Contents Introduction Network properties Social network analysis Co-citation

More information

Course Introduction / Review of Fundamentals of Graph Theory

Course Introduction / Review of Fundamentals of Graph Theory Course Introduction / Review of Fundamentals of Graph Theory Hiroki Sayama sayama@binghamton.edu Rise of Network Science (From Barabasi 2010) 2 Network models Many discrete parts involved Classic mean-field

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu HITS (Hypertext Induced Topic Selection) Is a measure of importance of pages or documents, similar to PageRank

More information

Pagerank Scoring. Imagine a browser doing a random walk on web pages:

Pagerank Scoring. Imagine a browser doing a random walk on web pages: Ranking Sec. 21.2 Pagerank Scoring Imagine a browser doing a random walk on web pages: Start at a random page At each step, go out of the current page along one of the links on that page, equiprobably

More information

Brief (non-technical) history

Brief (non-technical) history Web Data Management Part 2 Advanced Topics in Database Management (INFSCI 2711) Textbooks: Database System Concepts - 2010 Introduction to Information Retrieval - 2008 Vladimir Zadorozhny, DINS, SCI, University

More information

Einführung in Web und Data Science Community Analysis. Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

Einführung in Web und Data Science Community Analysis. Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Einführung in Web und Data Science Community Analysis Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Today s lecture Anchor text Link analysis for ranking Pagerank and variants

More information

University of Maryland. Tuesday, March 2, 2010

University of Maryland. Tuesday, March 2, 2010 Data-Intensive Information Processing Applications Session #5 Graph Algorithms Jimmy Lin University of Maryland Tuesday, March 2, 2010 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

Lecture 9: I: Web Retrieval II: Webology. Johan Bollen Old Dominion University Department of Computer Science

Lecture 9: I: Web Retrieval II: Webology. Johan Bollen Old Dominion University Department of Computer Science Lecture 9: I: Web Retrieval II: Webology Johan Bollen Old Dominion University Department of Computer Science jbollen@cs.odu.edu http://www.cs.odu.edu/ jbollen April 10, 2003 Page 1 WWW retrieval Two approaches

More information

Mathematical Analysis of Google PageRank

Mathematical Analysis of Google PageRank INRIA Sophia Antipolis, France Ranking Answers to User Query Ranking Answers to User Query How a search engine should sort the retrieved answers? Possible solutions: (a) use the frequency of the searched

More information

Social Network Analysis

Social Network Analysis Social Network Analysis Giri Iyengar Cornell University gi43@cornell.edu March 14, 2018 Giri Iyengar (Cornell Tech) Social Network Analysis March 14, 2018 1 / 24 Overview 1 Social Networks 2 HITS 3 Page

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

Jordan Boyd-Graber University of Maryland. Thursday, March 3, 2011

Jordan Boyd-Graber University of Maryland. Thursday, March 3, 2011 Data-Intensive Information Processing Applications! Session #5 Graph Algorithms Jordan Boyd-Graber University of Maryland Thursday, March 3, 2011 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds MAE 298, Lecture 9 April 30, 2007 Web search and decentralized search on small-worlds Search for information Assume some resource of interest is stored at the vertices of a network: Web pages Files in

More information

Information Networks: PageRank

Information Networks: PageRank Information Networks: PageRank Web Science (VU) (706.716) Elisabeth Lex ISDS, TU Graz June 18, 2018 Elisabeth Lex (ISDS, TU Graz) Links June 18, 2018 1 / 38 Repetition Information Networks Shape of the

More information

Information Retrieval Lecture 4: Web Search. Challenges of Web Search 2. Natural Language and Information Processing (NLIP) Group

Information Retrieval Lecture 4: Web Search. Challenges of Web Search 2. Natural Language and Information Processing (NLIP) Group Information Retrieval Lecture 4: Web Search Computer Science Tripos Part II Simone Teufel Natural Language and Information Processing (NLIP) Group sht25@cl.cam.ac.uk (Lecture Notes after Stephen Clark)

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

Basics of Network Analysis

Basics of Network Analysis Basics of Network Analysis Hiroki Sayama sayama@binghamton.edu Graph = Network G(V, E): graph (network) V: vertices (nodes), E: edges (links) 1 Nodes = 1, 2, 3, 4, 5 2 3 Links = 12, 13, 15, 23,

