2 The MiníMax Principle First consider a simple problem. This problem will address the tradeos involved in a two-objective optimiation problem, where

Size: px
Start display at page:

Download "2 The MiníMax Principle First consider a simple problem. This problem will address the tradeos involved in a two-objective optimiation problem, where"

Transcription

1 Determining the Optimal Weights in Multiple Objective Function Optimiation Michael A. Gennert Alan L. Yuille Department of Computer Science Division of Applied Sciences Worcester Polytechnic Institute Harvard University Worcester, MA Cambridge, MA September 21, 1998 Abstract An important problem in computer vision is the determination of weights for multiple objective function optimiation. This problem arises naturally in many reconstruction problems, where one wishes to reconstruct a function belonging to a constrained class of signals based upon noisy observed data. A common approach is to combine the objective functions into a single total cost function. The problem then is to determine appropriate weights for the objective functions. In this paper we propose techniques for automatically determining the weights, and discuss their properties. The MiníMax Principle, which avoids the problems of extremely low or high weights, is introduced. Expressions are derived relating the optimal weights, objective function values, and total cost. 1 Introduction An important problem in computer vision is the determination of weights for multiple objective function optimiation. This problem arises naturally in many reconstruction problems, where one wishes to reconstruct a function belonging to a constrained class of signals based upon noisy observed data. There is usually a tradeo between reconstructing a function that is true to the data, and one that is true to the constraints. Instances of this tradeo can be found in shape from shading ë3ë, optical ow ë4ë, surface interpolation ë2ë, edge detection ë7ë, visible surface reconstruction ë9ë, and brightness-based stereo matching ë1ë. The recently popularied regulariation method for solving ill-posed problems ë6, 8ë always requires the tradeo of conicting requirements. The basic framework denes a cost or error functional which reects the ëbadness" of a proposed solution to the reconstruction problem. Mathematical techniques, such as the calculus of variations, are used to nd the best solution to the reconstruction problem. The contribution of each constraint to the cost funtional is weighted, and the weights may be adjusted to achieve a desired tradeo. In some cases, a priori knowledge may be used to determine a ëbest" set of weights. Typically, one must know some property of the observed data, such as the signal-to-noise ratio, before proceeding. This is not always possible. It would be better to have a method for determining weights that did not depend on a priori knowledge. In this paper we propose techniques for automatically determining weights, and discuss properties of these techniques. Let us assume that there are several objectives to be achieved, and let there be a non-negative objective function for each objective which measures distance from that objective. We would like to combine the objective functions into a single cost function. In the following sections we will examine ways to construct the desired single objective function. 1

2 2 The MiníMax Principle First consider a simple problem. This problem will address the tradeos involved in a two-objective optimiation problem, where a cost function is to be minimied over a single variable. Our goal is to shed some insight into the more complex general problem, where the cost function incorporates arbitrarily many objectives to be minimied over a multiple-variable eld. 2.1 Linear Weight Constraint Let y 1 èè and y 2 èè be non-negative functions of a single state variable. It may be assumed, without loss of generality, that y 1 èè = 0 and y 2 èè = 0 for some ènot necessarily the sameè. These are the two objective functions. Let the overall cost function be a linear combination of the objectives, dened by eèç; è =çy 1 èè+è1, çèy 2 èè; 0 ç ç ç 1: For a given value of ç, there will exist a value of which minimies eèç; è. Let that minimum value be e èçè = min eèç; è =eèç; èçèè: Given ç, one generally tries to nd èçè, the value with the minimum total cost. We can plot e èçè as a function of ç, as shown in gure 1. Since there exists some such that y 1 èè = 0, and the y i 's are non-negative, e è1è = min y 1 èè =0. Likewise, e è0è=0. e èçè 6 e 0 0 ç 1 - ç Figure 1: Total cost e èçè vs. ç. e èçè is convex with e è0è = e è1è = 0. 2

3 The total cost function must be convex, irrespective of the convexity of each objective function. Let e 1 = e èç 1 è and e 2 = e èç 2 è. Then for any between 0 and 1, e èç 1 +è1, èç 2 è ç e 1 +è1, èe 2. The proof follows: e èç 1 +è1, èç 2 è = min eèç 1 +è1, èç 2 ;è = min èç 1 y 1 èè+è1, ç 1 èy 2 èèè +è1, èèç 2 y 1 èè+è1, ç 2 èy 2 èèè ç min ç 1 y 1 èè+è1, ç 1 èy 2 èè +è1, è min = e 1 +è1, èe 2 ç 2 y 1 èè+è1, ç 2 èy 2 èè Note that the proof does not depend on the convexity of either y i. The main diculty inchoosing ç is that if it is either too low or too high, one of the objective functions will be inadequately represented in the total cost, and the total cost will be too low. One way to ensure that the total cost will not be too low istopick the maximum cost solution. That is, nd ç such that e = e èç è is maximied. This may seem at rst to be far from optimal, but if one recalls that e has already been minimied over, it will be seen that the maximiation over ç does make sense, while avoiding the problems of ç excessively low or high. This is the MiníMax Principle. Note that if there exists a value of ç not equal to ero or one for which the total cost is ero, then the optimal cost found using the MiníMax Principle will also be ero. This follows from the convexity ofe èçè. Let us see what the extremiation of the total cost implies. If ç is the weight which maximies e èçè, then denote the value of the corresponding state variable by = èç è. Since e èçè is maximied at ç, conclude that 0 = d dç e èçè ç=ç = d dç eèç; èçèè eèç; è eèç ;è d dç èçè ç=ç But the last term, eèç ;è, equals ero, because minimies e. è, y 2 è eèç; è = y 1 è ç=ç Each objective function assumes the same cost value, although the weights ç and 1, ç are not necessarily identical, and the weighted contribution of each objective function will not in general be identical. 2.2 Non-linear Weight Constraint In this section we consider a variation on the previous solution technique in which the total cost function is not a linear combination of the weights. Instead, let the weights of the objectives, when squared, sum to a constant. The constant can be set to 1 without loss of generality. That is, eèç; è =çy 1 èè+ p 1, ç 2 y 2 èè; 0 ç ç ç 1: As before, the optimal value of given ç is èçè, where e èçè = min eèç; è =eèç; èçèè. A plot of e èçè would look much the same as in the linear combination case, gure 1. It can be shown that e èçè is convex. 3

