INTRODUCTION TO DATA SCIENCE. Link Analysis (MMDS5)

Size: px
Start display at page:

Download "INTRODUCTION TO DATA SCIENCE. Link Analysis (MMDS5)"

Transcription

1 INTRODUCTION TO DATA SCIENCE Link Analysis (MMDS5)

2 Introduction Motivation: accurate web search Spammers: want you to land on their pages Google s PageRank and variants TrustRank Hubs and Authorities (HITS) Analyze the structure of very large graph (Web) Link Analysis

3 PageRank

4 Early SE and Term Spam Early Search Engines invented term search Crawl the Web Extract teems (e.g. words) from each page Create an inverted index (what terms in which pages) Query processing Find all pages with query trems Rank pages according to importance/relevance E.g. term in the title of a page is more important Spammers invented term spam Add fake terms (in invisible font) Run popular query, see what page comes first, copy it

5 Google Innovation PageRank Simulate a random surfer starting from a random page following random outlinks Important pages has large chance to be on the simulated random path Page importance and terms are used for ranking Terms around the link Relevance of the page is according to terms within the page and terms around links to this page

6 Definition of PageRank A function that assigns a real number to each Page More important pages get a higher PageRank Web as a directed graph(nodes-pages, link-edges)

7 Transition Matrix Probability of jumping from node i to node j Assume equal probability (k out links, 1/k probability each) PageRank is a column vector Probability to be at node i

8 Stable Distribution Assume initial probability to be at each state is a vector v 0 = 1 n, 1 n,, Transition matrix M 1 n What is the probability after a single step? x = Mv 0 x i = j m ij v j After k steps x k = M k v 0 = MM Mv 0

9 Markov Process Distribution to be on a node i at step k depends only on distribution of nodes at time k-1. Exists a limiting distribution v = Mv provided The graph is strongly connected (possible to get from any node to any node) There are no dead ends (nodes that have no arcs out) Limiting distribution is an eigenvector of M

10 Principle Eigenvector Transition matrix M is stochastic (each column adds up to 1) Limiting distribution is the principle eigenvector (associated with largest eigenvalue) v = λmv Computation: iterate my multiplying by matrix M till no significant change iterations for Web

11 Example Assuming transition matrix Successive multiplications

12 Structure of the Web In practice, web is not strongly connected graph

13 Structure of the Web Large strongly connected component (SCC) In-component Reach the SCC but could not but not reachable from the SCC Out-component Reachable from the SCC but unable to reach the SCC Two types of Tendrils From the in-component To the out-component Tubes from the in-component to the outcomponent Isolated component

14 Two general problems Dead-ends Page with no links out Spider traps Groups of pages that do not have links to any other pages Each page has out-links within the group

15 Avoiding Dead Ends Transition matrix is not stochastic (all zero column) Substochastic matrix- column sums are at most 1 Increasing power of M leads to some/all elements of v going to zero. Example

16 Dropping dead ends Drop dead ends and their incoming arcs from the graph Other nodes may become dead ends Drop recursively to obtain a strongly connected component Compute PageRank on the remaining graph Restore graph by adding nodes back in reverse order Computing PageRank for restored nodes Each parent with PageRank p and number of outlinks k contribute p/k to the restored node

17 Example Drop dead ends PageRank on reduced graph Restore C: Restore E: Single parent, same PageRank Result is not a distribution (does not sum up to 1)

18 Spider Traps and Taxation Example

19 Teleporting A random surfer has a small probability of jumping from any page to any page e is a vector of all 1 s and β is a small probability (0.15) For dead ends Always a probability to get out

20 Example Assume β = 0.8

21 Using PageRank in a SE A secret formula for ranking pages in response to a query Terms relevance PageRank Other 250 properties of pages (Google)

22 Efficient Computation of PageRank

23 PageRank for a large graph 50 iterations of matrix-vector multiplication MapReduce method The transition matrix M is very sparse Represent only non-zero elements Modify MapReduce stripping approach to reduce amount of data passed from Map tasks to Reduce tasks

24 Representing Transition Matrices 10B pages, 10 links per page 1 of each 1B entries is not zero 4 bytes per coordinate index, and 8 bytes for value Total 16 bytes per non-zero entry List all non-zero entries by column Single integer for a number of non-zeroes 4 bytes for row number per each non-zero entries

25 Example Transition Matrix Representation

26 PageRank Iteration Using MapReduce Iteration For small n store vector in the main memory of each node Map i, j, m ij i, m ij v j Reduce i, m i1 v 1,, m in v n j m ij v j Large n: break M into vertical stripes, v into horizontal stripes Break M into blocks, v into stripes