More information

CENTRALITIES. Carlo PICCARDI. DEIB - Department of Electronics, Information and Bioengineering Politecnico di Milano, Italy

CENTRALITIES. Carlo PICCARDI. DEIB - Department of Electronics, Information and Bioengineering Politecnico di Milano, Italy CENTRALITIES Carlo PICCARDI DEIB - Department of Electronics, Information and Bioengineering Politecnico di Milano, Italy email carlo.piccardi@polimi.it http://home.deib.polimi.it/piccardi Carlo Piccardi

More information

INTRODUCTION TO DATA SCIENCE. Link Analysis (MMDS5)

INTRODUCTION TO DATA SCIENCE. Link Analysis (MMDS5) INTRODUCTION TO DATA SCIENCE Link Analysis (MMDS5) Introduction Motivation: accurate web search Spammers: want you to land on their pages Google s PageRank and variants TrustRank Hubs and Authorities (HITS)

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu SPAM FARMING 2/11/2013 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 2/11/2013 Jure Leskovec, Stanford

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second

More information

COMP5331: Knowledge Discovery and Data Mining

COMP5331: Knowledge Discovery and Data Mining COMP5331: Knowledge Discovery and Data Mining Acknowledgement: Slides modified based on the slides provided by Lawrence Page, Sergey Brin, Rajeev Motwani and Terry Winograd, Jon M. Kleinberg 1 1 PageRank

More information

PageRank and related algorithms

PageRank and related algorithms PageRank and related algorithms PageRank and HITS Jacob Kogan Department of Mathematics and Statistics University of Maryland, Baltimore County Baltimore, Maryland 21250 kogan@umbc.edu May 15, 2006 Basic

More information

Extracting Information from Complex Networks

Extracting Information from Complex Networks Extracting Information from Complex Networks 1 Complex Networks Networks that arise from modeling complex systems: relationships Social networks Biological networks Distinguish from random networks uniform

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second

More information

16 - Networks and PageRank

16 - Networks and PageRank - Networks and PageRank ST 9 - Fall 0 Contents Network Intro. Required R Packages................................ Example: Zachary s karate club network.................... Basic Network Concepts. Basic

More information

Agenda. Math Google PageRank algorithm. 2 Developing a formula for ranking web pages. 3 Interpretation. 4 Computing the score of each page

Agenda. Math Google PageRank algorithm. 2 Developing a formula for ranking web pages. 3 Interpretation. 4 Computing the score of each page Agenda Math 104 1 Google PageRank algorithm 2 Developing a formula for ranking web pages 3 Interpretation 4 Computing the score of each page Google: background Mid nineties: many search engines often times

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second

More information

Mathematics of Networks II

Mathematics of Networks II Mathematics of Networks II 26.10.2016 1 / 30 Definition of a network Our definition (Newman): A network (graph) is a collection of vertices (nodes) joined by edges (links). More precise definition (Bollobàs):

More information

Unit 2: Graphs and Matrices. ICPSR University of Michigan, Ann Arbor Summer 2015 Instructor: Ann McCranie

Unit 2: Graphs and Matrices. ICPSR University of Michigan, Ann Arbor Summer 2015 Instructor: Ann McCranie Unit 2: Graphs and Matrices ICPSR University of Michigan, Ann Arbor Summer 2015 Instructor: Ann McCranie Four main ways to notate a social network There are a variety of ways to mathematize a social network,

More information

Unit VIII. Chapter 9. Link Analysis

Unit VIII. Chapter 9. Link Analysis Unit VIII Link Analysis: Page Ranking in web search engines, Efficient Computation of Page Rank using Map-Reduce and other approaches, Topic-Sensitive Page Rank, Link Spam, Hubs and Authorities (Text Book:2

More information

Proximity Prestige using Incremental Iteration in Page Rank Algorithm

Proximity Prestige using Incremental Iteration in Page Rank Algorithm Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/107962, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Proximity Prestige using Incremental Iteration

More information

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov Algorithms and Applications in Social Networks 2017/2018, Semester B Slava Novgorodov 1 Lesson #1 Administrative questions Course overview Introduction to Social Networks Basic definitions Network properties

More information

Lecture 27: Learning from relational data

Lecture 27: Learning from relational data Lecture 27: Learning from relational data STATS 202: Data mining and analysis December 2, 2017 1 / 12 Announcements Kaggle deadline is this Thursday (Dec 7) at 4pm. If you haven t already, make a submission