4 The MiníMax Principle requires that ç be found which maximies the total cost, avoiding the problems of ç excessively low or high. As before, e = max ç e èçè =e èç è. Using the chain rule for dierentation we obtain: After rearrangement, eèç; è = y 1 è ç=ç 1 y 1 è 1 è= p 1, ç 2 y 2è è: ç ç p 1, ç 2 y 2è è: Each objective function, when divided by its weight, is equal. The weights ç and p 1, ç 2 will not in general be equal, therefore, the objective functions will not be equal. Also, the objective function with the greatest value will have the largest weight, so that its contribution to the total cost function is further increased. This contrasts with the linear weight case discussed above. 3 General Case In this section we consider the generaliation to any number of objective functions and any dimensionality state space. Replace the scalar variable by avector eld èxè dened over domain x. We use a vector eld for because there may be more than one quantity ofinterest. For example, in optical ow would be the horiontal and vertical components of optical ow. In stereo would be the horiontal and vertical disparities. If the image model has other parameters, they may be incorporated into. The two objective functions are replaced by n objective functionals Z yèè = Lèèxèè dx; where L is a set of possibly non-linear operators on the vector eld. The weights are given by vector ç, so that eèç; è = ç T yèè. The least cost solution for a given set of weights is èçè, yielding a total cost of e èçè = min eèç; è =eèç; èçèè. The cost functional is convex in ç. The proof follows: Let e èç 1 è=e 1 and e èç 2 è=e 2. e èçè is convex if, for any between 0 and 1, e èç 1 +è1, èç 2 è ç e 1 +è1, èe 2. e èç 1 +è1, èç 2 è = min eèç 1 +è1, èç 2 ; è = minèç 1 +è1, èç 2 è T yèè ç min ç T 1 yèè + min è1, yèè èçt 2 = e 1 +è1, èe 2 The MiníMax Principle requires that we nd ç to maximie e èçè; the maximum is obtained at ç. Note that if there exists a ero-cost solution with all positive weights, it will be found by the MiníMax proceduire. This follows from the convexity of e èçè. Thus, in cases where there is an obvious optimal solution, the proposed method will discover it. This property is independent of any constraint on the weights, apart from the positivity assumption. Usually, a constraint is needed for the weight vector ç. Otherwise, as ç increases without limit, so does the cost e èçè. Two methods of constraining ç have been considered earlier. When generalied, these correspond to 1 T ç =1 and jçj =1; where 1 T =è1; 1;:::èisavector of 1's. In both cases we require that ç ç 0, that is, every component of ç must be non-negative. The rst constraint forces the weights to lie on the hyperplane which is tangent to1 èand which passes through point 1= j1jè. The second constraint forces the weights to lie on the unit sphere. 4

5 3.1 Linear Weight Constraint We now investigate the behavior of the solution to the rst problem. The weights are constrained to lie on the hyperplane 1 T ç =1. Use the method of Lagrange multipliers, adjoining the total cost functional e = ç T y to the constraint to form L = ç T y + lè1 T ç, 1è; where l is the Lagrange multiplier. To extremie e, it must be true = y T + l1 T =0 T =1 T ç, 1=0: where 0 T = è0; 0;:::è. This shows that y =,l1 = 1e =n, which is constant for all components of y. Therefore, all objective functionals achieve the same value when the total cost functional is minimied. 3.2 Non-linear Weight Constraint When the weights are constrained to lie on the unit sphere, the method of Lagrange multipliers gives Setting the partials to ero, we have and Therefore, and L = ç T y + lèç T ç, = yt +2lç T =0 = çt ç, 1=0: e = ç T y =,2l y = e ç: The objective functionals are parallel to the weights, and every objective functional value, when divided by the corresponding weight, is equal. 4 Conclusions In this paper we have proposed methods for determining the weights in multiple-objective optimiation problems. The MiníMax Principle, which avoids the problems of extremely low or high weights, was introduced. Expressions were derived relating the optimal weights, objective functional values, and total cost. The optimal weights are not described in closed form; they must be found by a search technique. The Fibonacci search technique ë5ë is a good choice because the total cost is a unimodal function. For each set of weights considered, the entire problem of determining the state èçè must be solved. This may be computationally intensive. However, if is determined iteratively for each value of ç, then the state èç k èmay be used as the initial guess for the next set of weights ç k+1. This should greatly reduce the computation required. 5

