1300 scree

Size: px
Start display at page:

Download "1300 scree"

Transcription

1 Determining the Number of Dimensions Underlying Customer-choices with a Competitive Neural Network Michiel C. van Wezel 1, Joost N. Kok 2, Kaisa Sere 3 1 Centre for Mathematics and Computer Science (CWI) P.O. Box 94079, 1090 GB Amsterdam, The Netherlands Phone: , Fax : michiel@cwi.nl 2 Leiden University, dept. of Mathematics and Computer Science P.O. Box 9512, 2 RA Leiden, The Netherlands 3 University of Kuopio, Department of Computer Science and Applied Mathematics P.O.Box 1627, FIN Kuopio, Finland ABSTRACT More and more data about consumer-behaviour is becoming available through the use of database systems and electronic-banking systems. In this paper we describe a NN-based technique to extract some useful information from a database holding data about customers of an insurance-company. Using this NN, we try to learn more about the needs and wishes that lead consumers towards specic behaviour, so that better service can be provided in the future. We formulate a more formal version of this problem, describe the NN used, and show results on articial and real data. 1. Intruction Thanks to computer systems, over the last decade there has been an enormous growth in the amount of data becoming available to analysts, managers, marketeers etc., describing consumer behaviour. It is obvious that these data contains potentially very valuable information, which could lead to interesting insights. In this paper we examine the application of a Neural Network based technique to extracting valuable information from a database holding data on customers from a big insurance company. The aim of the research presented here, was to develop a meth to determine the number of underlying stimuli inuencing the customers of the insurance company. The structure of the remainder of this paper is as follows: in section (2) a more accurate description of the problem is presented. In section (3) we discuss the NN used to solve the problem. In section (4) we show the results of our meth on articially generated data, and in section (5) we show the results on `real life' data. Finally, in section (6) we make some conclusions and point out some possible directions for further research. 2. Problem Description and Error Function The insurance company in question oers various categories of pructs to its customers, e.g. life insurances, car insurances, health insurances, travel insurances, etc. Within each category, a client has dierent alternatives to choose from. For example, someone with a health insurance can choose to have a dentist insurance included, a world-wide coverage of medical costs, an `own risk' of a certain amount of money, etc. Now, we ask ourselves the question if there are any `underlying' factors (or dimensions) that inuence the insurant in his decisions for taking (or not taking) a specic set of alternatives. Marketing literature

2 suggests that such underlying dimensions indeed exist ([4]). In the example of a health insurance, two important dimensions might be the price of the insurance and the quality of the medical care the insurant is entitled to. Somewhat more formally, we can formulate the following mel, describing the clients, the pruct categories, and the alternatives within each category. Mel Set of customers K = fk 1 ; : : : ; K n g. { A k-dimensional pattern v i = (v ij1 ; : : : ; v ijk ), expressing the demands/wishes needs of each customer, is associated with each customer i. Set of pruct categories S = fs 1 ; : : : ; S m g. { Within each pruct category S j in S, a number of alternatives is available. These alternatives are denoted O j1 ; : : : ; O jsj, where s j denotes the number of possible alternatives for pruct category S j. Each alternative O ab has an associated k-dimensional vector v Oab = (v Oabj1; : : : ; v Oabjk), expressing the value of alternative O ab on dimensions v 1 ; : : : ; v k. A client K chooses one alternative from each pruct category, namely the alternative O ji for which d(v Oji ; v K ) is minimal. Here, d(a; B) denotes the (Euclidean) distance between A and B. Now, we can formulate the problem to be solved in terms of this mel. Problem Suppose n clients have generated n m-dimensional vectors a i = (a ij1 ; : : : ; a ijm ), where m is the number of pruct categories, 1 i n and 1 a i jj s j for. A vector a i es no more than `indexing' the alternatives client i has chosen from the various pruct categories. The task is to nd the number of underlying dimensions k and estimates v 0 i = (v 0 i1 ; : : : ; v0 ik ) for the vectors v i = (v i1 ; : : : ; v ik ) (for all clients and alternatives) such that a suitable error-measure E(vi) 0 is acceptably low. The choice for E(v 0 i ) is relatively simple: we take it to be the number of erroneous alternatives chosen if the estimated v-coordinates for the customers and the alternatives are used to generate estimates (a 0 1 ; : : : ; m) for the vectors (a a0 1 ; : : : ; a m ), so E = X k2kx f(o k;s ; o k;s); (1) s2s where o k;s is the choice client k has made at pruct category s in reality, and o k;s is the choice client k has made at pruct category s according to our estimate. The function f is dened as follows: f(x 1 ; x 2 ) = 0 () x1 = x 2 1 () x 1 6= x 2 ; (2) Unfortunately, (1) is not dierentiable, so we cannot minimise it by applying gradient meths. 3. The Competitive Neural Network The neural network we used was inspired by simple competitive neural networks (see e.g. [2, 3]). Every customer and every alternative in our system was represented in this network by a competitive unit. The weight-vectors of the units corresponded with the v-coordinates of the customers and pruct-alternatives. The aim of the learning process was to nd values for the weight vectors such that error function (1) was minimised. In the beginning of the training process all weight vectors were initiated with ranm values in the interval [0,1]. Next, the training went on as follows.