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Page rank computation HPC course project a.y Compute efficient and scalable Pagerank

Page rank computation HPC course project a.y Compute efficient and scalable Pagerank Page rank computation HPC course project a.y. 2012-13 Compute efficient and scalable Pagerank 1 PageRank PageRank is a link analysis algorithm, named after Brin & Page [1], and used by the Google Internet

More information

Graphs. Part I: Basic algorithms. Laura Toma Algorithms (csci2200), Bowdoin College

Graphs. Part I: Basic algorithms. Laura Toma Algorithms (csci2200), Bowdoin College Laura Toma Algorithms (csci2200), Bowdoin College Undirected graphs Concepts: connectivity, connected components paths (undirected) cycles Basic problems, given undirected graph G: is G connected how many

More information

Networks in economics and finance. Lecture 1 - Measuring networks

Networks in economics and finance. Lecture 1 - Measuring networks Networks in economics and finance Lecture 1 - Measuring networks What are networks and why study them? A network is a set of items (nodes) connected by edges or links. Units (nodes) Individuals Firms Banks

More information

Sergei Silvestrov, Christopher Engström. January 29, 2013

Sergei Silvestrov, Christopher Engström. January 29, 2013 Sergei Silvestrov, January 29, 2013 L2: t Todays lecture:. L2: t Todays lecture:. measurements. L2: t Todays lecture:. measurements. s. L2: t Todays lecture:. measurements. s.. First we would like to define

More information

1 Random Walks on Graphs

1 Random Walks on Graphs Lecture 7 Com S 633: Randomness in Computation Scribe: Ankit Agrawal In the last lecture, we looked at random walks on line and used them to devise randomized algorithms for 2-SAT and 3-SAT For 2-SAT we

More information

Link Analysis in the Cloud

Link Analysis in the Cloud Cloud Computing Link Analysis in the Cloud Dell Zhang Birkbeck, University of London 2017/18 Graph Problems & Representations What is a Graph? G = (V,E), where V represents the set of vertices (nodes)

More information

Erdös-Rényi Graphs, Part 2

Erdös-Rényi Graphs, Part 2 Graphs and Networks Lecture 3 Erdös-Rényi Graphs, Part 2 Daniel A. Spielman September 5, 2013 3.1 Disclaimer These notes are not necessarily an accurate representation of what happened in class. They are

More information

CSCI5070 Advanced Topics in Social Computing

CSCI5070 Advanced Topics in Social Computing CSCI5070 Advanced Topics in Social Computing Irwin King The Chinese University of Hong Kong king@cse.cuhk.edu.hk!! 2012 All Rights Reserved. Outline Graphs Origins Definition Spectral Properties Type of

More information

Roadmap. Roadmap. Ranking Web Pages. PageRank. Roadmap. Random Walks in Ranking Query Results in Semistructured Databases

Roadmap. Roadmap. Ranking Web Pages. PageRank. Roadmap. Random Walks in Ranking Query Results in Semistructured Databases Roadmap Random Walks in Ranking Query in Vagelis Hristidis Roadmap Ranking Web Pages Rank according to Relevance of page to query Quality of page Roadmap PageRank Stanford project Lawrence Page, Sergey

More information

F. Aiolli - Sistemi Informativi 2007/2008. Web Search before Google

F. Aiolli - Sistemi Informativi 2007/2008. Web Search before Google Web Search Engines 1 Web Search before Google Web Search Engines (WSEs) of the first generation (up to 1998) Identified relevance with topic-relateness Based on keywords inserted by web page creators (META

More information

V2: Measures and Metrics (II)

V2: Measures and Metrics (II) - Betweenness Centrality V2: Measures and Metrics (II) - Groups of Vertices - Transitivity - Reciprocity - Signed Edges and Structural Balance - Similarity - Homophily and Assortative Mixing 1 Betweenness

More information

Bruno Martins. 1 st Semester 2012/2013

Bruno Martins. 1 st Semester 2012/2013 Link Analysis Departamento de Engenharia Informática Instituto Superior Técnico 1 st Semester 2012/2013 Slides baseados nos slides oficiais do livro Mining the Web c Soumen Chakrabarti. Outline 1 2 3 4

More information

Complex-Network Modelling and Inference

Complex-Network Modelling and Inference Complex-Network Modelling and Inference Lecture 8: Graph features (2) Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/notes/ Network_Modelling/ School