6 Acknowledgements The support of the Worcester Polytechnic Institute Research Development Council is gratefully acknowledged. References ë1ë M.A. Gennert, ëbrightness-based Stereo Matching," These proceedings. ë2ë W.E.L. Grimson, ëa Computational Theory of Visual Surface Interpolation," Phil. Trans. Royal Soc. of London B, Vol. 298, pp. 395í427, ë3ë B.K.P. Horn, ëimage Intensity Understanding," Articial Intelligence,Vol. 8, No. 2, pp. 201í231, April ë4ë B.K.P. Horn & B.G. Schunck, ëdetermining Optical Flow," Articial Intelligence, Vol. 17, Nos. 1í3, pp. 185í203, August ë5ë D.A. Pierre, Optimiation Theory with Applications, John Wiley & Sons, New York, ë6ë T. Poggio & V. Torre, ëill-posed Problems and Regulariation Analysis in Early Vision," MIT AI Laboratory Memo 773, April ë7ë T. Poggio, H.L. Voorhees, & A. Yuille, ëa Regularied Solution to Edge Detection," MIT AI Laboratory Memo 833, May ë8ë D. Teropoulos, ëregulariation of Inverse Problems Involving Discontinuities," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 8, No. 4, pp. 413í424, July ë9ë D. Teropoulos, ëthe Computation of Visible Surface Represenations," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 10, No. 4, pp. 417í438, July

REDUCTION OF CODING ARTIFACTS IN LOW-BIT-RATE VIDEO CODING. Robert L. Stevenson. usually degrade edge information in the original image.

REDUCTION OF CODING ARTIFACTS IN LOW-BIT-RATE VIDEO CODING. Robert L. Stevenson. usually degrade edge information in the original image. REDUCTION OF CODING ARTIFACTS IN LOW-BIT-RATE VIDEO CODING Robert L. Stevenson Laboratory for Image and Signal Processing Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556

More information

ASSOCIATIVE LEARNING OF STANDARD REGULARIZING OPERATORS IN EARLY VISION

ASSOCIATIVE LEARNING OF STANDARD REGULARIZING OPERATORS IN EARLY VISION MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL intelligence LABORATORY and CENTER FOR BIOLOGICAL INFORMATION PROCESSING WHITAKER COLLEGE Working Paper No. 264 December, 1984 ASSOCIATIVE LEARNING OF STANDARD

More information

Local qualitative shape from stereo. without detailed correspondence. Extended Abstract. Shimon Edelman. Internet:

Local qualitative shape from stereo. without detailed correspondence. Extended Abstract. Shimon Edelman. Internet: Local qualitative shape from stereo without detailed correspondence Extended Abstract Shimon Edelman Center for Biological Information Processing MIT E25-201, Cambridge MA 02139 Internet: edelman@ai.mit.edu

More information

Comment on Numerical shape from shading and occluding boundaries

Comment on Numerical shape from shading and occluding boundaries Artificial Intelligence 59 (1993) 89-94 Elsevier 89 ARTINT 1001 Comment on Numerical shape from shading and occluding boundaries K. Ikeuchi School of Compurer Science. Carnegie Mellon dniversity. Pirrsburgh.

More information

A Survey of Light Source Detection Methods

A Survey of Light Source Detection Methods A Survey of Light Source Detection Methods Nathan Funk University of Alberta Mini-Project for CMPUT 603 November 30, 2003 Abstract This paper provides an overview of the most prominent techniques for light

More information

Proceedings of the 6th Int. Conf. on Computer Analysis of Images and Patterns. Direct Obstacle Detection and Motion. from Spatio-Temporal Derivatives

Proceedings of the 6th Int. Conf. on Computer Analysis of Images and Patterns. Direct Obstacle Detection and Motion. from Spatio-Temporal Derivatives Proceedings of the 6th Int. Conf. on Computer Analysis of Images and Patterns CAIP'95, pp. 874-879, Prague, Czech Republic, Sep 1995 Direct Obstacle Detection and Motion from Spatio-Temporal Derivatives

More information

Optical Flow. Adriana Bocoi and Elena Pelican. 1. Introduction

Optical Flow. Adriana Bocoi and Elena Pelican. 1. Introduction Proceedings of the Fifth Workshop on Mathematical Modelling of Environmental and Life Sciences Problems Constanţa, Romania, September, 200, pp. 5 5 Optical Flow Adriana Bocoi and Elena Pelican This paper

More information

Transactions on Information and Communications Technologies vol 19, 1997 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 19, 1997 WIT Press,   ISSN Hopeld Network for Stereo Correspondence Using Block-Matching Techniques Dimitrios Tzovaras and Michael G. Strintzis Information Processing Laboratory, Electrical and Computer Engineering Department, Aristotle

More information

The Global Standard for Mobility (GSM) (see, e.g., [6], [4], [5]) yields a

The Global Standard for Mobility (GSM) (see, e.g., [6], [4], [5]) yields a Preprint 0 (2000)?{? 1 Approximation of a direction of N d in bounded coordinates Jean-Christophe Novelli a Gilles Schaeer b Florent Hivert a a Universite Paris 7 { LIAFA 2, place Jussieu - 75251 Paris

More information

Digital Volume Correlation for Materials Characterization

Digital Volume Correlation for Materials Characterization 19 th World Conference on Non-Destructive Testing 2016 Digital Volume Correlation for Materials Characterization Enrico QUINTANA, Phillip REU, Edward JIMENEZ, Kyle THOMPSON, Sharlotte KRAMER Sandia National