27 Topic-Sensitive PageRank

28 Motivation Search jaguar Animal, Automobile, MAC OS, ancient game console If SE can guess the topic More relevant results Select small number of topics Create PageRank vector for each topic (eg. 16 DMOZ) Detect user interest with respect to one of these topics

29 Biased Random Walk Assume random surfers start only from a random sport page Teleport set S of sport pages Usage Decide on topics Select teleport set of each topic Find a way to decide on topic(s) relevant to query Use appropriate PageRank vector

30 Link Spam

31 Architecture of a Spam Farm Spammers constantly try to improve the PageRank of their pages Web from the point of view of a spammer Inaccessible pages (amazon) Accessible pages (blog) Own pages (spam)

32 Spam Farm Single target page and m supporting pages

33 Analysis of a Spam Farm x- PageRank contributed by accessible pages β i p i k i, p i PageRank, k i number of outlinks y- unknown PageRank of target page PageRank of each supporting page is

34 PageRank of Target Page Contribution x from outside Contribution of every supporting page Contribution from teleported surfers (ignore) 1 β Total Solve n

35 Example Assume β = 0.86, c = 0.46 y = 3.6 x m n Amplify x, contribution by outer page by 360% 46% of the fraction of the Web

36 Combating Link Spam Battle between SE to detect spam-farm-like structures and spammers to invent new ones Consider TrustRank- a variation of topic sensitive PageRank designed to lower the score of spam pages Spam mass- identify pages that are likely to be spam

37 TrustRank Let S- teleport set to be a set of pages that are considered to be trustworthy Can t inject spam links into them (e.g. no talkbacks) Selecting trustworthy pages Human selected pages Pages from a specific domains (.edu.mil,.gov)

38 Spam Mass Measure fraction of page PageRank that comes from spam Compute PageRank r Compute TrustRank t The spam mass is r t r Not a spam: negative or small positive Spam: close two one (t is almost zero)

39 Example Trustworthy pages B and D No spam pages

40 Hubs and Authorities

41 HITS Probably used by Ask.com SE Hyperlink induced topic search (HITS) Originally intended to help ranking of query results Not a pre-processing step as PageRank We apply to the entire Web

42 The Intuition Behind HITS Authorities: Certain page are valuable because they provide information about a topic Hubs: Other pages are valuable as they point to good pages about that topic Example A homepage of the faculty is a HUB A homepage of each course is an Authority Recursive definition Good hub if links to good authorities Good authorities if it is linked by a good hub

43 Formalizing Hubbiness and Authority Link matrix of the Web L 1 if there is a link from i to j. Transpose L T : 1 if a link from j to I L T is similar to transition matrix M (M has probabilities)

44 Scores Let h and a be score vectors fro hubbines and authority respectively Scale each vector to sum 1 Computation h = λla, a = μl T h, with scaling constants λ and μ Substitute h = λlμl t h = λμll T h a = μl T λla = λμl T La

45 Computing L T L is much more sparse compared to L Better compute h and a by a true mutual recursion Algorithm Compute a = μl T h and scale Compute h = λla and scale Repeat until changes are small

46 Summary

47 Summary Term spam inject terms and copy pages PageRank and Transition Matrix Page importance defined by a random surfer Dead ends and Spider Traps Taxations/teleporting and removal of dead ends Combatting Spam Farms TrustRank and Spam Mass Topic-sensitive PageRank Teleport sets Hubs and authorities Mutually recursive definition

Unit VIII. Chapter 9. Link Analysis

Unit VIII. Chapter 9. Link Analysis Unit VIII Link Analysis: Page Ranking in web search engines, Efficient Computation of Page Rank using Map-Reduce and other approaches, Topic-Sensitive Page Rank, Link Spam, Hubs and Authorities (Text Book:2

More information

Link Analysis. Chapter PageRank

Link Analysis. Chapter PageRank Chapter 5 Link Analysis One of the biggest changes in our lives in the decade following the turn of the century was the availability of efficient and accurate Web search, through search engines such as

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Part 1: Link Analysis & Page Rank

Part 1: Link Analysis & Page Rank Chapter 8: Graph Data Part 1: Link Analysis & Page Rank Based on Leskovec, Rajaraman, Ullman 214: Mining of Massive Datasets 1 Graph Data: Social Networks [Source: 4-degrees of separation, Backstrom-Boldi-Rosa-Ugander-Vigna,

More information

Slides based on those in:

Slides based on those in: Spyros Kontogiannis & Christos Zaroliagis Slides based on those in: http://www.mmds.org A 3.3 B 38.4 C 34.3 D 3.9 E 8.1 F 3.9 1.6 1.6 1.6 1.6 1.6 2 y 0.8 ½+0.2 ⅓ M 1/2 1/2 0 0.8 1/2 0 0 + 0.2 0 1/2 1 [1/N]

More information

Jeffrey D. Ullman Stanford University

Jeffrey D. Ullman Stanford University Jeffrey D. Ullman Stanford University 3 Mutually recursive definition: A hub links to many authorities; An authority is linked to by many hubs. Authorities turn out to be places where information can

More information

CS425: Algorithms for Web Scale Data

CS425: Algorithms for Web Scale Data CS425: Algorithms for Web Scale Data Most of the slides are from the Mining of Massive Datasets book. These slides have been modified for CS425. The original slides can be accessed at: www.mmds.org J.