3 In each iteration, all patterns (clients) in the database were presented to the network once, in a ranm order. Remember that one pattern in our database was no more than an integer vector a i = (a i j1; : : : ; a i jm) of which the components represent the choices the customer at hand (customer i) has made. The weight vectors of the units representing the choices were now pulled towards the weight vector of the unit representing customer i, and vice versa. This way, we hoped to increase the probability that the units representing the alternatives that customer i has chosen, are the closest units within each pruct-category in the next iteration. The parallel with a simple competitive neural network should be clear. In a simple competitive neural network the weight vectors of the units are pulled towards the input vectors. This way a voronoi tessellation of the input space is created. In our case, we know in advance that the alternatives within one set divide the input space up in a voronoi tessellation. We also know which client should lie in which voronoi cell for every pruct-category in the choice process. By means of the `competitive learning' algorithm, we move the positions of the clients and the alternatives around, and we hope to reach a state where most of the clients lie in the correct voronoi-cell for most of the pruct-categories in the choice-process. Unfortunately, there is a problem associated with this learning-scheme. If we start with ranm initial weights, the average direction of the weight updates will be inward. This will cause the neural network to imple. We can prevent this by re-normalising the weight vectors after each iteration. There is another potential pitfall for our system. Typically, we have data on several thousands of customers, but there are only a few pruct-category, with a few alternatives within them. This causes the alternative-coordinates to be updated many Much more frequent than the client coordinates. This problem can be solved by updating the weight vectors of the units representing the alternatives by a much smaller amount than the weight vectors of the units representing the customers. The basic algorithm is given in pseu-ce in gure (1). 1. for all clients and alternatives create units and initialise weights to ranm values 2. if is a `basic learning rate', calculate the appropriate learning rate for every unit by: - dividing by the number of pruct-categories for the clients - multiplying with teh number of alternatives in the option for every option, and dividing it by the number of clients afterwards 3. for cycle = 0 to number of cycles for client = 0 to number of clients - nd a client c not used in this cycle yet - for pruct = 1 to number of pructs calculate error normalize weight vectors 4. dump the weight vectors pull weight vectors client c and alternative client has chosen from for pruct together Fig. 1: Algorithm in pseu ce Determining the Number of Dimensions We can use the NN for nding estimates v 0 for the vectors with v-coordinates given the dimensionality D of those estimates, but we not know yet how to determine the appropriate number of underlying dimensions.

4 This problem can be solved by making a `t vs. number of dimensions'-plot. As t measure for this plot, we use (1). Now, we can construct a graph by running the NN with say, dimensionality D = 1; : : : ; N + 5, where N is a guess about the true number of underlying dimensions. This t vs. number of dimensions'-plot will show an elbow at the right number of dimensions. An example of a `t vs. number of dimensions'-plot clearly showing an elbow is given in gure (2). A very similar procedure for obtaining the number of underlying dimensions is often used in Multidimensional Scaling (MDS) (see e.g. [1]) and Principal Component Analysis (PCA) (see e.g. [5]). In the context of the latter technique, the `t vs. number of dimensions'-plot is often called `scree plot'. 1 scree Fig. 2: A `t vs. number of dimensions'-plot showing a clear elbow at four dimensions. 4. Results on Articial Data. In this section we present the results of our NN on articial data. For each experiment we generated ranm v-coordinates representing the demands of the n customers, and ranm v-coordinates representing the vectors v belonging to the various alternatives in one pruct category. Next, we generated the vectors a 1 ; : : : ; a n, which is now possible because the v-coordinates for both customers and pructs are known. The task was to nd the dimensionality of the vectors with the v-coordinates using only the vectors a 1 ; : : : ; a n. Thereto, `t vs. number of dimensions' plots were created using the NN. In total, we performed experiments on eight datasets this way, whereby the underlying number of dimensions was varied from two to ve. Four out of the eight datasets had ten pructs, and ten alternatives per pruct. The remaining four datasets had fteen pructs, and ve alternatives per pruct. The number of customers war set to 150 in all datasets. In gures (3) and (4) the resulting plots of t vs. number of dimensions are shown. Elbows are clearly visible for each problem instance. 850 scree scree scree scree Fig. 3: `t vs. number of dimensions'-plots for the datasets with 10 pructs and 10 alternatives per pruct.

5 1 1 1 scree scree scree scree Fig. 4: `t vs. number of dimensions'-plots for the datasets with 15 pructs and 5 alternatives per pruct. 5. Results on Real Data After a positive result was obtained with the articial data, we went on to the real data. From each original dataset available to us, we selected only the customers with all the elements of the a vectors specied. This left us with ca. 150 customers per dataset, approximately the same as with the articial data. The t vs. dimensionality plots resulting from these experiments are shown in gure (5). On rst look, it seems that the results of these experiments are not as go as the results with the articial data. This is probably due to the erroneous assumption that a customer always chooses the alternative within one pruct category, for which the v-coordinates are closest to his own v-coordinates. It is very probable that a lot of customers make their choices on a more ad hoc basis, thus intrucing noise in the data. Luckily, we can still see an elbow in many of the plots. Note that after the elbow, the error es not remain as constant as with the articial data. This is probably because the more dimensions we add, the easier it gets to mel the noise in the data, and thus the lower the error we obtain gets /runs_verlag_klein/scree_file.1../runs_verlag_klein2/scree_file.23../runs_verlag_klein2/scree_file.34../runs_verlag_klein2/scree_file.43../runs_verlag_klein/scree_file Fig. 5: `t vs. number of dimensions'-plots for the ve real datasets. 6. Conclusions & Further Research Looking back at the experiments we performed on both the articial and the real life data, we can conclude that we have succeeded in developing a meth for determining the number of underlying dimensions inuencing consumer behaviour. We have constructed a valuable `data-mining tool', with which we can see whether there are underlying dimensions in choice processes, and if so, how many. This was ne by a novell competitive neural network. Care had to be taken that the network did not imple, and thus arrived at a useless solution. Although the results on the real data are not as go as the results on the articial data, our NN is still able to nd a conguration with a low error. There are a number of interesting directions for further research in this eld. First of all, it may be useful to examine the `toughness' of the problem (i.e. can we prove that the problem is N P-complete?). Second, the current meth is based on intuition. We have not given an associated error function on which our network performs a gradient descent. It would be interesting to develop a continues-dierentiable error function, and derive a learning rule from it. Finally, it would be interesting to analyse other datasets with our meth. It is not impossible that data coming from other branches is less noisy, and thus leads to better results.