More information

Classifier C-Net. 2D Projected Images of 3D Objects. 2D Projected Images of 3D Objects. Model I. Model II

Classifier C-Net. 2D Projected Images of 3D Objects. 2D Projected Images of 3D Objects. Model I. Model II Advances in Neural Information Processing Systems 7. (99) The MIT Press, Cambridge, MA. pp.949-96 Unsupervised Classication of 3D Objects from D Views Satoshi Suzuki Hiroshi Ando ATR Human Information

More information

Towards the completion of assignment 1

Towards the completion of assignment 1 Towards the completion of assignment 1 What to do for calibration What to do for point matching What to do for tracking What to do for GUI COMPSCI 773 Feature Point Detection Why study feature point detection?

More information

J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins. Technical Report. February 5, 1998

J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins. Technical Report. February 5, 1998 Density Estimation using Support Vector Machines J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins. Technical Report CSD-TR-97-3 February 5, 998!()+, -./ 3456 Department of Computer Science

More information

Visual Tracking (1) Feature Point Tracking and Block Matching

Visual Tracking (1) Feature Point Tracking and Block Matching Intelligent Control Systems Visual Tracking (1) Feature Point Tracking and Block Matching Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Perception Viewed as an Inverse Problem

Perception Viewed as an Inverse Problem Perception Viewed as an Inverse Problem Fechnerian Causal Chain of Events - an evaluation Fechner s study of outer psychophysics assumes that the percept is a result of a causal chain of events: Distal

More information

What is Computer Vision?

What is Computer Vision? Perceptual Grouping in Computer Vision Gérard Medioni University of Southern California What is Computer Vision? Computer Vision Attempt to emulate Human Visual System Perceive visual stimuli with cameras

More information

Notes on Robust Estimation David J. Fleet Allan Jepson March 30, 005 Robust Estimataion. The field of robust statistics [3, 4] is concerned with estimation problems in which the data contains gross errors,

More information

NONLINEAR BACK PROJECTION FOR TOMOGRAPHIC IMAGE RECONSTRUCTION

NONLINEAR BACK PROJECTION FOR TOMOGRAPHIC IMAGE RECONSTRUCTION NONLINEAR BACK PROJECTION FOR TOMOGRAPHIC IMAGE RECONSTRUCTION Ken Sauef and Charles A. Bournant *Department of Electrical Engineering, University of Notre Dame Notre Dame, IN 46556, (219) 631-6999 tschoo1

More information

Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

More information

Document Image Restoration Using Binary Morphological Filters. Jisheng Liang, Robert M. Haralick. Seattle, Washington Ihsin T.

Document Image Restoration Using Binary Morphological Filters. Jisheng Liang, Robert M. Haralick. Seattle, Washington Ihsin T. Document Image Restoration Using Binary Morphological Filters Jisheng Liang, Robert M. Haralick University of Washington, Department of Electrical Engineering Seattle, Washington 98195 Ihsin T. Phillips

More information

Networks for Control. California Institute of Technology. Pasadena, CA Abstract

Networks for Control. California Institute of Technology. Pasadena, CA Abstract Learning Fuzzy Rule-Based Neural Networks for Control Charles M. Higgins and Rodney M. Goodman Department of Electrical Engineering, 116-81 California Institute of Technology Pasadena, CA 91125 Abstract

More information

Rowena Cole and Luigi Barone. Department of Computer Science, The University of Western Australia, Western Australia, 6907

Rowena Cole and Luigi Barone. Department of Computer Science, The University of Western Australia, Western Australia, 6907 The Game of Clustering Rowena Cole and Luigi Barone Department of Computer Science, The University of Western Australia, Western Australia, 697 frowena, luigig@cs.uwa.edu.au Abstract Clustering is a technique

More information

AM 221: Advanced Optimization Spring 2016

AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 2 Wednesday, January 27th 1 Overview In our previous lecture we discussed several applications of optimization, introduced basic terminology,

More information

1300 scree

1300 scree Determining the Number of Dimensions Underlying Customer-choices with a Competitive Neural Network Michiel C. van Wezel 1, Joost N. Kok 2, Kaisa Sere 3 1 Centre for Mathematics and Computer Science (CWI)

More information

Silhouette-based Multiple-View Camera Calibration

Silhouette-based Multiple-View Camera Calibration Silhouette-based Multiple-View Camera Calibration Prashant Ramanathan, Eckehard Steinbach, and Bernd Girod Information Systems Laboratory, Electrical Engineering Department, Stanford University Stanford,

More information

Bias-Variance Tradeos Analysis Using Uniform CR Bound. Mohammad Usman, Alfred O. Hero, Jerey A. Fessler and W. L. Rogers. University of Michigan

Bias-Variance Tradeos Analysis Using Uniform CR Bound. Mohammad Usman, Alfred O. Hero, Jerey A. Fessler and W. L. Rogers. University of Michigan Bias-Variance Tradeos Analysis Using Uniform CR Bound Mohammad Usman, Alfred O. Hero, Jerey A. Fessler and W. L. Rogers University of Michigan ABSTRACT We quantify fundamental bias-variance tradeos for