More information

Lecture Notes to Big Data Management and Analytics Winter Term 2017/2018 Node Importance and Neighborhoods

Lecture Notes to Big Data Management and Analytics Winter Term 2017/2018 Node Importance and Neighborhoods Lecture Notes to Big Data Management and Analytics Winter Term 2017/2018 Node Importance and Neighborhoods Matthias Schubert, Matthias Renz, Felix Borutta, Evgeniy Faerman, Christian Frey, Klaus Arthur

More information

3 announcements: Thanks for filling out the HW1 poll HW2 is due today 5pm (scans must be readable) HW3 will be posted today

3 announcements: Thanks for filling out the HW1 poll HW2 is due today 5pm (scans must be readable) HW3 will be posted today 3 announcements: Thanks for filling out the HW1 poll HW2 is due today 5pm (scans must be readable) HW3 will be posted today CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu

More information

Web consists of web pages and hyperlinks between pages. A page receiving many links from other pages may be a hint of the authority of the page

Web consists of web pages and hyperlinks between pages. A page receiving many links from other pages may be a hint of the authority of the page Link Analysis Links Web consists of web pages and hyperlinks between pages A page receiving many links from other pages may be a hint of the authority of the page Links are also popular in some other information

More information

Information Networks: PageRank

Information Networks: PageRank Information Networks: PageRank Web Science (VU) (706.716) Elisabeth Lex ISDS, TU Graz June 18, 2018 Elisabeth Lex (ISDS, TU Graz) Links June 18, 2018 1 / 38 Repetition Information Networks Shape of the

More information

Analysis of Large Graphs: TrustRank and WebSpam

Analysis of Large Graphs: TrustRank and WebSpam Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/6/2013 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 High dim. data Graph data Infinite data Machine

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #11: Link Analysis 3 Seoul National University 1 In This Lecture WebSpam: definition and method of attacks TrustRank: how to combat WebSpam HITS algorithm: another algorithm

More information

CS435 Introduction to Big Data FALL 2018 Colorado State University. 9/24/2018 Week 6-A Sangmi Lee Pallickara. Topics. This material is built based on,

CS435 Introduction to Big Data FALL 2018 Colorado State University. 9/24/2018 Week 6-A Sangmi Lee Pallickara. Topics. This material is built based on, FLL 218 olorado State University 9/24/218 Week 6-9/24/218 S435 Introduction to ig ata - FLL 218 W6... PRT 1. LRGE SLE T NLYTIS WE-SLE LINK N SOIL NETWORK NLYSIS omputer Science, olorado State University

More information

CS535 Big Data Fall 2017 Colorado State University 9/5/2017. Week 3 - A. FAQs. This material is built based on,

CS535 Big Data Fall 2017 Colorado State University  9/5/2017. Week 3 - A. FAQs. This material is built based on, S535 ig ata Fall 217 olorado State University 9/5/217 Week 3-9/5/217 S535 ig ata - Fall 217 Week 3--1 S535 IG T FQs Programming ssignment 1 We will discuss link analysis in week3 Installation/configuration

More information

CS345a: Data Mining Jure Leskovec and Anand Rajaraman Stanford University

CS345a: Data Mining Jure Leskovec and Anand Rajaraman Stanford University CS345a: Data Mining Jure Leskovec and Anand Rajaraman Stanford University Instead of generic popularity, can we measure popularity within a topic? E.g., computer science, health Bias the random walk When

More information

Link Analysis in Web Mining

Link Analysis in Web Mining Problem formulation (998) Link Analysis in Web Mining Hubs and Authorities Spam Detection Suppose we are given a collection of documents on some broad topic e.g., stanford, evolution, iraq perhaps obtained

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #10: Link Analysis-2 Seoul National University 1 In This Lecture Pagerank: Google formulation Make the solution to converge Computing Pagerank for very large graphs

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second

More information

Information Retrieval. Lecture 11 - Link analysis

Information Retrieval. Lecture 11 - Link analysis Information Retrieval Lecture 11 - Link analysis Seminar für Sprachwissenschaft International Studies in Computational Linguistics Wintersemester 2007 1/ 35 Introduction Link analysis: using hyperlinks

More information

Jeffrey D. Ullman Stanford University/Infolab

Jeffrey D. Ullman Stanford University/Infolab Jeffrey D. Ullman Stanford University/Infolab Spamming = any deliberate action intended solely to boost a Web page s position in searchengine results. Web Spam = Web pages that are the result of spamming.