6 References [1] Mark L. Davidson Multidimensional Scaling, Wiley Series in Probability and Mathematical Statistics, Wiley, [2] Haykin, S. Neural Networks: a Comprehensive Foundation. New York, MacMillan College Publishing Company, [3] Hertz, J.A., A.S. Krogh & R.G. Palmer. Intruction to the theory of neural computation. Addison- Wesley, [4] Kotler, Philip. Marketing Management - Analysis, Planning, Implementation and Control 8th edition, Prentice Hall, [5] Krzanowski, W.J. Principles of Mulitvariate Analysis, Oxford Statistical Science Series, New York: Orford University Press, 1988.

OBJECT-CENTERED INTERACTIVE MULTI-DIMENSIONAL SCALING: ASK THE EXPERT

OBJECT-CENTERED INTERACTIVE MULTI-DIMENSIONAL SCALING: ASK THE EXPERT OBJECT-CENTERED INTERACTIVE MULTI-DIMENSIONAL SCALING: ASK THE EXPERT Joost Broekens Tim Cocx Walter A. Kosters Leiden Institute of Advanced Computer Science Leiden University, The Netherlands Email: {broekens,

More information

2 The MiníMax Principle First consider a simple problem. This problem will address the tradeos involved in a two-objective optimiation problem, where

2 The MiníMax Principle First consider a simple problem. This problem will address the tradeos involved in a two-objective optimiation problem, where Determining the Optimal Weights in Multiple Objective Function Optimiation Michael A. Gennert Alan L. Yuille Department of Computer Science Division of Applied Sciences Worcester Polytechnic Institute

More information

MS&E 213 / CS 269O : Chapter 1 Introduction to Introduction to Optimization Theory

MS&E 213 / CS 269O : Chapter 1 Introduction to Introduction to Optimization Theory MS&E 213 / CS 269O : Chapter 1 Introduction to Introduction to Optimization Theory By Aaron Sidford (sidford@stanford.edu) April 29, 2017 1 What is this course about? The central problem we consider throughout

More information

Exploiting the Scale-free Structure of the WWW

Exploiting the Scale-free Structure of the WWW Exploiting the Scale-free Structure of the WWW Niina Päivinen Department of Computer Science, University of Kuopio P.O. Box 1627, FIN-70211 Kuopio, Finland email niina.paivinen@cs.uku.fi tel. +358-17-16

More information

Lower Bounds for Insertion Methods for TSP. Yossi Azar. Abstract. optimal tour. The lower bound holds even in the Euclidean Plane.

Lower Bounds for Insertion Methods for TSP. Yossi Azar. Abstract. optimal tour. The lower bound holds even in the Euclidean Plane. Lower Bounds for Insertion Methods for TSP Yossi Azar Abstract We show that the random insertion method for the traveling salesman problem (TSP) may produce a tour (log log n= log log log n) times longer

More information

2 ATTILA FAZEKAS The tracking model of the robot car The schematic picture of the robot car can be seen on Fig.1. Figure 1. The main controlling task

2 ATTILA FAZEKAS The tracking model of the robot car The schematic picture of the robot car can be seen on Fig.1. Figure 1. The main controlling task NEW OPTICAL TRACKING METHODS FOR ROBOT CARS Attila Fazekas Debrecen Abstract. In this paper new methods are proposed for intelligent optical tracking of robot cars the important tools of CIM (Computer

More information

Lecture 10: Introduction to Correctness

Lecture 10: Introduction to Correctness Lecture 10: Introduction to Correctness Aims: To look at the different types of errors that programs can contain; To look at how we might detect each of these errors; To look at the difficulty of detecting

More information

Transactions on Information and Communications Technologies vol 19, 1997 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 19, 1997 WIT Press,  ISSN Gap Repair in Water Level Measurement Data Using Neural Networks P. van der Veer, J. Cser, O. Schleider & E. Kerckhoffs Delft University of Technology, Faculties of Civil Engineering and Informatics, Postbus

More information

Statistical Methods in AI

Statistical Methods in AI Statistical Methods in AI Distance Based and Linear Classifiers Shrenik Lad, 200901097 INTRODUCTION : The aim of the project was to understand different types of classification algorithms by implementing

More information

3.1. Solution for white Gaussian noise

3.1. Solution for white Gaussian noise Low complexity M-hypotheses detection: M vectors case Mohammed Nae and Ahmed H. Tewk Dept. of Electrical Engineering University of Minnesota, Minneapolis, MN 55455 mnae,tewk@ece.umn.edu Abstract Low complexity

More information

Object Identification in Dynamic Environments

Object Identification in Dynamic Environments Object Identication in Dynamic Environments Andrew Chou, Elliott Jin, Wy Mu December, Intruction The overall problem our project tackles is to have a robot be able to recognize objects that have been intruced

More information

Adaptive Estimation of Distributions using Exponential Sub-Families Alan Gous Stanford University December 1996 Abstract: An algorithm is presented wh

Adaptive Estimation of Distributions using Exponential Sub-Families Alan Gous Stanford University December 1996 Abstract: An algorithm is presented wh Adaptive Estimation of Distributions using Exponential Sub-Families Alan Gous Stanford University December 1996 Abstract: An algorithm is presented which, for a large-dimensional exponential family G,

More information

2 J. Karvo et al. / Blocking of dynamic multicast connections Figure 1. Point to point (top) vs. point to multipoint, or multicast connections (bottom

2 J. Karvo et al. / Blocking of dynamic multicast connections Figure 1. Point to point (top) vs. point to multipoint, or multicast connections (bottom Telecommunication Systems 0 (1998)?? 1 Blocking of dynamic multicast connections Jouni Karvo a;, Jorma Virtamo b, Samuli Aalto b and Olli Martikainen a a Helsinki University of Technology, Laboratory of

More information

COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS

COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS Toomas Kirt Supervisor: Leo Võhandu Tallinn Technical University Toomas.Kirt@mail.ee Abstract: Key words: For the visualisation