More information

A B. A: sigmoid B: EBA (x0=0.03) C: EBA (x0=0.05) U

A B. A: sigmoid B: EBA (x0=0.03) C: EBA (x0=0.05) U Extending the Power and Capacity of Constraint Satisfaction Networks nchuan Zeng and Tony R. Martinez Computer Science Department, Brigham Young University, Provo, Utah 8460 Email: zengx@axon.cs.byu.edu,

More information

Level lines based disocclusion

Level lines based disocclusion Level lines based disocclusion Simon Masnou Jean-Michel Morel CEREMADE CMLA Université Paris-IX Dauphine Ecole Normale Supérieure de Cachan 75775 Paris Cedex 16, France 94235 Cachan Cedex, France Abstract

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Ray Trace Notes. Charles Rino. September 2010

Ray Trace Notes. Charles Rino. September 2010 Ray Trace Notes Charles Rino September 2010 1 Introduction A MATLAB function that performs a direct numerical integration to the ray optics equation described in book Section 1.3.2 has been implemented.

More information

An introduction to interpolation and splines

An introduction to interpolation and splines An introduction to interpolation and splines Kenneth H. Carpenter, EECE KSU November 22, 1999 revised November 20, 2001, April 24, 2002, April 14, 2004 1 Introduction Suppose one wishes to draw a curve

More information

Using Local Trajectory Optimizers To Speed Up Global. Christopher G. Atkeson. Department of Brain and Cognitive Sciences and

Using Local Trajectory Optimizers To Speed Up Global. Christopher G. Atkeson. Department of Brain and Cognitive Sciences and Using Local Trajectory Optimizers To Speed Up Global Optimization In Dynamic Programming Christopher G. Atkeson Department of Brain and Cognitive Sciences and the Articial Intelligence Laboratory Massachusetts

More information

Coarse-to-fine image registration

Coarse-to-fine image registration Today we will look at a few important topics in scale space in computer vision, in particular, coarseto-fine approaches, and the SIFT feature descriptor. I will present only the main ideas here to give

More information

Spatial Enhancement Definition

Spatial Enhancement Definition Spatial Enhancement Nickolas Faust The Electro- Optics, Environment, and Materials Laboratory Georgia Tech Research Institute Georgia Institute of Technology Definition Spectral enhancement relies on changing

More information

A Self-Organizing Binary System*

A Self-Organizing Binary System* 212 1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE A Self-Organizing Binary System* RICHARD L. MATTSONt INTRODUCTION ANY STIMULUS to a system such as described in this paper can be coded into

More information

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function.

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function. 1 The Lagrange multipliers is a mathematical method for performing constrained optimization of differentiable functions. Recall unconstrained optimization of differentiable functions, in which we want

More information

Contrained K-Means Clustering 1 1 Introduction The K-Means clustering algorithm [5] has become a workhorse for the data analyst in many diverse elds.

Contrained K-Means Clustering 1 1 Introduction The K-Means clustering algorithm [5] has become a workhorse for the data analyst in many diverse elds. Constrained K-Means Clustering P. S. Bradley K. P. Bennett A. Demiriz Microsoft Research Dept. of Mathematical Sciences One Microsoft Way Dept. of Decision Sciences and Eng. Sys. Redmond, WA 98052 Renselaer

More information

Chordal graphs and the characteristic polynomial

Chordal graphs and the characteristic polynomial Discrete Mathematics 262 (2003) 211 219 www.elsevier.com/locate/disc Chordal graphs and the characteristic polynomial Elizabeth W. McMahon ;1, Beth A. Shimkus 2, Jessica A. Wolfson 3 Department of Mathematics,

More information

6. Concluding Remarks

6. Concluding Remarks [8] K. J. Supowit, The relative neighborhood graph with an application to minimum spanning trees, Tech. Rept., Department of Computer Science, University of Illinois, Urbana-Champaign, August 1980, also

More information

AN ANALYSIS OF ITERATIVE ALGORITHMS FOR IMAGE RECONSTRUCTION FROM SATELLITE EARTH REMOTE SENSING DATA Matthew H Willis Brigham Young University, MERS Laboratory 459 CB, Provo, UT 8462 8-378-4884, FAX:

More information

Extensions of One-Dimensional Gray-level Nonlinear Image Processing Filters to Three-Dimensional Color Space

Extensions of One-Dimensional Gray-level Nonlinear Image Processing Filters to Three-Dimensional Color Space Extensions of One-Dimensional Gray-level Nonlinear Image Processing Filters to Three-Dimensional Color Space Orlando HERNANDEZ and Richard KNOWLES Department Electrical and Computer Engineering, The College

More information

3.1. Solution for white Gaussian noise

3.1. Solution for white Gaussian noise Low complexity M-hypotheses detection: M vectors case Mohammed Nae and Ahmed H. Tewk Dept. of Electrical Engineering University of Minnesota, Minneapolis, MN 55455 mnae,tewk@ece.umn.edu Abstract Low complexity

More information

Edges Are Not Just Steps

Edges Are Not Just Steps ACCV2002: The 5th Asian Conference on Computer Vision, 23 25 January 2002, Melbourne, Australia. 1 Edges Are Not Just Steps Peter Kovesi Department of Computer Science & Software Engineering The University

More information

Hyperplane Ranking in. Simple Genetic Algorithms. D. Whitley, K. Mathias, and L. Pyeatt. Department of Computer Science. Colorado State University