More information

Pagerank Scoring. Imagine a browser doing a random walk on web pages:

Pagerank Scoring. Imagine a browser doing a random walk on web pages: Ranking Sec. 21.2 Pagerank Scoring Imagine a browser doing a random walk on web pages: Start at a random page At each step, go out of the current page along one of the links on that page, equiprobably

More information

COMP 4601 Hubs and Authorities

COMP 4601 Hubs and Authorities COMP 4601 Hubs and Authorities 1 Motivation PageRank gives a way to compute the value of a page given its position and connectivity w.r.t. the rest of the Web. Is it the only algorithm: No! It s just one

More information

Link Analysis and Web Search

Link Analysis and Web Search Link Analysis and Web Search Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ based on material by prof. Bing Liu http://www.cs.uic.edu/~liub/webminingbook.html

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Lecture 8: Linkage algorithms and web search

Lecture 8: Linkage algorithms and web search Lecture 8: Linkage algorithms and web search Information Retrieval Computer Science Tripos Part II Ronan Cummins 1 Natural Language and Information Processing (NLIP) Group ronan.cummins@cl.cam.ac.uk 2017

More information

COMP Page Rank

COMP Page Rank COMP 4601 Page Rank 1 Motivation Remember, we were interested in giving back the most relevant documents to a user. Importance is measured by reference as well as content. Think of this like academic paper

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

How to organize the Web?

How to organize the Web? How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second try: Web Search Information Retrieval attempts to find relevant docs in a small and trusted set Newspaper

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu SPAM FARMING 2/11/2013 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 2/11/2013 Jure Leskovec, Stanford

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second

More information

Web search before Google. (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.)

Web search before Google. (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.) ' Sta306b May 11, 2012 $ PageRank: 1 Web search before Google (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.) & % Sta306b May 11, 2012 PageRank: 2 Web search

More information

Information Retrieval Lecture 4: Web Search. Challenges of Web Search 2. Natural Language and Information Processing (NLIP) Group

Information Retrieval Lecture 4: Web Search. Challenges of Web Search 2. Natural Language and Information Processing (NLIP) Group Information Retrieval Lecture 4: Web Search Computer Science Tripos Part II Simone Teufel Natural Language and Information Processing (NLIP) Group sht25@cl.cam.ac.uk (Lecture Notes after Stephen Clark)

More information

Link Structure Analysis

Link Structure Analysis Link Structure Analysis Kira Radinsky All of the following slides are courtesy of Ronny Lempel (Yahoo!) Link Analysis In the Lecture HITS: topic-specific algorithm Assigns each page two scores a hub score

More information

Einführung in Web und Data Science Community Analysis. Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

Einführung in Web und Data Science Community Analysis. Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Einführung in Web und Data Science Community Analysis Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Today s lecture Anchor text Link analysis for ranking Pagerank and variants

More information

Agenda. Math Google PageRank algorithm. 2 Developing a formula for ranking web pages. 3 Interpretation. 4 Computing the score of each page

Agenda. Math Google PageRank algorithm. 2 Developing a formula for ranking web pages. 3 Interpretation. 4 Computing the score of each page Agenda Math 104 1 Google PageRank algorithm 2 Developing a formula for ranking web pages 3 Interpretation 4 Computing the score of each page Google: background Mid nineties: many search engines often times

More information

CS6200 Information Retreival. The WebGraph. July 13, 2015

CS6200 Information Retreival. The WebGraph. July 13, 2015 CS6200 Information Retreival The WebGraph The WebGraph July 13, 2015 1 Web Graph: pages and links The WebGraph describes the directed links between pages of the World Wide Web. A directed edge connects

More information

DATA MINING - 1DL460

DATA MINING - 1DL460 DATA MINING - 1DL460 Spring 2015 A second course in data mining http://www.it.uu.se/edu/course/homepage/infoutv2/vt15 Kjell Orsborn Uppsala Database Laboratory Department of Information Technology, Uppsala

More information

CS47300 Web Information Search and Management

CS47300 Web Information Search and Management CS47300 Web Information Search and Management Search Engine Optimization Prof. Chris Clifton 31 October 2018 What is Search Engine Optimization? 90% of search engine clickthroughs are on the first page