More information

Networks for Control. California Institute of Technology. Pasadena, CA Abstract

Networks for Control. California Institute of Technology. Pasadena, CA Abstract Learning Fuzzy Rule-Based Neural Networks for Control Charles M. Higgins and Rodney M. Goodman Department of Electrical Engineering, 116-81 California Institute of Technology Pasadena, CA 91125 Abstract

More information

Figure 1: An Area Voronoi Diagram of a typical GIS Scene generated from the ISPRS Working group III/3 Avenches data set. 2 ARRANGEMENTS 2.1 Voronoi Di

Figure 1: An Area Voronoi Diagram of a typical GIS Scene generated from the ISPRS Working group III/3 Avenches data set. 2 ARRANGEMENTS 2.1 Voronoi Di Qualitative Spatial Relations using Arrangements for Complex Images M. Burge and W. Burger Johannes Kepler University, Department of Systems Science Computer Vision Laboratory, A-4040 Linz, Austria burge@cast.uni-linz.ac.at

More information

Lab 2: Support Vector Machines

Lab 2: Support Vector Machines Articial neural networks, advanced course, 2D1433 Lab 2: Support Vector Machines March 13, 2007 1 Background Support vector machines, when used for classication, nd a hyperplane w, x + b = 0 that separates

More information

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanfordedu) February 6, 2018 Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1 In the

More information

The only known methods for solving this problem optimally are enumerative in nature, with branch-and-bound being the most ecient. However, such algori

The only known methods for solving this problem optimally are enumerative in nature, with branch-and-bound being the most ecient. However, such algori Use of K-Near Optimal Solutions to Improve Data Association in Multi-frame Processing Aubrey B. Poore a and in Yan a a Department of Mathematics, Colorado State University, Fort Collins, CO, USA ABSTRACT

More information

Comparing Self-Organizing Maps Samuel Kaski and Krista Lagus Helsinki University of Technology Neural Networks Research Centre Rakentajanaukio 2C, FIN

Comparing Self-Organizing Maps Samuel Kaski and Krista Lagus Helsinki University of Technology Neural Networks Research Centre Rakentajanaukio 2C, FIN Kaski, S. and Lagus, K. (1996) Comparing Self-Organizing Maps. In C. von der Malsburg, W. von Seelen, J. C. Vorbruggen, and B. Sendho (Eds.) Proceedings of ICANN96, International Conference on Articial

More information

m Environment Output Activation 0.8 Output Activation Input Value

m Environment Output Activation 0.8 Output Activation Input Value Learning Sensory-Motor Cortical Mappings Without Training Mike Spratling Gillian Hayes Department of Articial Intelligence University of Edinburgh mikes@dai.ed.ac.uk gmh@dai.ed.ac.uk Abstract. This paper

More information

Material from Recitation 1

Material from Recitation 1 Material from Recitation 1 Darcey Riley Frank Ferraro January 18, 2011 1 Introduction In CSC 280 we will be formalizing computation, i.e. we will be creating precise mathematical models for describing

More information

Matrices. Chapter Matrix A Mathematical Definition Matrix Dimensions and Notation

Matrices. Chapter Matrix A Mathematical Definition Matrix Dimensions and Notation Chapter 7 Introduction to Matrices This chapter introduces the theory and application of matrices. It is divided into two main sections. Section 7.1 discusses some of the basic properties and operations

More information

Dept. of Computer Science. The eld of time series analysis and forecasting methods has signicantly changed in the last

Dept. of Computer Science. The eld of time series analysis and forecasting methods has signicantly changed in the last Model Identication and Parameter Estimation of ARMA Models by Means of Evolutionary Algorithms Susanne Rolf Dept. of Statistics University of Dortmund Germany Joachim Sprave y Dept. of Computer Science

More information

A Neural Network Model Of Insurance Customer Ratings

A Neural Network Model Of Insurance Customer Ratings A Neural Network Model Of Insurance Customer Ratings Jan Jantzen 1 Abstract Given a set of data on customers the engineering problem in this study is to model the data and classify customers

More information

Performance Measures for Multi-Graded Relevance

Performance Measures for Multi-Graded Relevance Performance Measures for Multi-Graded Relevance Christian Scheel, Andreas Lommatzsch, and Sahin Albayrak Technische Universität Berlin, DAI-Labor, Germany {christian.scheel,andreas.lommatzsch,sahin.albayrak}@dai-labor.de

More information

Excerpt from "Art of Problem Solving Volume 1: the Basics" 2014 AoPS Inc.

Excerpt from Art of Problem Solving Volume 1: the Basics 2014 AoPS Inc. Chapter 5 Using the Integers In spite of their being a rather restricted class of numbers, the integers have a lot of interesting properties and uses. Math which involves the properties of integers is

More information

Using Local Trajectory Optimizers To Speed Up Global. Christopher G. Atkeson. Department of Brain and Cognitive Sciences and

Using Local Trajectory Optimizers To Speed Up Global. Christopher G. Atkeson. Department of Brain and Cognitive Sciences and Using Local Trajectory Optimizers To Speed Up Global Optimization In Dynamic Programming Christopher G. Atkeson Department of Brain and Cognitive Sciences and the Articial Intelligence Laboratory Massachusetts

More information

Server 1 Server 2 CPU. mem I/O. allocate rec n read elem. n*47.0. n*20.0. select. n*1.0. write elem. n*26.5 send. n*

Server 1 Server 2 CPU. mem I/O. allocate rec n read elem. n*47.0. n*20.0. select. n*1.0. write elem. n*26.5 send. n* Information Needs in Performance Analysis of Telecommunication Software a Case Study Vesa Hirvisalo Esko Nuutila Helsinki University of Technology Laboratory of Information Processing Science Otakaari

More information

336 THE STATISTICAL SOFTWARE NEWSLETTER where z is one (randomly taken) pole of the simplex S, g the centroid of the remaining d poles of the simplex