Hyperplane Ranking in. Simple Genetic Algorithms. D. Whitley, K. Mathias, and L. Pyeatt. Department of Computer Science. Colorado State University Hyperplane Ranking in Simple Genetic Algorithms D. Whitley, K. Mathias, and L. yeatt Department of Computer Science Colorado State University Fort Collins, Colorado 8523 USA whitley,mathiask,pyeatt@cs.colostate.edu

More information

CS 565 Computer Vision. Nazar Khan PUCIT Lectures 15 and 16: Optic Flow

CS 565 Computer Vision. Nazar Khan PUCIT Lectures 15 and 16: Optic Flow CS 565 Computer Vision Nazar Khan PUCIT Lectures 15 and 16: Optic Flow Introduction Basic Problem given: image sequence f(x, y, z), where (x, y) specifies the location and z denotes time wanted: displacement

More information

Assignment 2. Classification and Regression using Linear Networks, Multilayer Perceptron Networks, and Radial Basis Functions

Assignment 2. Classification and Regression using Linear Networks, Multilayer Perceptron Networks, and Radial Basis Functions ENEE 739Q: STATISTICAL AND NEURAL PATTERN RECOGNITION Spring 2002 Assignment 2 Classification and Regression using Linear Networks, Multilayer Perceptron Networks, and Radial Basis Functions Aravind Sundaresan

More information

Flow Estimation. Min Bai. February 8, University of Toronto. Min Bai (UofT) Flow Estimation February 8, / 47

Flow Estimation. Min Bai. February 8, University of Toronto. Min Bai (UofT) Flow Estimation February 8, / 47 Flow Estimation Min Bai University of Toronto February 8, 2016 Min Bai (UofT) Flow Estimation February 8, 2016 1 / 47 Outline Optical Flow - Continued Min Bai (UofT) Flow Estimation February 8, 2016 2

More information

Table of Contents. Recognition of Facial Gestures... 1 Attila Fazekas

Table of Contents. Recognition of Facial Gestures... 1 Attila Fazekas Table of Contents Recognition of Facial Gestures...................................... 1 Attila Fazekas II Recognition of Facial Gestures Attila Fazekas University of Debrecen, Institute of Informatics

More information

first order approx. u+d second order approx. (S)

first order approx. u+d second order approx. (S) Computing Dierential Properties of 3-D Shapes from Stereoscopic Images without 3-D Models F. Devernay and O. D. Faugeras INRIA. 2004, route des Lucioles. B.P. 93. 06902 Sophia-Antipolis. FRANCE. Abstract

More information

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods 1 Nonlinear Programming Types of Nonlinear Programs (NLP) Convexity and Convex Programs NLP Solutions Unconstrained Optimization Principles of Unconstrained Optimization Search Methods Constrained Optimization

More information

Correspondence and Stereopsis. Original notes by W. Correa. Figures from [Forsyth & Ponce] and [Trucco & Verri]

Correspondence and Stereopsis. Original notes by W. Correa. Figures from [Forsyth & Ponce] and [Trucco & Verri] Correspondence and Stereopsis Original notes by W. Correa. Figures from [Forsyth & Ponce] and [Trucco & Verri] Introduction Disparity: Informally: difference between two pictures Allows us to gain a strong

More information

Dense Depth Maps from Epipolar Images

Dense Depth Maps from Epipolar Images MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I. Memo No. 593 November 996 Dense Depth Maps from Epipolar Images J.P. Mellor, Seth Teller Tomás LozanoPérez This publication

More information

Introduction The problem of cancer classication has clear implications on cancer treatment. Additionally, the advent of DNA microarrays introduces a w

Introduction The problem of cancer classication has clear implications on cancer treatment. Additionally, the advent of DNA microarrays introduces a w MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES A.I. Memo No.677 C.B.C.L Paper No.8

More information

Categorization by Learning and Combining Object Parts

Categorization by Learning and Combining Object Parts Categorization by Learning and Combining Object Parts Bernd Heisele yz Thomas Serre y Massimiliano Pontil x Thomas Vetter Λ Tomaso Poggio y y Center for Biological and Computational Learning, M.I.T., Cambridge,

More information

Face Tracking : An implementation of the Kanade-Lucas-Tomasi Tracking algorithm

Face Tracking : An implementation of the Kanade-Lucas-Tomasi Tracking algorithm Face Tracking : An implementation of the Kanade-Lucas-Tomasi Tracking algorithm Dirk W. Wagener, Ben Herbst Department of Applied Mathematics, University of Stellenbosch, Private Bag X1, Matieland 762,

More information

P ^ 2π 3 2π 3. 2π 3 P 2 P 1. a. b. c.