More information

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge Centralities (4) By: Ralucca Gera, NPS Excellence Through Knowledge Some slide from last week that we didn t talk about in class: 2 PageRank algorithm Eigenvector centrality: i s Rank score is the sum

More information

Mathematical Analysis of Google PageRank

Mathematical Analysis of Google PageRank INRIA Sophia Antipolis, France Ranking Answers to User Query Ranking Answers to User Query How a search engine should sort the retrieved answers? Possible solutions: (a) use the frequency of the searched

More information

Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 21 Link analysis

Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 21 Link analysis Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 21 Link analysis Content Anchor text Link analysis for ranking Pagerank and variants HITS The Web as a Directed Graph Page A Anchor

More information

5/30/2014. Acknowledgement. In this segment: Search Engine Architecture. Collecting Text. System Architecture. Web Information Retrieval

5/30/2014. Acknowledgement. In this segment: Search Engine Architecture. Collecting Text. System Architecture. Web Information Retrieval Acknowledgement Web Information Retrieval Textbook by Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze Notes Revised by X. Meng for SEU May 2014 Contents of lectures, projects are extracted

More information

Administrative. Web crawlers. Web Crawlers and Link Analysis!

Administrative. Web crawlers. Web Crawlers and Link Analysis! Web Crawlers and Link Analysis! David Kauchak cs458 Fall 2011 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture15-linkanalysis.ppt http://webcourse.cs.technion.ac.il/236522/spring2007/ho/wcfiles/tutorial05.ppt

More information

Lecture #3: PageRank Algorithm The Mathematics of Google Search

Lecture #3: PageRank Algorithm The Mathematics of Google Search Lecture #3: PageRank Algorithm The Mathematics of Google Search We live in a computer era. Internet is part of our everyday lives and information is only a click away. Just open your favorite search engine,

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 21: Link Analysis Hinrich Schütze Center for Information and Language Processing, University of Munich 2014-06-18 1/80 Overview

More information

TODAY S LECTURE HYPERTEXT AND

TODAY S LECTURE HYPERTEXT AND LINK ANALYSIS TODAY S LECTURE HYPERTEXT AND LINKS We look beyond the content of documents We begin to look at the hyperlinks between them Address questions like Do the links represent a conferral of authority

More information

The PageRank Citation Ranking

The PageRank Citation Ranking October 17, 2012 Main Idea - Page Rank web page is important if it points to by other important web pages. *Note the recursive definition IR - course web page, Brian home page, Emily home page, Steven

More information

Link Analysis. Hongning Wang

Link Analysis. Hongning Wang Link Analysis Hongning Wang CS@UVa Structured v.s. unstructured data Our claim before IR v.s. DB = unstructured data v.s. structured data As a result, we have assumed Document = a sequence of words Query

More information

Social Network Analysis

Social Network Analysis Social Network Analysis Giri Iyengar Cornell University gi43@cornell.edu March 14, 2018 Giri Iyengar (Cornell Tech) Social Network Analysis March 14, 2018 1 / 24 Overview 1 Social Networks 2 HITS 3 Page

More information

Network Centrality. Saptarshi Ghosh Department of CSE, IIT Kharagpur Social Computing course, CS60017

Network Centrality. Saptarshi Ghosh Department of CSE, IIT Kharagpur Social Computing course, CS60017 Network Centrality Saptarshi Ghosh Department of CSE, IIT Kharagpur Social Computing course, CS60017 Node centrality n Relative importance of a node in a network n How influential a person is within a

More information

DATA MINING - 1DL460

DATA MINING - 1DL460 DATA MINING - 1DL460 Spring 2014" A second course in data mining http://www.it.uu.se/edu/course/homepage/infoutv2/vt14 Kjell Orsborn Uppsala Database Laboratory Department of Information Technology, Uppsala

More information

Brief (non-technical) history

Brief (non-technical) history Web Data Management Part 2 Advanced Topics in Database Management (INFSCI 2711) Textbooks: Database System Concepts - 2010 Introduction to Information Retrieval - 2008 Vladimir Zadorozhny, DINS, SCI, University

More information

Graph Algorithms. Revised based on the slides by Ruoming Kent State

Graph Algorithms. Revised based on the slides by Ruoming Kent State Graph Algorithms Adapted from UMD Jimmy Lin s slides, which is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States. See http://creativecommons.org/licenses/by-nc-sa/3.0/us/

More information

1 Starting around 1996, researchers began to work on. 2 In Feb, 1997, Yanhong Li (Scotch Plains, NJ) filed a

1 Starting around 1996, researchers began to work on. 2 In Feb, 1997, Yanhong Li (Scotch Plains, NJ) filed a !"#$ %#& ' Introduction ' Social network analysis ' Co-citation and bibliographic coupling ' PageRank ' HIS ' Summary ()*+,-/*,) Early search engines mainly compare content similarity of the query and