336 THE STATISTICAL SOFTWARE NEWSLETTER where z is one (randomly taken) pole of the simplex S, g the centroid of the remaining d poles of the simplex THE STATISTICAL SOFTWARE NEWSLETTER 335 Simple Evolutionary Heuristics for Global Optimization Josef Tvrdk and Ivan Krivy University of Ostrava, Brafova 7, 701 03 Ostrava, Czech Republic Phone: +420.69.6160

More information

UNSTRUCTURED GRIDS ON NURBS SURFACES. The surface grid can be generated either in a parameter. surfaces. Generating grids in a parameter space is

UNSTRUCTURED GRIDS ON NURBS SURFACES. The surface grid can be generated either in a parameter. surfaces. Generating grids in a parameter space is UNSTRUCTURED GRIDS ON NURBS SURFACES Jamshid Samareh-Abolhassani 1 Abstract A simple and ecient computational method is presented for unstructured surface grid generation. This method is built upon an

More information

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time Today Lecture 4: We examine clustering in a little more detail; we went over it a somewhat quickly last time The CAD data will return and give us an opportunity to work with curves (!) We then examine

More information

Algebra of Sets. Aditya Ghosh. April 6, 2018 It is recommended that while reading it, sit with a pen and a paper.

Algebra of Sets. Aditya Ghosh. April 6, 2018 It is recommended that while reading it, sit with a pen and a paper. Algebra of Sets Aditya Ghosh April 6, 2018 It is recommended that while reading it, sit with a pen and a paper. 1 The Basics This article is only about the algebra of sets, and does not deal with the foundations

More information

The problem of minimizing the elimination tree height for general graphs is N P-hard. However, there exist classes of graphs for which the problem can

The problem of minimizing the elimination tree height for general graphs is N P-hard. However, there exist classes of graphs for which the problem can A Simple Cubic Algorithm for Computing Minimum Height Elimination Trees for Interval Graphs Bengt Aspvall, Pinar Heggernes, Jan Arne Telle Department of Informatics, University of Bergen N{5020 Bergen,

More information

to be known. Let i be the leg lengths (the distance between A i and B i ), X a 6-dimensional vector dening the pose of the end-eector: the three rst c

to be known. Let i be the leg lengths (the distance between A i and B i ), X a 6-dimensional vector dening the pose of the end-eector: the three rst c A formal-numerical approach to determine the presence of singularity within the workspace of a parallel robot J-P. Merlet INRIA Sophia-Antipolis France Abstract: Determining if there is a singularity within

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without a teacher No targets for the outputs Networks which discover patterns, correlations, etc. in the input data This is a self organisation Self organising networks An

More information

V 1. volume. time. t 1

V 1. volume. time. t 1 On-line Trac Contract Renegotiation for Aggregated Trac R. Andreassen and M. Stoer a a Telenor AS, P.O.Box 83, 2007 Kjeller, Norway. Email: fragnar.andreassen, mechthild.stoerg@fou.telenor.no Consider

More information

CS2 Algorithms and Data Structures Note 1

CS2 Algorithms and Data Structures Note 1 CS2 Algorithms and Data Structures Note 1 Analysing Algorithms This thread of the course is concerned with the design and analysis of good algorithms and data structures. Intuitively speaking, an algorithm

More information

the number of states must be set in advance, i.e. the structure of the model is not t to the data, but given a priori the algorithm converges to a loc

the number of states must be set in advance, i.e. the structure of the model is not t to the data, but given a priori the algorithm converges to a loc Clustering Time Series with Hidden Markov Models and Dynamic Time Warping Tim Oates, Laura Firoiu and Paul R. Cohen Computer Science Department, LGRC University of Massachusetts, Box 34610 Amherst, MA

More information

Gaussian and Exponential Architectures in Small-World Associative Memories

Gaussian and Exponential Architectures in Small-World Associative Memories and Architectures in Small-World Associative Memories Lee Calcraft, Rod Adams and Neil Davey School of Computer Science, University of Hertfordshire College Lane, Hatfield, Herts AL1 9AB, U.K. {L.Calcraft,

More information

Fuzzy-Kernel Learning Vector Quantization

Fuzzy-Kernel Learning Vector Quantization Fuzzy-Kernel Learning Vector Quantization Daoqiang Zhang 1, Songcan Chen 1 and Zhi-Hua Zhou 2 1 Department of Computer Science and Engineering Nanjing University of Aeronautics and Astronautics Nanjing

More information

Exercise 2: Hopeld Networks

Exercise 2: Hopeld Networks Articiella neuronnät och andra lärande system, 2D1432, 2004 Exercise 2: Hopeld Networks [Last examination date: Friday 2004-02-13] 1 Objectives This exercise is about recurrent networks, especially the

More information

t 1 y(x;w) x 2 t 2 t 3 x 1

t 1 y(x;w) x 2 t 2 t 3 x 1 Neural Computing Research Group Dept of Computer Science & Applied Mathematics Aston University Birmingham B4 7ET United Kingdom Tel: +44 (0)121 333 4631 Fax: +44 (0)121 333 4586 http://www.ncrg.aston.ac.uk/

More information

FACE RECOGNITION USING FUZZY NEURAL NETWORK

FACE RECOGNITION USING FUZZY NEURAL NETWORK FACE RECOGNITION USING FUZZY NEURAL NETWORK TADI.CHANDRASEKHAR Research Scholar, Dept. of ECE, GITAM University, Vishakapatnam, AndraPradesh Assoc. Prof., Dept. of. ECE, GIET Engineering College, Vishakapatnam,

More information

Introduction to and calibration of a conceptual LUTI model based on neural networks

Introduction to and calibration of a conceptual LUTI model based on neural networks Urban Transport 591 Introduction to and calibration of a conceptual LUTI model based on neural networks F. Tillema & M. F. A. M. van Maarseveen Centre for transport studies, Civil Engineering, University

More information

Probabilistic (Randomized) algorithms

Probabilistic (Randomized) algorithms Probabilistic (Randomized) algorithms Idea: Build algorithms using a random element so as gain improved performance. For some cases, improved performance is very dramatic, moving from intractable to tractable.