P ^ 2π 3 2π 3. 2π 3 P 2 P 1. a. b. c. Workshop on Fundamental Structural Properties in Image and Pattern Analysis - FSPIPA-99, Budapest, Hungary, Sept 1999. Quantitative Analysis of Continuous Symmetry in Shapes and Objects Hagit Hel-Or and

More information

Tomographic Algorithm for Industrial Plasmas

Tomographic Algorithm for Industrial Plasmas Tomographic Algorithm for Industrial Plasmas More info about this article: http://www.ndt.net/?id=22342 1 Sudhir K. Chaudhary, 1 Kavita Rathore, 2 Sudeep Bhattacharjee, 1 Prabhat Munshi 1 Nuclear Engineering

More information

Image Super-Resolution Reconstruction Based On L 1/2 Sparsity

Image Super-Resolution Reconstruction Based On L 1/2 Sparsity Buletin Teknik Elektro dan Informatika (Bulletin of Electrical Engineering and Informatics) Vol. 3, No. 3, September 4, pp. 55~6 ISSN: 89-39 55 Image Super-Resolution Reconstruction Based On L / Sparsity

More information

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Lecture 4 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 s are functions of different nature where the output parameters are described in terms of the input parameters

More information

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002 1225 Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms S. Sathiya Keerthi Abstract This paper

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

June Wesley, Cambridge Univ. Press,

June Wesley, Cambridge Univ. Press, [6] P Dupuis and J Oliensis. An optimal control formulation and related numerical methods for a problem in shape reconstruction. Ann. Appl. Probab., 4():87{ 346, 994. [7] B K P Horn. Obtaining shape from

More information

P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies

P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies. azemi* (University of Alberta) & H.R. Siahkoohi (University of Tehran) SUMMARY Petrophysical reservoir properties,

More information

M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 371

M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 371 M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 37 Appears in: IEEE Conference on Computer Vision & Pattern Recognition, San Francisco, CA, June 996. Bayesian Face Recognition

More information

MULTIRESOLUTION SHAPE FROM SHADING*

MULTIRESOLUTION SHAPE FROM SHADING* MULTIRESOLUTION SHAPE FROM SHADING* Gad Ron Shmuel Peleg Dept. of Computer Science The Hebrew University of Jerusalem 91904 Jerusalem, Israel Abstract Multiresolution approaches are often used in computer

More information

Coding and Scheduling for Efficient Loss-Resilient Data Broadcasting

Coding and Scheduling for Efficient Loss-Resilient Data Broadcasting Coding and Scheduling for Efficient Loss-Resilient Data Broadcasting Kevin Foltz Lihao Xu Jehoshua Bruck California Institute of Technology Department of Computer Science Department of Electrical Engineering

More information

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE COMPUTER VISION 2017-2018 > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE OUTLINE Optical flow Lucas-Kanade Horn-Schunck Applications of optical flow Optical flow tracking Histograms of oriented flow Assignment

More information

Lagrange multipliers October 2013

Lagrange multipliers October 2013 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 1 1 3/2 Example: Optimization

More information

Cecil Jones Academy Mathematics Fundamentals

Cecil Jones Academy Mathematics Fundamentals Year 10 Fundamentals Core Knowledge Unit 1 Unit 2 Estimate with powers and roots Calculate with powers and roots Explore the impact of rounding Investigate similar triangles Explore trigonometry in right-angled

More information

C. Lawrence Zitnick, Jon A. Webb

C. Lawrence Zitnick, Jon A. Webb Multi-baseline Stereo Using Surface Extraction C. Lawrence Zitnick, Jon A. Webb November 24, 1996 CMU-CS-96-196 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213-3890 Abstract

More information

Primes in Classes of the Iterated Totient Function

Primes in Classes of the Iterated Totient Function 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 11 (2008), Article 08.1.2 Primes in Classes of the Iterated Totient Function Tony D. Noe 14025 NW Harvest Lane Portland, OR 97229 USA noe@sspectra.com

More information

5. GENERALIZED INVERSE SOLUTIONS

5. GENERALIZED INVERSE SOLUTIONS 5. GENERALIZED INVERSE SOLUTIONS The Geometry of Generalized Inverse Solutions The generalized inverse solution to the control allocation problem involves constructing a matrix which satisfies the equation

More information

Extracting Wavefront Error From Shack-Hartmann Images Using Spatial Demodulation

Extracting Wavefront Error From Shack-Hartmann Images Using Spatial Demodulation Etracting Wavefront Error From Shack-Hartmann Images Using Spatial Demodulation Edwin J. Sarver, PhD; Jim Schwiegerling, PhD; Raymond A. Applegate, OD, PhD ABSTRACT PURPOSE: To determine whether the spatial

More information

Mixture Models and EM

Mixture Models and EM Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

More information

Chapter 7. Conclusions and Future Work

Chapter 7. Conclusions and Future Work Chapter 7 Conclusions and Future Work In this dissertation, we have presented a new way of analyzing a basic building block in computer graphics rendering algorithms the computational interaction between

More information

Consistency in Tomographic Reconstruction by Iterative Methods

Consistency in Tomographic Reconstruction by Iterative Methods Consistency in Tomographic Reconstruction by Iterative Methods by M. Reha Civanlar and H.J. Trussell Center for Communications and Signal Processing Department of Electrical and Computer Engineering North

More information

Constructive floorplanning with a yield objective

Constructive floorplanning with a yield objective Constructive floorplanning with a yield objective Rajnish Prasad and Israel Koren Department of Electrical and Computer Engineering University of Massachusetts, Amherst, MA 13 E-mail: rprasad,koren@ecs.umass.edu

More information

Chapter 8 Visualization and Optimization

Chapter 8 Visualization and Optimization Chapter 8 Visualization and Optimization Recommended reference books: [1] Edited by R. S. Gallagher: Computer Visualization, Graphics Techniques for Scientific and Engineering Analysis by CRC, 1994 [2]

More information

Lower Bounds for Insertion Methods for TSP. Yossi Azar. Abstract. optimal tour. The lower bound holds even in the Euclidean Plane.