More information

PageRank and related algorithms

PageRank and related algorithms PageRank and related algorithms PageRank and HITS Jacob Kogan Department of Mathematics and Statistics University of Maryland, Baltimore County Baltimore, Maryland 21250 kogan@umbc.edu May 15, 2006 Basic

More information

A STUDY OF RANKING ALGORITHM USED BY VARIOUS SEARCH ENGINE

A STUDY OF RANKING ALGORITHM USED BY VARIOUS SEARCH ENGINE A STUDY OF RANKING ALGORITHM USED BY VARIOUS SEARCH ENGINE Bohar Singh 1, Gursewak Singh 2 1, 2 Computer Science and Application, Govt College Sri Muktsar sahib Abstract The World Wide Web is a popular

More information

Link analysis. Query-independent ordering. Query processing. Spamming simple popularity

Link analysis. Query-independent ordering. Query processing. Spamming simple popularity Today s topic CS347 Link-based ranking in web search engines Lecture 6 April 25, 2001 Prabhakar Raghavan Web idiosyncrasies Distributed authorship Millions of people creating pages with their own style,

More information

CC PROCESAMIENTO MASIVO DE DATOS OTOÑO Lecture 7: Information Retrieval II. Aidan Hogan

CC PROCESAMIENTO MASIVO DE DATOS OTOÑO Lecture 7: Information Retrieval II. Aidan Hogan CC5212-1 PROCESAMIENTO MASIVO DE DATOS OTOÑO 2017 Lecture 7: Information Retrieval II Aidan Hogan aidhog@gmail.com How does Google know about the Web? Inverted Index: Example 1 Fruitvale Station is a 2013

More information

Link Analysis SEEM5680. Taken from Introduction to Information Retrieval by C. Manning, P. Raghavan, and H. Schutze, Cambridge University Press.

Link Analysis SEEM5680. Taken from Introduction to Information Retrieval by C. Manning, P. Raghavan, and H. Schutze, Cambridge University Press. Link Analysis SEEM5680 Taken from Introduction to Information Retrieval by C. Manning, P. Raghavan, and H. Schutze, Cambridge University Press. 1 The Web as a Directed Graph Page A Anchor hyperlink Page

More information

Lec 8: Adaptive Information Retrieval 2

Lec 8: Adaptive Information Retrieval 2 Lec 8: Adaptive Information Retrieval 2 Advaith Siddharthan Introduction to Information Retrieval by Manning, Raghavan & Schütze. Website: http://nlp.stanford.edu/ir-book/ Linear Algebra Revision Vectors:

More information

Recent Researches on Web Page Ranking

Recent Researches on Web Page Ranking Recent Researches on Web Page Pradipta Biswas School of Information Technology Indian Institute of Technology Kharagpur, India Importance of Web Page Internet Surfers generally do not bother to go through

More information

Introduction In to Info Inf rmation o Ret Re r t ie i v e a v l a LINK ANALYSIS 1

Introduction In to Info Inf rmation o Ret Re r t ie i v e a v l a LINK ANALYSIS 1 LINK ANALYSIS 1 Today s lecture hypertext and links We look beyond the content of documents We begin to look at the hyperlinks between them Address questions like Do the links represent a conferral of

More information

Web Structure Mining using Link Analysis Algorithms

Web Structure Mining using Link Analysis Algorithms Web Structure Mining using Link Analysis Algorithms Ronak Jain Aditya Chavan Sindhu Nair Assistant Professor Abstract- The World Wide Web is a huge repository of data which includes audio, text and video.

More information

Link Analysis. CSE 454 Advanced Internet Systems University of Washington. 1/26/12 16:36 1 Copyright D.S.Weld

Link Analysis. CSE 454 Advanced Internet Systems University of Washington. 1/26/12 16:36 1 Copyright D.S.Weld Link Analysis CSE 454 Advanced Internet Systems University of Washington 1/26/12 16:36 1 Ranking Search Results TF / IDF or BM25 Tag Information Title, headers Font Size / Capitalization Anchor Text on

More information

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS Overview of Networks Instructor: Yizhou Sun yzsun@cs.ucla.edu January 10, 2017 Overview of Information Network Analysis Network Representation Network

More information

University of Maryland. Tuesday, March 2, 2010

University of Maryland. Tuesday, March 2, 2010 Data-Intensive Information Processing Applications Session #5 Graph Algorithms Jimmy Lin University of Maryland Tuesday, March 2, 2010 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