More information

Contrained K-Means Clustering 1 1 Introduction The K-Means clustering algorithm [5] has become a workhorse for the data analyst in many diverse elds.

Contrained K-Means Clustering 1 1 Introduction The K-Means clustering algorithm [5] has become a workhorse for the data analyst in many diverse elds. Constrained K-Means Clustering P. S. Bradley K. P. Bennett A. Demiriz Microsoft Research Dept. of Mathematical Sciences One Microsoft Way Dept. of Decision Sciences and Eng. Sys. Redmond, WA 98052 Renselaer

More information

Lecture 3: Linear Classification

Lecture 3: Linear Classification Lecture 3: Linear Classification Roger Grosse 1 Introduction Last week, we saw an example of a learning task called regression. There, the goal was to predict a scalar-valued target from a set of features.

More information

The Service-Time Restricted Capacitated Arc Routing Problem

The Service-Time Restricted Capacitated Arc Routing Problem The Service-Time Restricted Capacitated Arc Routing Problem Lise Lystlund Aarhus University Århus, Denmark Sanne Wøhlk CORAL - Centre of OR Applications in Logistics, Aarhus School of Business, Aarhus

More information

to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics

to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics An Application of Lagrangian Relaxation to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics M lardalen University SE-721

More information

Two Image-Template Operations for Binary Image Processing. Hongchi Shi. Department of Computer Engineering and Computer Science

Two Image-Template Operations for Binary Image Processing. Hongchi Shi. Department of Computer Engineering and Computer Science Two Image-Template Operations for Binary Image Processing Hongchi Shi Department of Computer Engineering and Computer Science Engineering Building West, Room 331 University of Missouri - Columbia Columbia,

More information

A greedy, partially optimal proof of the Heine-Borel Theorem

A greedy, partially optimal proof of the Heine-Borel Theorem A greedy, partially optimal proof of the Heine-Borel Theorem James Fennell September 28, 2017 Abstract The Heine-Borel theorem states that any open cover of the closed interval Œa; b contains a finite

More information

Using Templates to Introduce Time Efficiency Analysis in an Algorithms Course

Using Templates to Introduce Time Efficiency Analysis in an Algorithms Course Using Templates to Introduce Time Efficiency Analysis in an Algorithms Course Irena Pevac Department of Computer Science Central Connecticut State University, New Britain, CT, USA Abstract: We propose

More information

QSOLVE : AN OBJECT-ORIENTED SOFTWARE TOOL FOR TEACHING QUEUEING THEORY

QSOLVE : AN OBJECT-ORIENTED SOFTWARE TOOL FOR TEACHING QUEUEING THEORY QSOLVE : AN OBJECT-ORIENTED SOFTWARE TOOL FOR TEACHING QUEUEING THEORY Fernando C. Castaño Mariño e Paulo R. L. Gondim System Engineering Department - Instituto Militar de Engenharia - IME (Rio de Janeiro

More information

Telecommunication and Informatics University of North Carolina, Technical University of Gdansk Charlotte, NC 28223, USA

Telecommunication and Informatics University of North Carolina, Technical University of Gdansk Charlotte, NC 28223, USA A Decoder-based Evolutionary Algorithm for Constrained Parameter Optimization Problems S lawomir Kozie l 1 and Zbigniew Michalewicz 2 1 Department of Electronics, 2 Department of Computer Science, Telecommunication

More information

A B. A: sigmoid B: EBA (x0=0.03) C: EBA (x0=0.05) U

A B. A: sigmoid B: EBA (x0=0.03) C: EBA (x0=0.05) U Extending the Power and Capacity of Constraint Satisfaction Networks nchuan Zeng and Tony R. Martinez Computer Science Department, Brigham Young University, Provo, Utah 8460 Email: zengx@axon.cs.byu.edu,

More information

Advances in Neural Information Processing Systems, 1999, In press. Unsupervised Classication with Non-Gaussian Mixture Models using ICA Te-Won Lee, Mi

Advances in Neural Information Processing Systems, 1999, In press. Unsupervised Classication with Non-Gaussian Mixture Models using ICA Te-Won Lee, Mi Advances in Neural Information Processing Systems, 1999, In press. Unsupervised Classication with Non-Gaussian Mixture Models using ICA Te-Won Lee, Michael S. Lewicki and Terrence Sejnowski Howard Hughes

More information

Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method

Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method 11 Appendix C: Steepest Descent / Gradient Search Method In the module on Problem Discretization

More information

3 Nonlinear Regression

3 Nonlinear Regression CSC 4 / CSC D / CSC C 3 Sometimes linear models are not sufficient to capture the real-world phenomena, and thus nonlinear models are necessary. In regression, all such models will have the same basic

More information

An Assertion-Guided Derivation of a Circle Drawing Algorithm

An Assertion-Guided Derivation of a Circle Drawing Algorithm An Assertion-Guided Derivation of a Circle Drawing Algorithm Derrick G. Kourie and Bruce W. Watson Department of Computer Science, University of Pretoria Pretoria 0002, South Africa dkourie@cs.up.ac.za

More information

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers Contents STRAND B: Number Theory Unit 7 Number System and Bases Student Text Contents Section 7. Number System 7.2 Binary Numbers 7.3 Adding and Subtracting Binary Numbers 7.4 Multiplying Binary Numbers

More information

Rowena Cole and Luigi Barone. Department of Computer Science, The University of Western Australia, Western Australia, 6907

Rowena Cole and Luigi Barone. Department of Computer Science, The University of Western Australia, Western Australia, 6907 The Game of Clustering Rowena Cole and Luigi Barone Department of Computer Science, The University of Western Australia, Western Australia, 697 frowena, luigig@cs.uwa.edu.au Abstract Clustering is a technique