Lower Bounds for Insertion Methods for TSP. Yossi Azar. Abstract. optimal tour. The lower bound holds even in the Euclidean Plane. Lower Bounds for Insertion Methods for TSP Yossi Azar Abstract We show that the random insertion method for the traveling salesman problem (TSP) may produce a tour (log log n= log log log n) times longer

More information

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic Chapter 3: Theory of Modular Arithmetic 1 Chapter 3: Theory of Modular Arithmetic SECTION A Introduction to Congruences By the end of this section you will be able to deduce properties of large positive

More information

Data Term. Michael Bleyer LVA Stereo Vision

Data Term. Michael Bleyer LVA Stereo Vision Data Term Michael Bleyer LVA Stereo Vision What happened last time? We have looked at our energy function: E ( D) = m( p, dp) + p I < p, q > N s( p, q) We have learned about an optimization algorithm that

More information

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Intelligent Control Systems Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Using temporal seeding to constrain the disparity search range in stereo matching

Using temporal seeding to constrain the disparity search range in stereo matching Using temporal seeding to constrain the disparity search range in stereo matching Thulani Ndhlovu Mobile Intelligent Autonomous Systems CSIR South Africa Email: tndhlovu@csir.co.za Fred Nicolls Department

More information

Performance Analysis of Adaptive Beamforming Algorithms for Smart Antennas

Performance Analysis of Adaptive Beamforming Algorithms for Smart Antennas Available online at www.sciencedirect.com ScienceDirect IERI Procedia 1 (214 ) 131 137 214 International Conference on Future Information Engineering Performance Analysis of Adaptive Beamforming Algorithms

More information

i=1 i=2 i=3 i=4 i=5 x(4) x(6) x(8)

i=1 i=2 i=3 i=4 i=5 x(4) x(6) x(8) Vectorization Using Reversible Data Dependences Peiyi Tang and Nianshu Gao Technical Report ANU-TR-CS-94-08 October 21, 1994 Vectorization Using Reversible Data Dependences Peiyi Tang Department of Computer

More information

Vertex-magic labeling of non-regular graphs

Vertex-magic labeling of non-regular graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 46 (00), Pages 73 83 Vertex-magic labeling of non-regular graphs I. D. Gray J. A. MacDougall School of Mathematical and Physical Sciences The University of

More information

EECS490: Digital Image Processing. Lecture #23

EECS490: Digital Image Processing. Lecture #23 Lecture #23 Motion segmentation & motion tracking Boundary tracking Chain codes Minimum perimeter polygons Signatures Motion Segmentation P k Accumulative Difference Image Positive ADI Negative ADI (ADI)

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Non-Metamerism of Boundary Colours in Multi-Primary Displays

Non-Metamerism of Boundary Colours in Multi-Primary Displays Non-Metamerism of Boundary Colours in Multi-Primary Displays Paul Centore c February 2012 Abstract A control sequence gives the intensities of the primaries for a pixel of a display device. The display

More information

Lagrange multipliers 14.8

Lagrange multipliers 14.8 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 Maximum? 1 1 Minimum? 3/2 Idea:

More information

In a two-way contingency table, the null hypothesis of quasi-independence. (QI) usually arises for two main reasons: 1) some cells involve structural

In a two-way contingency table, the null hypothesis of quasi-independence. (QI) usually arises for two main reasons: 1) some cells involve structural Simulate and Reject Monte Carlo Exact Conditional Tests for Quasi-independence Peter W. F. Smith and John W. McDonald Department of Social Statistics, University of Southampton, Southampton, SO17 1BJ,

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who 1 in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7 Lighting and Photometric Stereo Photometric Stereo HW will be on web later today CSE5A Lecture 7 Radiometry of thin lenses δa Last lecture in a nutshell δa δa'cosα δacos β δω = = ( z' / cosα ) ( z / cosα

More information

PROJECTION MODELING SIMPLIFICATION MARKER EXTRACTION DECISION. Image #k Partition #k

PROJECTION MODELING SIMPLIFICATION MARKER EXTRACTION DECISION. Image #k Partition #k TEMPORAL STABILITY IN SEQUENCE SEGMENTATION USING THE WATERSHED ALGORITHM FERRAN MARQU ES Dept. of Signal Theory and Communications Universitat Politecnica de Catalunya Campus Nord - Modulo D5 C/ Gran

More information

Framework for Design of Dynamic Programming Algorithms

Framework for Design of Dynamic Programming Algorithms CSE 441T/541T Advanced Algorithms September 22, 2010 Framework for Design of Dynamic Programming Algorithms Dynamic programming algorithms for combinatorial optimization generalize the strategy we studied

More information

Experiments with Edge Detection using One-dimensional Surface Fitting

Experiments with Edge Detection using One-dimensional Surface Fitting Experiments with Edge Detection using One-dimensional Surface Fitting Gabor Terei, Jorge Luis Nunes e Silva Brito The Ohio State University, Department of Geodetic Science and Surveying 1958 Neil Avenue,

More information

Stereo Matching.

Stereo Matching. Stereo Matching Stereo Vision [1] Reduction of Searching by Epipolar Constraint [1] Photometric Constraint [1] Same world point has same intensity in both images. True for Lambertian surfaces A Lambertian

More information

Subject-Oriented Image Classification based on Face Detection and Recognition

Subject-Oriented Image Classification based on Face Detection and Recognition 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information