Multimedia Content Management: Link Analysis. Ralf Moeller Hamburg Univ. of Technology

Multimedia Content Management: Link Analysis. Ralf Moeller Hamburg Univ. of Technology Multimedia Content Management: Link Analysis Ralf Moeller Hamburg Univ. of Technology Today s lecture Anchor text Link analysis for ranking Pagerank and variants HITS The Web as a Directed Graph Page A

More information

PageRank Algorithm Abstract: Keywords: I. Introduction II. Text Ranking Vs. Page Ranking

PageRank Algorithm Abstract: Keywords: I. Introduction II. Text Ranking Vs. Page Ranking IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 19, Issue 1, Ver. III (Jan.-Feb. 2017), PP 01-07 www.iosrjournals.org PageRank Algorithm Albi Dode 1, Silvester

More information

Page rank computation HPC course project a.y Compute efficient and scalable Pagerank

Page rank computation HPC course project a.y Compute efficient and scalable Pagerank Page rank computation HPC course project a.y. 2012-13 Compute efficient and scalable Pagerank 1 PageRank PageRank is a link analysis algorithm, named after Brin & Page [1], and used by the Google Internet

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 16: Other Link Analysis Paul Ginsparg Cornell University, Ithaca, NY 27 Oct

More information

Lecture 8: Linkage algorithms and web search

Lecture 8: Linkage algorithms and web search Lecture 8: Linkage algorithms and web search Information Retrieval Computer Science Tripos Part II Simone Teufel Natural Language and Information Processing (NLIP) Group Simone.Teufel@cl.cam.ac.uk Lent

More information

Some Interesting Applications of Theory. PageRank Minhashing Locality-Sensitive Hashing

Some Interesting Applications of Theory. PageRank Minhashing Locality-Sensitive Hashing Some Interesting Applications of Theory PageRank Minhashing Locality-Sensitive Hashing 1 PageRank The thing that makes Google work. Intuition: solve the recursive equation: a page is important if important

More information

World Wide Web has specific challenges and opportunities

World Wide Web has specific challenges and opportunities 6. Web Search Motivation Web search, as offered by commercial search engines such as Google, Bing, and DuckDuckGo, is arguably one of the most popular applications of IR methods today World Wide Web has

More information

CSI 445/660 Part 10 (Link Analysis and Web Search)

CSI 445/660 Part 10 (Link Analysis and Web Search) CSI 445/660 Part 10 (Link Analysis and Web Search) Ref: Chapter 14 of [EK] text. 10 1 / 27 Searching the Web Ranking Web Pages Suppose you type UAlbany to Google. The web page for UAlbany is among the

More information

The PageRank Computation in Google, Randomized Algorithms and Consensus of Multi-Agent Systems

The PageRank Computation in Google, Randomized Algorithms and Consensus of Multi-Agent Systems The PageRank Computation in Google, Randomized Algorithms and Consensus of Multi-Agent Systems Roberto Tempo IEIIT-CNR Politecnico di Torino tempo@polito.it This talk The objective of this talk is to discuss

More information

The PageRank Computation in Google, Randomized Algorithms and Consensus of Multi-Agent Systems

The PageRank Computation in Google, Randomized Algorithms and Consensus of Multi-Agent Systems The PageRank Computation in Google, Randomized Algorithms and Consensus of Multi-Agent Systems Roberto Tempo IEIIT-CNR Politecnico di Torino tempo@polito.it This talk The objective of this talk is to discuss

More information

Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture 28: Apr 26, 2012 Scribes: Mauricio Monsalve and Yamini Mule

Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture 28: Apr 26, 2012 Scribes: Mauricio Monsalve and Yamini Mule Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture 28: Apr 26, 2012 Scribes: Mauricio Monsalve and Yamini Mule 1 How big is the Web How big is the Web? In the past, this question

More information

Link Analysis in the Cloud

Link Analysis in the Cloud Cloud Computing Link Analysis in the Cloud Dell Zhang Birkbeck, University of London 2017/18 Graph Problems & Representations What is a Graph? G = (V,E), where V represents the set of vertices (nodes)

More information

Information Retrieval (IR) Introduction to Information Retrieval. Lecture Overview. Why do we need IR? Basics of an IR system.

Information Retrieval (IR) Introduction to Information Retrieval. Lecture Overview. Why do we need IR? Basics of an IR system. Introduction to Information Retrieval Ethan Phelps-Goodman Some slides taken from http://www.cs.utexas.edu/users/mooney/ir-course/ Information Retrieval (IR) The indexing and retrieval of textual documents.