More information

On the online unit clustering problem

On the online unit clustering problem On the online unit clustering problem Leah Epstein Rob van Stee June 17, 2008 Abstract We continue the study of the online unit clustering problem, introduced by Chan and Zarrabi-Zadeh (Workshop on Approximation

More information

Connexions module: m Linear Equations. Rupinder Sekhon

Connexions module: m Linear Equations. Rupinder Sekhon Connexions module: m18901 1 Linear Equations Rupinder Sekhon This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License 3.0 Abstract This chapter covers

More information

2.3 Algorithms Using Map-Reduce

2.3 Algorithms Using Map-Reduce 28 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK one becomes available. The Master must also inform each Reduce task that the location of its input from that Map task has changed. Dealing with a failure

More information

- self-loop - parallel edges

- self-loop - parallel edges A Comparative Study of k-shortest Path Algorithms A. W. Brander M. C. Sinclair Dept. of Electronic Systems Engineering, University of Essex, Wivenhoe Park, Colchester, Essex C04 3SQ. Tel: 01206-872477;

More information

Neuro-Remodeling via Backpropagation of Utility. ABSTRACT Backpropagation of utility is one of the many methods for neuro-control.

Neuro-Remodeling via Backpropagation of Utility. ABSTRACT Backpropagation of utility is one of the many methods for neuro-control. Neuro-Remodeling via Backpropagation of Utility K. Wendy Tang and Girish Pingle 1 Department of Electrical Engineering SUNY at Stony Brook, Stony Brook, NY 11794-2350. ABSTRACT Backpropagation of utility

More information

NP-Complete Problems

NP-Complete Problems 1 / 34 NP-Complete Problems CS 584: Algorithm Design and Analysis Daniel Leblanc 1 1 Senior Adjunct Instructor Portland State University Maseeh College of Engineering and Computer Science Winter 2018 2

More information

Divisibility Rules and Their Explanations

Divisibility Rules and Their Explanations Divisibility Rules and Their Explanations Increase Your Number Sense These divisibility rules apply to determining the divisibility of a positive integer (1, 2, 3, ) by another positive integer or 0 (although

More information

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001)

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001) An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (000/001) Summary The objectives of this project were as follows: 1) Investigate iterative

More information

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2001, D-Facto public., ISBN ,

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2001, D-Facto public., ISBN , Interpretation and Comparison of Multidimensional Data Partitions Esa Alhoniemi and Olli Simula Neural Networks Research Centre Helsinki University of Technology P. O.Box 5400 FIN-02015 HUT, Finland esa.alhoniemi@hut.fi

More information

Geometric Mean Algorithms Based on Harmonic and Arithmetic Iterations

Geometric Mean Algorithms Based on Harmonic and Arithmetic Iterations Geometric Mean Algorithms Based on Harmonic and Arithmetic Iterations Ben Jeuris and Raf Vandebril KU Leuven, Dept. of Computer Science, 3001 Leuven(Heverlee), Belgium {ben.jeuris,raf.vandebril}@cs.kuleuven.be

More information

Data Mining with Oracle 10g using Clustering and Classification Algorithms Nhamo Mdzingwa September 25, 2005

Data Mining with Oracle 10g using Clustering and Classification Algorithms Nhamo Mdzingwa September 25, 2005 Data Mining with Oracle 10g using Clustering and Classification Algorithms Nhamo Mdzingwa September 25, 2005 Abstract Deciding on which algorithm to use, in terms of which is the most effective and accurate

More information

Fundamental Mathematical Concepts Math 107A. Professor T. D. Hamilton

Fundamental Mathematical Concepts Math 107A. Professor T. D. Hamilton Fundamental Mathematical Concepts Math 107A Professor T. D. Hamilton January 17, 2007 2 Contents 1 Set Theory 7 What is a set?.......................................... 7 Describing a Set.........................................

More information

Research on outlier intrusion detection technologybased on data mining

Research on outlier intrusion detection technologybased on data mining Acta Technica 62 (2017), No. 4A, 635640 c 2017 Institute of Thermomechanics CAS, v.v.i. Research on outlier intrusion detection technologybased on data mining Liang zhu 1, 2 Abstract. With the rapid development

More information

arxiv:physics/ v1 [physics.ins-det] 5 Mar 2007 Gate Arrays

arxiv:physics/ v1 [physics.ins-det] 5 Mar 2007 Gate Arrays A Hardware Implementation of Artificial Neural Network Using Field Programmable arxiv:physics/0703041v1 [physics.ins-det] 5 Mar 2007 Gate Arrays E. Won Department of Physics, Korea University, Seoul 136-713,

More information

Ranking Clustered Data with Pairwise Comparisons

Ranking Clustered Data with Pairwise Comparisons Ranking Clustered Data with Pairwise Comparisons Kevin Kowalski nargle@cs.wisc.edu 1. INTRODUCTION Background. Machine learning often relies heavily on being able to rank instances in a large set of data

More information

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002 1225 Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms S. Sathiya Keerthi Abstract This paper

More information

All 0-1 Polytopes are. Abstract. We study the facial structure of two important permutation polytopes

All 0-1 Polytopes are. Abstract. We study the facial structure of two important permutation polytopes All 0-1 Polytopes are Traveling Salesman Polytopes L.J. Billera and A. Sarangarajan y Abstract We study the facial structure of two important permutation polytopes in R n2, the Birkho or assignment polytope

More information

Yuki Osada Andrew Cannon

Yuki Osada Andrew Cannon Yuki Osada Andrew Cannon 1 Humans are an intelligent species One feature is the ability to learn The ability to learn comes down to the brain The brain learns from experience Research shows that the brain

More information

Simultaneous Perturbation Stochastic Approximation Algorithm Combined with Neural Network and Fuzzy Simulation