More information

Social Networks. Slides by : I. Koutsopoulos (AUEB), Source:L. Adamic, SN Analysis, Coursera course

Social Networks. Slides by : I. Koutsopoulos (AUEB), Source:L. Adamic, SN Analysis, Coursera course Social Networks Slides by : I. Koutsopoulos (AUEB), Source:L. Adamic, SN Analysis, Coursera course Introduction Political blogs Organizations Facebook networks Ingredient networks SN representation Networks

More information

On Page Rank. 1 Introduction

On Page Rank. 1 Introduction On Page Rank C. Hoede Faculty of Electrical Engineering, Mathematics and Computer Science University of Twente P.O.Box 217 7500 AE Enschede, The Netherlands Abstract In this paper the concept of page rank

More information

Graphs. Introduction To Graphs: Exercises. Definitions:

Graphs. Introduction To Graphs: Exercises. Definitions: Graphs Eng.Jehad Aldahdooh Introduction To Graphs: Definitions: A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated

More information

Lecture 3: Descriptive Statistics

Lecture 3: Descriptive Statistics Lecture 3: Descriptive Statistics Scribe: Neil Spencer September 7th, 2016 1 Review The following terminology is used throughout the lecture Network: A real pattern of binary relations Graph: G = (V, E)

More information

Chapter 10. Fundamental Network Algorithms. M. E. J. Newman. May 6, M. E. J. Newman Chapter 10 May 6, / 33

Chapter 10. Fundamental Network Algorithms. M. E. J. Newman. May 6, M. E. J. Newman Chapter 10 May 6, / 33 Chapter 10 Fundamental Network Algorithms M. E. J. Newman May 6, 2015 M. E. J. Newman Chapter 10 May 6, 2015 1 / 33 Table of Contents 1 Algorithms for Degrees and Degree Distributions Degree-Degree Correlation

More information

Graph Data Processing with MapReduce

Graph Data Processing with MapReduce Distributed data processing on the Cloud Lecture 5 Graph Data Processing with MapReduce Satish Srirama Some material adapted from slides by Jimmy Lin, 2015 (licensed under Creation Commons Attribution

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Analysis of Large Graphs: Community Detection Rafael Ferreira da Silva rafsilva@isi.edu http://rafaelsilva.com Note to other teachers and users of these slides: We would be

More information

Non Overlapping Communities

Non Overlapping Communities Non Overlapping Communities Davide Mottin, Konstantina Lazaridou HassoPlattner Institute Graph Mining course Winter Semester 2016 Acknowledgements Most of this lecture is taken from: http://web.stanford.edu/class/cs224w/slides

More information

15 Graph Theory Counting the Number of Relations. 2. onto (surjective).

15 Graph Theory Counting the Number of Relations. 2. onto (surjective). 2. onto (surjective). You should convince yourself that if these two properties hold, then it is always going to be the case that f 1 is a function. In order to do this, you should remember the definition

More information

Chapter 2 Graphs. 2.1 Definition of Graphs

Chapter 2 Graphs. 2.1 Definition of Graphs Chapter 2 Graphs Abstract Graphs are discrete structures that consist of vertices and edges connecting some of these vertices. Graphs have many applications in Mathematics, Computer Science, Engineering,

More information

COMP Page Rank

COMP Page Rank COMP 4601 Page Rank 1 Motivation Remember, we were interested in giving back the most relevant documents to a user. Importance is measured by reference as well as content. Think of this like academic paper

More information

EECS 1028 M: Discrete Mathematics for Engineers

EECS 1028 M: Discrete Mathematics for Engineers EECS 1028 M: Discrete Mathematics for Engineers Suprakash Datta Office: LAS 3043 Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle S. Datta (York Univ.) EECS 1028 W 18 1 / 15 Graphs: Motivations

More information

Social-Network Graphs

Social-Network Graphs Social-Network Graphs Mining Social Networks Facebook, Google+, Twitter Email Networks, Collaboration Networks Identify communities Similar to clustering Communities usually overlap Identify similarities

More information

Link Analysis SEEM5680. Taken from Introduction to Information Retrieval by C. Manning, P. Raghavan, and H. Schutze, Cambridge University Press.