More information

Information Retrieval and Web Search

Information Retrieval and Web Search Information Retrieval and Web Search Link analysis Instructor: Rada Mihalcea (Note: This slide set was adapted from an IR course taught by Prof. Chris Manning at Stanford U.) The Web as a Directed Graph

More information

Exploring both Content and Link Quality for Anti-Spamming

Exploring both Content and Link Quality for Anti-Spamming Exploring both Content and Link Quality for Anti-Spamming Lei Zhang, Yi Zhang, Yan Zhang National Laboratory on Machine Perception Peking University 100871 Beijing, China zhangl, zhangyi, zhy @cis.pku.edu.cn

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu HITS (Hypertext Induced Topic Selection) Is a measure of importance of pages or documents, similar to PageRank

More information

Lecture 27: Learning from relational data

Lecture 27: Learning from relational data Lecture 27: Learning from relational data STATS 202: Data mining and analysis December 2, 2017 1 / 12 Announcements Kaggle deadline is this Thursday (Dec 7) at 4pm. If you haven t already, make a submission

More information

Adaptive methods for the computation of PageRank

Adaptive methods for the computation of PageRank Linear Algebra and its Applications 386 (24) 51 65 www.elsevier.com/locate/laa Adaptive methods for the computation of PageRank Sepandar Kamvar a,, Taher Haveliwala b,genegolub a a Scientific omputing

More information

Link Analysis from Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer and other material.

Link Analysis from Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer and other material. Link Analysis from Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer and other material. 1 Contents Introduction Network properties Social network analysis Co-citation

More information

Graph and Web Mining - Motivation, Applications and Algorithms PROF. EHUD GUDES DEPARTMENT OF COMPUTER SCIENCE BEN-GURION UNIVERSITY, ISRAEL

Graph and Web Mining - Motivation, Applications and Algorithms PROF. EHUD GUDES DEPARTMENT OF COMPUTER SCIENCE BEN-GURION UNIVERSITY, ISRAEL Graph and Web Mining - Motivation, Applications and Algorithms PROF. EHUD GUDES DEPARTMENT OF COMPUTER SCIENCE BEN-GURION UNIVERSITY, ISRAEL Web mining - Outline Introduction Web Content Mining Web usage

More information

Web Spam Detection with Anti-Trust Rank

Web Spam Detection with Anti-Trust Rank Web Spam Detection with Anti-Trust Rank Viay Krishnan Computer Science Department Stanford University Stanford, CA 4305 viayk@cs.stanford.edu Rashmi Ra Computer Science Department Stanford University Stanford,

More information

Proximity Prestige using Incremental Iteration in Page Rank Algorithm

Proximity Prestige using Incremental Iteration in Page Rank Algorithm Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/107962, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Proximity Prestige using Incremental Iteration

More information

Information Retrieval and Web Search Engines

Information Retrieval and Web Search Engines Information Retrieval and Web Search Engines Lecture 12: Link Analysis January 28 th, 2016 Wolf-Tilo Balke and Younes Ghammad Institut für Informationssysteme Technische Universität Braunschweig An Overview

More information

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Week 5: Analyzing Graphs (2/2) February 2, 2017 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo These

More information

COMP5331: Knowledge Discovery and Data Mining

COMP5331: Knowledge Discovery and Data Mining COMP5331: Knowledge Discovery and Data Mining Acknowledgement: Slides modified based on the slides provided by Lawrence Page, Sergey Brin, Rajeev Motwani and Terry Winograd, Jon M. Kleinberg 1 1 PageRank

More information

Searching the Web [Arasu 01]

Searching the Web [Arasu 01] Searching the Web [Arasu 01] Most user simply browse the web Google, Yahoo, Lycos, Ask Others do more specialized searches web search engines submit queries by specifying lists of keywords receive web

More information

Degree Distribution: The case of Citation Networks

Degree Distribution: The case of Citation Networks Network Analysis Degree Distribution: The case of Citation Networks Papers (in almost all fields) refer to works done earlier on same/related topics Citations A network can be defined as Each node is a

More information

Lecture 11: Graph algorithms! Claudia Hauff (Web Information Systems)!

Lecture 11: Graph algorithms! Claudia Hauff (Web Information Systems)! Lecture 11: Graph algorithms!! Claudia Hauff (Web Information Systems)! ti2736b-ewi@tudelft.nl 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind the scenes of MapReduce:

More information

Large-Scale Networks. PageRank. Dr Vincent Gramoli Lecturer School of Information Technologies

Large-Scale Networks. PageRank. Dr Vincent Gramoli Lecturer School of Information Technologies Large-Scale Networks PageRank Dr Vincent Gramoli Lecturer School of Information Technologies Introduction Last week we talked about: - Hubs whose scores depend on the authority of the nodes they point

More information