Simultaneous Perturbation Stochastic Approximation Algorithm Combined with Neural Network and Fuzzy Simulation .--- Simultaneous Perturbation Stochastic Approximation Algorithm Combined with Neural Networ and Fuzzy Simulation Abstract - - - - Keywords: Many optimization problems contain fuzzy information. Possibility

More information

A Note on Fairness in I/O Automata. Judi Romijn and Frits Vaandrager CWI. Abstract

A Note on Fairness in I/O Automata. Judi Romijn and Frits Vaandrager CWI. Abstract A Note on Fairness in I/O Automata Judi Romijn and Frits Vaandrager CWI P.O. Box 94079, 1090 GB Amsterdam, The Netherlands judi@cwi.nl, fritsv@cwi.nl Abstract Notions of weak and strong fairness are studied

More information

Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems

Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems In everyday life, we humans most often count using decimal or base-10 numbers. In computer science, it

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Support Vector Machines Aurélie Herbelot 2018 Centre for Mind/Brain Sciences University of Trento 1 Support Vector Machines: introduction 2 Support Vector Machines (SVMs) SVMs

More information

High Dimensional Indexing by Clustering

High Dimensional Indexing by Clustering Yufei Tao ITEE University of Queensland Recall that, our discussion so far has assumed that the dimensionality d is moderately high, such that it can be regarded as a constant. This means that d should

More information

Seismic regionalization based on an artificial neural network

Seismic regionalization based on an artificial neural network Seismic regionalization based on an artificial neural network *Jaime García-Pérez 1) and René Riaño 2) 1), 2) Instituto de Ingeniería, UNAM, CU, Coyoacán, México D.F., 014510, Mexico 1) jgap@pumas.ii.unam.mx

More information

Proceedings of the 6th Int. Conf. on Computer Analysis of Images and Patterns. Direct Obstacle Detection and Motion. from Spatio-Temporal Derivatives

Proceedings of the 6th Int. Conf. on Computer Analysis of Images and Patterns. Direct Obstacle Detection and Motion. from Spatio-Temporal Derivatives Proceedings of the 6th Int. Conf. on Computer Analysis of Images and Patterns CAIP'95, pp. 874-879, Prague, Czech Republic, Sep 1995 Direct Obstacle Detection and Motion from Spatio-Temporal Derivatives

More information

Mining di Dati Web. Lezione 3 - Clustering and Classification

Mining di Dati Web. Lezione 3 - Clustering and Classification Mining di Dati Web Lezione 3 - Clustering and Classification Introduction Clustering and classification are both learning techniques They learn functions describing data Clustering is also known as Unsupervised

More information

/00/$10.00 (C) 2000 IEEE

/00/$10.00 (C) 2000 IEEE A SOM based cluster visualization and its application for false coloring Johan Himberg Helsinki University of Technology Laboratory of Computer and Information Science P.O. Box 54, FIN-215 HUT, Finland

More information

J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins. Technical Report. February 5, 1998

J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins. Technical Report. February 5, 1998 Density Estimation using Support Vector Machines J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins. Technical Report CSD-TR-97-3 February 5, 998!()+, -./ 3456 Department of Computer Science

More information

A TESSELLATION FOR ALGEBRAIC SURFACES IN CP 3

A TESSELLATION FOR ALGEBRAIC SURFACES IN CP 3 A TESSELLATION FOR ALGEBRAIC SURFACES IN CP 3 ANDREW J. HANSON AND JI-PING SHA In this paper we present a systematic and explicit algorithm for tessellating the algebraic surfaces (real 4-manifolds) F

More information

Multiresponse Sparse Regression with Application to Multidimensional Scaling

Multiresponse Sparse Regression with Application to Multidimensional Scaling Multiresponse Sparse Regression with Application to Multidimensional Scaling Timo Similä and Jarkko Tikka Helsinki University of Technology, Laboratory of Computer and Information Science P.O. Box 54,

More information

Singular Value Decomposition, and Application to Recommender Systems

Singular Value Decomposition, and Application to Recommender Systems Singular Value Decomposition, and Application to Recommender Systems CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Recommendation

More information

REPRESENTATION OF BIG DATA BY DIMENSION REDUCTION

REPRESENTATION OF BIG DATA BY DIMENSION REDUCTION Fundamental Journal of Mathematics and Mathematical Sciences Vol. 4, Issue 1, 2015, Pages 23-34 This paper is available online at http://www.frdint.com/ Published online November 29, 2015 REPRESENTATION

More information

output vector controller y s... y 2 y 1

output vector controller y s... y 2 y 1 A Neuro-Fuzzy Solution for Fine-Motion Control Based on Vision and Force Sensors Yorck von Collani, Jianwei Zhang, Alois Knoll Technical Computer Science, Faculty of Technology, University of Bielefeld,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Isabelle Guyon Notes written by: Johann Leithon. Introduction The process of Machine Learning consist of having a big training data base, which is the input to some learning

More information

Michael Mitzenmacher. Abstract. The eld of random graphs contains many surprising and interesting results. Here we

Michael Mitzenmacher. Abstract. The eld of random graphs contains many surprising and interesting results. Here we Designing Stimulating Programming Assignments for an Algorithms Course: A Collection of Problems Based on Random Graphs Michael Mitzenmacher Abstract The eld of random graphs contains many surprising and

More information

CHAPTER 6 Parametric Spline Curves

CHAPTER 6 Parametric Spline Curves CHAPTER 6 Parametric Spline Curves When we introduced splines in Chapter 1 we focused on spline curves, or more precisely, vector valued spline functions. In Chapters 2 and 4 we then established the basic

More information

Write an iterative real-space Poisson solver in Python/C

Write an iterative real-space Poisson solver in Python/C Write an iterative real-space Poisson solver in Python/C Ask Hjorth Larsen asklarsen@gmail.com October 10, 2018 The Poisson equation is 2 φ(r) = ρ(r). (1) This is a second-order linear dierential equation

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information