Link Analysis SEEM5680. Taken from Introduction to Information Retrieval by C. Manning, P. Raghavan, and H. Schutze, Cambridge University Press. Link Analysis SEEM5680 Taken from Introduction to Information Retrieval by C. Manning, P. Raghavan, and H. Schutze, Cambridge University Press. 1 The Web as a Directed Graph Page A Anchor hyperlink Page

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Network Centrality. Saptarshi Ghosh Department of CSE, IIT Kharagpur Social Computing course, CS60017

Network Centrality. Saptarshi Ghosh Department of CSE, IIT Kharagpur Social Computing course, CS60017 Network Centrality Saptarshi Ghosh Department of CSE, IIT Kharagpur Social Computing course, CS60017 Node centrality n Relative importance of a node in a network n How influential a person is within a

More information

Analysis of Biological Networks. 1. Clustering 2. Random Walks 3. Finding paths

Analysis of Biological Networks. 1. Clustering 2. Random Walks 3. Finding paths Analysis of Biological Networks 1. Clustering 2. Random Walks 3. Finding paths Problem 1: Graph Clustering Finding dense subgraphs Applications Identification of novel pathways, complexes, other modules?

More information

Information Retrieval and Web Search

Information Retrieval and Web Search Information Retrieval and Web Search Link analysis Instructor: Rada Mihalcea (Note: This slide set was adapted from an IR course taught by Prof. Chris Manning at Stanford U.) The Web as a Directed Graph

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

Centrality Book. cohesion.

Centrality Book. cohesion. Cohesion The graph-theoretic terms discussed in the previous chapter have very specific and concrete meanings which are highly shared across the field of graph theory and other fields like social network

More information

The Basics of Network Structure

The Basics of Network Structure The Basics of Network Structure James M. Cook University of Maine at Augusta james.m.cook@maine.edu Keywords Betweenness; Centrality; Closeness; Degree; Density; Diameter; Distance; Clique; Connected Component;

More information

CS200: Graphs. Prichard Ch. 14 Rosen Ch. 10. CS200 - Graphs 1

CS200: Graphs. Prichard Ch. 14 Rosen Ch. 10. CS200 - Graphs 1 CS200: Graphs Prichard Ch. 14 Rosen Ch. 10 CS200 - Graphs 1 Graphs A collection of nodes and edges What can this represent? n A computer network n Abstraction of a map n Social network CS200 - Graphs 2

More information

Spectral Clustering. Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014

Spectral Clustering. Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014 Spectral Clustering Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014 What are we going to talk about? Introduction Clustering and

More information

Module 2: NETWORKS AND DECISION MATHEMATICS

Module 2: NETWORKS AND DECISION MATHEMATICS Further Mathematics 2017 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Key knowledge the conventions, terminology, properties and types of graphs; edge, face, loop,

More information

A Modified Algorithm to Handle Dangling Pages using Hypothetical Node

A Modified Algorithm to Handle Dangling Pages using Hypothetical Node A Modified Algorithm to Handle Dangling Pages using Hypothetical Node Shipra Srivastava Student Department of Computer Science & Engineering Thapar University, Patiala, 147001 (India) Rinkle Rani Aggrawal

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 21: Link Analysis Hinrich Schütze Center for Information and Language Processing, University of Munich 2014-06-18 1/80 Overview

More information

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008 Lesson 4 Random graphs Sergio Barbarossa Graph models 1. Uncorrelated random graph (Erdős, Rényi) N nodes are connected through n edges which are chosen randomly from the possible configurations 2. Binomial

More information

A STUDY OF RANKING ALGORITHM USED BY VARIOUS SEARCH ENGINE

A STUDY OF RANKING ALGORITHM USED BY VARIOUS SEARCH ENGINE A STUDY OF RANKING ALGORITHM USED BY VARIOUS SEARCH ENGINE Bohar Singh 1, Gursewak Singh 2 1, 2 Computer Science and Application, Govt College Sri Muktsar sahib Abstract The World Wide Web is a popular

More information

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees Axiomatizing Arithmetic Logic: The Big Picture Suppose we restrict the domain to the natural numbers, and allow only the standard symbols of arithmetic (+,, =, >, 0, 1). Typical true formulas include:

More information

Collaborative filtering based on a random walk model on a graph

Collaborative filtering based on a random walk model on a graph Collaborative filtering based on a random walk model on a graph Marco Saerens, Francois Fouss, Alain Pirotte, Luh Yen, Pierre Dupont (UCL) Jean-Michel Renders (Xerox Research Europe) Some recent methods:

More information